"...git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "0be52c07d6b9b49245b616f9738e52bcf58cd9fe"
Unverified Commit fdd0fe65 authored by Zihao Ye's avatar Zihao Ye Committed by GitHub
Browse files

hotfix (#971)

parent 9a0511c8
...@@ -11,6 +11,11 @@ Dependencies ...@@ -11,6 +11,11 @@ Dependencies
Results Results
======= =======
Node classification on citation networks: ## Citation networks
Run with following (available dataset: "cora", "citeseer", "pubmed")
```bash
python3 citation.py --dataset cora --gpu 0
```
- Cora: ~0.814 - Cora: ~0.814
- Pubmed: ~0.748 - Pubmed: ~0.748
...@@ -18,7 +18,8 @@ class MoNet(nn.Block): ...@@ -18,7 +18,8 @@ class MoNet(nn.Block):
out_feats, out_feats,
n_layers, n_layers,
dim, dim,
n_kernels): n_kernels,
dropout):
super(MoNet, self).__init__() super(MoNet, self).__init__()
self.g = g self.g = g
with self.name_scope(): with self.name_scope():
...@@ -39,9 +40,13 @@ class MoNet(nn.Block): ...@@ -39,9 +40,13 @@ class MoNet(nn.Block):
self.layers.add(GMMConv(n_hidden, out_feats, dim, n_kernels)) self.layers.add(GMMConv(n_hidden, out_feats, dim, n_kernels))
self.pseudo_proj.add(nn.Dense(dim, in_units=2, activation='tanh')) self.pseudo_proj.add(nn.Dense(dim, in_units=2, activation='tanh'))
self.dropout = nn.Dropout(dropout)
def forward(self, feat, pseudo): def forward(self, feat, pseudo):
h = feat h = feat
for i in range(len(self.layers)): for i in range(len(self.layers)):
if i > 0:
h = self.dropout(h)
h = self.layers[i]( h = self.layers[i](
self.g, h, self.pseudo_proj[i](pseudo)) self.g, h, self.pseudo_proj[i](pseudo))
return h return h
...@@ -109,6 +114,7 @@ def main(args): ...@@ -109,6 +114,7 @@ def main(args):
args.n_layers, args.n_layers,
args.pseudo_dim, args.pseudo_dim,
args.n_kernels, args.n_kernels,
args.dropout
) )
model.initialize(ctx=ctx) model.initialize(ctx=ctx)
n_train_samples = train_mask.sum().asscalar() n_train_samples = train_mask.sum().asscalar()
......
...@@ -43,9 +43,9 @@ def main(args): ...@@ -43,9 +43,9 @@ def main(args):
#Val samples %d #Val samples %d
#Test samples %d""" % #Test samples %d""" %
(n_edges, n_classes, (n_edges, n_classes,
train_mask.sum().item(), train_mask.int().sum().item(),
val_mask.sum().item(), val_mask.int().sum().item(),
test_mask.sum().item())) test_mask.int().sum().item()))
if args.gpu < 0: if args.gpu < 0:
cuda = False cuda = False
......
...@@ -59,9 +59,9 @@ def main(args): ...@@ -59,9 +59,9 @@ def main(args):
n_classes = data.num_labels n_classes = data.num_labels
n_edges = data.graph.number_of_edges() n_edges = data.graph.number_of_edges()
n_train_samples = train_mask.sum().item() n_train_samples = train_mask.int().sum().item()
n_val_samples = val_mask.sum().item() n_val_samples = val_mask.int().sum().item()
n_test_samples = test_mask.sum().item() n_test_samples = test_mask.int().sum().item()
print("""----Data statistics------' print("""----Data statistics------'
#Edges %d #Edges %d
......
...@@ -60,9 +60,9 @@ def main(args): ...@@ -60,9 +60,9 @@ def main(args):
#Val samples %d #Val samples %d
#Test samples %d""" % #Test samples %d""" %
(n_edges, n_classes, (n_edges, n_classes,
train_mask.sum().item(), train_mask.int().sum().item(),
val_mask.sum().item(), val_mask.int().sum().item(),
test_mask.sum().item())) test_mask.int().sum().item()))
if args.gpu < 0: if args.gpu < 0:
cuda = False cuda = False
......
...@@ -137,9 +137,9 @@ def main(args): ...@@ -137,9 +137,9 @@ def main(args):
#Val samples %d #Val samples %d
#Test samples %d""" % #Test samples %d""" %
(n_edges, n_classes, (n_edges, n_classes,
train_mask.sum().item(), train_mask.int().sum().item(),
val_mask.sum().item(), val_mask.int().sum().item(),
test_mask.sum().item())) test_mask.int().sum().item()))
if args.gpu < 0: if args.gpu < 0:
cuda = False cuda = False
......
...@@ -44,9 +44,9 @@ def main(args): ...@@ -44,9 +44,9 @@ def main(args):
#Val samples %d #Val samples %d
#Test samples %d""" % #Test samples %d""" %
(n_edges, n_classes, (n_edges, n_classes,
train_mask.sum().item(), train_mask.int().sum().item(),
val_mask.sum().item(), val_mask.int().sum().item(),
test_mask.sum().item())) test_mask.int().sum().item()))
if args.gpu < 0: if args.gpu < 0:
cuda = False cuda = False
......
...@@ -78,9 +78,9 @@ def main(args): ...@@ -78,9 +78,9 @@ def main(args):
#Val samples %d #Val samples %d
#Test samples %d""" % #Test samples %d""" %
(n_edges, n_classes, (n_edges, n_classes,
train_mask.sum().item(), train_mask.int().sum().item(),
val_mask.sum().item(), val_mask.int().sum().item(),
test_mask.sum().item())) test_mask.int().sum().item()))
if args.gpu < 0: if args.gpu < 0:
cuda = False cuda = False
......
...@@ -64,9 +64,9 @@ def main(args): ...@@ -64,9 +64,9 @@ def main(args):
#Val samples %d #Val samples %d
#Test samples %d""" % #Test samples %d""" %
(n_edges, n_classes, (n_edges, n_classes,
train_mask.sum().item(), train_mask.int().sum().item(),
val_mask.sum().item(), val_mask.int().sum().item(),
test_mask.sum().item())) test_mask.int().sum().item()))
if args.gpu < 0: if args.gpu < 0:
cuda = False cuda = False
......
...@@ -11,9 +11,14 @@ Dependencies ...@@ -11,9 +11,14 @@ Dependencies
Results Results
======= =======
Node classification on citation networks: ## Citation networks
Run with following (available dataset: "cora", "citeseer", "pubmed")
```bash
python3 citation.py --dataset cora --gpu 0
```
- Cora: ~0.816 - Cora: ~0.816
- Pubmed: ~0.763 - Pubmed: ~0.763
Image classification on MNIST: ## Image classification:
- please refer to [model_zoo/geometric](../model_zoo/geometric). - please refer to [model_zoo/geometric](../model_zoo/geometric).
\ No newline at end of file
...@@ -36,9 +36,9 @@ def main(args): ...@@ -36,9 +36,9 @@ def main(args):
n_classes = data.num_labels n_classes = data.num_labels
n_edges = data.graph.number_of_edges() n_edges = data.graph.number_of_edges()
n_train_samples = train_mask.sum().item() n_train_samples = train_mask.int().sum().item()
n_val_samples = val_mask.sum().item() n_val_samples = val_mask.int().sum().item()
n_test_samples = test_mask.sum().item() n_test_samples = test_mask.int().sum().item()
print("""----Data statistics------' print("""----Data statistics------'
#Edges %d #Edges %d
......
...@@ -37,9 +37,9 @@ def main(args): ...@@ -37,9 +37,9 @@ def main(args):
n_classes = data.num_labels n_classes = data.num_labels
n_edges = data.graph.number_of_edges() n_edges = data.graph.number_of_edges()
n_train_samples = train_mask.sum().item() n_train_samples = train_mask.int().sum().item()
n_val_samples = val_mask.sum().item() n_val_samples = val_mask.int().sum().item()
n_test_samples = test_mask.sum().item() n_test_samples = test_mask.int().sum().item()
print("""----Data statistics------' print("""----Data statistics------'
#Edges %d #Edges %d
......
...@@ -161,9 +161,9 @@ def main(args): ...@@ -161,9 +161,9 @@ def main(args):
n_classes = data.num_labels n_classes = data.num_labels
n_edges = data.graph.number_of_edges() n_edges = data.graph.number_of_edges()
n_train_samples = train_mask.sum().item() n_train_samples = train_mask.int().sum().item()
n_val_samples = val_mask.sum().item() n_val_samples = val_mask.int().sum().item()
n_test_samples = test_mask.sum().item() n_test_samples = test_mask.int().sum().item()
print("""----Data statistics------' print("""----Data statistics------'
#Edges %d #Edges %d
......
...@@ -132,9 +132,9 @@ def main(args): ...@@ -132,9 +132,9 @@ def main(args):
n_classes = data.num_labels n_classes = data.num_labels
n_edges = data.graph.number_of_edges() n_edges = data.graph.number_of_edges()
n_train_samples = train_mask.sum().item() n_train_samples = train_mask.int().sum().item()
n_val_samples = val_mask.sum().item() n_val_samples = val_mask.int().sum().item()
n_test_samples = test_mask.sum().item() n_test_samples = test_mask.int().sum().item()
print("""----Data statistics------' print("""----Data statistics------'
#Edges %d #Edges %d
......
...@@ -48,9 +48,9 @@ def main(args): ...@@ -48,9 +48,9 @@ def main(args):
#Val samples %d #Val samples %d
#Test samples %d""" % #Test samples %d""" %
(n_edges, n_classes, (n_edges, n_classes,
train_mask.sum().item(), train_mask.int().sum().item(),
val_mask.sum().item(), val_mask.int().sum().item(),
test_mask.sum().item())) test_mask.int().sum().item()))
if args.gpu < 0: if args.gpu < 0:
cuda = False cuda = False
......
...@@ -51,9 +51,9 @@ def main(args): ...@@ -51,9 +51,9 @@ def main(args):
#Val samples %d #Val samples %d
#Test samples %d""" % #Test samples %d""" %
(n_edges, n_classes, (n_edges, n_classes,
train_mask.sum().item(), train_mask.int().sum().item(),
val_mask.sum().item(), val_mask.int().sum().item(),
test_mask.sum().item())) test_mask.int().sum().item()))
if args.gpu < 0: if args.gpu < 0:
cuda = False cuda = False
......
...@@ -42,9 +42,9 @@ def main(args): ...@@ -42,9 +42,9 @@ def main(args):
#Val samples %d #Val samples %d
#Test samples %d""" % #Test samples %d""" %
(n_edges, n_classes, (n_edges, n_classes,
train_mask.sum().item(), train_mask.int().sum().item(),
val_mask.sum().item(), val_mask.int().sum().item(),
test_mask.sum().item())) test_mask.int().sum().item()))
if args.gpu < 0: if args.gpu < 0:
cuda = False cuda = False
......
...@@ -152,6 +152,7 @@ def edge_softmax(graph, logits, eids=ALL): ...@@ -152,6 +152,7 @@ def edge_softmax(graph, logits, eids=ALL):
<NDArray 6x1 @cpu(0)> <NDArray 6x1 @cpu(0)>
Apply edge softmax on first 4 edges of g: Apply edge softmax on first 4 edges of g:
>>> edge_softmax(g, edata, nd.array([0,1,2,3], dtype='int64')) >>> edge_softmax(g, edata, nd.array([0,1,2,3], dtype='int64'))
[[1. ] [[1. ]
[0.5] [0.5]
......
...@@ -154,6 +154,7 @@ def edge_softmax(graph, logits, eids=ALL): ...@@ -154,6 +154,7 @@ def edge_softmax(graph, logits, eids=ALL):
[0.3333]]) [0.3333]])
Apply edge softmax on first 4 edges of g: Apply edge softmax on first 4 edges of g:
>>> edge_softmax(g, edata[:4], th.Tensor([0,1,2,3])) >>> edge_softmax(g, edata[:4], th.Tensor([0,1,2,3]))
tensor([[1.0000], tensor([[1.0000],
[0.5000], [0.5000],
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment