Commit 8c750170 authored by hbsun2113's avatar hbsun2113 Committed by Quan (Andy) Gan
Browse files

[Model][Pytorch] GraphSAGE (#403)

* simple implemention of GraphSAGE

* update the abstract method and `torch.nn` modules are more utilized
parent 29dfa349
Inductive Representation Learning on Large Graphs (GraphSAGE)
============
- Paper link: [http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf](http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf)
- Author's code repo: [https://github.com/williamleif/graphsage-simple](https://github.com/williamleif/graphsage-simple). Note that the original code is
simple reference implementation of GraphSAGE.
Requirements
------------
- requests
``bash
pip install requests
``
Results
-------
Run with following (available dataset: "cora", "citeseer", "pubmed")
```bash
python graphsage.py --dataset cora --gpu 0
```
* cora: ~0.8470
* citeseer: ~0.6870
* pubmed: ~0.7730
"""
Inductive Representation Learning on Large Graphs
Paper: http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
Code: https://github.com/williamleif/graphsage-simple
Simple reference implementation of GraphSAGE.
"""
import argparse
import time
import abc
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
import dgl.function as fn
class Aggregator(nn.Module):
def __init__(self, g, in_feats, out_feats, activation=None, bias=True):
super(Aggregator, self).__init__()
self.g = g
self.linear = nn.Linear(in_feats, out_feats, bias=bias) # (F, EF) or (2F, EF)
self.activation = activation
nn.init.xavier_uniform_(self.linear.weight, gain=nn.init.calculate_gain('relu'))
def forward(self, node):
nei = node.mailbox['m'] # (B, N, F)
h = node.data['h'] # (B, F)
h = self.concat(h, nei, node) # (B, F) or (B, 2F)
h = self.linear(h) # (B, EF)
if self.activation:
h = self.activation(h)
norm = torch.pow(h, 2)
norm = torch.sum(norm, 1, keepdim=True)
norm = torch.pow(norm, -0.5)
norm[torch.isinf(norm)] = 0
# h = h * norm
return {'h': h}
@abc.abstractmethod
def concat(self, h, nei, nodes):
raise NotImplementedError
class MeanAggregator(Aggregator):
def __init__(self, g, in_feats, out_feats, activation, bias):
super(MeanAggregator, self).__init__(g, in_feats, out_feats, activation, bias)
def concat(self, h, nei, nodes):
degs = self.g.in_degrees(nodes.nodes()).float()
if h.is_cuda:
degs = degs.cuda(h.device)
concatenate = torch.cat((nei, h.unsqueeze(1)), 1)
concatenate = torch.sum(concatenate, 1) / degs.unsqueeze(1)
return concatenate # (B, F)
class PoolingAggregator(Aggregator):
def __init__(self, g, in_feats, out_feats, activation, bias): # (2F, F)
super(PoolingAggregator, self).__init__(g, in_feats*2, out_feats, activation, bias)
self.mlp = PoolingAggregator.MLP(in_feats, in_feats, F.relu, False, True)
def concat(self, h, nei, nodes):
nei = self.mlp(nei) # (B, F)
concatenate = torch.cat((nei, h), 1) # (B, 2F)
return concatenate
class MLP(nn.Module):
def __init__(self, in_feats, out_feats, activation, dropout, bias): # (F, F)
super(PoolingAggregator.MLP, self).__init__()
self.linear = nn.Linear(in_feats, out_feats, bias=bias) # (F, F)
self.dropout = nn.Dropout(p=dropout)
self.activation = activation
nn.init.xavier_uniform_(self.linear.weight, gain=nn.init.calculate_gain('relu'))
def forward(self, nei):
nei = self.dropout(nei) # (B, N, F)
nei = self.linear(nei)
if self.activation:
nei = self.activation(nei)
max_value = torch.max(nei, dim=1)[0] # (B, F)
return max_value
class GraphSAGELayer(nn.Module):
def __init__(self,
g,
in_feats,
out_feats,
activation,
dropout,
aggregator_type,
bias=True,
):
super(GraphSAGELayer, self).__init__()
self.g = g
self.dropout = nn.Dropout(p=dropout)
if aggregator_type == "pooling":
self.aggregator = PoolingAggregator(g, in_feats, out_feats, activation, bias)
else:
self.aggregator = MeanAggregator(g, in_feats, out_feats, activation, bias)
def forward(self, h):
h = self.dropout(h)
self.g.ndata['h'] = h
self.g.update_all(fn.copy_src(src='h', out='m'), self.aggregator)
h = self.g.ndata.pop('h')
return h
class GraphSAGE(nn.Module):
def __init__(self,
g,
in_feats,
n_hidden,
n_classes,
n_layers,
activation,
dropout,
aggregator_type):
super(GraphSAGE, self).__init__()
self.layers = nn.ModuleList()
# input layer
self.layers.append(GraphSAGELayer(g, in_feats, n_hidden, activation, dropout, aggregator_type))
# hidden layers
for i in range(n_layers - 1):
self.layers.append(GraphSAGELayer(g, n_hidden, n_hidden, activation, dropout, aggregator_type))
# output layer
self.layers.append(GraphSAGELayer(g, n_hidden, n_classes, None, dropout, aggregator_type))
def forward(self, features):
h = features
for layer in self.layers:
h = layer(h)
return h
def evaluate(model, features, labels, mask):
model.eval()
with torch.no_grad():
logits = model(features)
logits = logits[mask]
labels = labels[mask]
_, indices = torch.max(logits, dim=1)
correct = torch.sum(indices == labels)
return correct.item() * 1.0 / len(labels)
def main(args):
# load and preprocess dataset
data = load_data(args)
features = torch.FloatTensor(data.features)
labels = torch.LongTensor(data.labels)
train_mask = torch.ByteTensor(data.train_mask)
val_mask = torch.ByteTensor(data.val_mask)
test_mask = torch.ByteTensor(data.test_mask)
in_feats = features.shape[1]
n_classes = data.num_labels
n_edges = data.graph.number_of_edges()
print("""----Data statistics------'
#Edges %d
#Classes %d
#Train samples %d
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
train_mask.sum().item(),
val_mask.sum().item(),
test_mask.sum().item()))
if args.gpu < 0:
cuda = False
else:
cuda = True
torch.cuda.set_device(args.gpu)
features = features.cuda()
labels = labels.cuda()
train_mask = train_mask.cuda()
val_mask = val_mask.cuda()
test_mask = test_mask.cuda()
print("use cuda:", args.gpu)
# graph preprocess and calculate normalization factor
g = DGLGraph(data.graph)
n_edges = g.number_of_edges()
# create GraphSAGE model
model = GraphSAGE(g,
in_feats,
args.n_hidden,
n_classes,
args.n_layers,
F.relu,
args.dropout,
args.aggregator_type
)
if cuda:
model.cuda()
loss_fcn = torch.nn.CrossEntropyLoss()
# use optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# initialize graph
dur = []
for epoch in range(args.n_epochs):
model.train()
if epoch >= 3:
t0 = time.time()
# forward
logits = model(features)
loss = loss_fcn(logits[train_mask], labels[train_mask])
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch >= 3:
dur.append(time.time() - t0)
acc = evaluate(model, features, labels, val_mask)
print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
"ETputs(KTEPS) {:.2f}".format(epoch, np.mean(dur), loss.item(),
acc, n_edges / np.mean(dur) / 1000))
print()
acc = evaluate(model, features, labels, test_mask)
print("Test Accuracy {:.4f}".format(acc))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='GCN')
register_data_args(parser)
parser.add_argument("--dropout", type=float, default=0.5,
help="dropout probability")
parser.add_argument("--gpu", type=int, default=-1,
help="gpu")
parser.add_argument("--lr", type=float, default=1e-2,
help="learning rate")
parser.add_argument("--n-epochs", type=int, default=200,
help="number of training epochs")
parser.add_argument("--n-hidden", type=int, default=16,
help="number of hidden gcn units")
parser.add_argument("--n-layers", type=int, default=1,
help="number of hidden gcn layers")
parser.add_argument("--weight-decay", type=float, default=5e-4,
help="Weight for L2 loss")
parser.add_argument("--aggregator-type", type=str, default="mean",
help="Weight for L2 loss")
args = parser.parse_args()
print(args)
main(args)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment