graphsage.py 8.53 KB
Newer Older
hbsun2113's avatar
hbsun2113 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
"""
Inductive Representation Learning on Large Graphs
Paper: http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
Code: https://github.com/williamleif/graphsage-simple
Simple reference implementation of GraphSAGE.
"""
import argparse
import time
import abc
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
import dgl.function as fn


class Aggregator(nn.Module):
    def __init__(self, g, in_feats, out_feats, activation=None, bias=True):
        super(Aggregator, self).__init__()
        self.g = g
        self.linear = nn.Linear(in_feats, out_feats, bias=bias)  # (F, EF) or (2F, EF)
        self.activation = activation
        nn.init.xavier_uniform_(self.linear.weight, gain=nn.init.calculate_gain('relu'))

    def forward(self, node):
        nei = node.mailbox['m']  # (B, N, F)
        h = node.data['h']  # (B, F)
        h = self.concat(h, nei, node)  # (B, F) or (B, 2F)
        h = self.linear(h)   # (B, EF)
        if self.activation:
            h = self.activation(h)
        norm = torch.pow(h, 2)
        norm = torch.sum(norm, 1, keepdim=True)
        norm = torch.pow(norm, -0.5)
        norm[torch.isinf(norm)] = 0
        # h = h * norm
        return {'h': h}

    @abc.abstractmethod
    def concat(self, h, nei, nodes):
        raise NotImplementedError


class MeanAggregator(Aggregator):
    def __init__(self, g, in_feats, out_feats, activation, bias):
        super(MeanAggregator, self).__init__(g, in_feats, out_feats, activation, bias)

    def concat(self, h, nei, nodes):
        degs = self.g.in_degrees(nodes.nodes()).float()
        if h.is_cuda:
            degs = degs.cuda(h.device)
        concatenate = torch.cat((nei, h.unsqueeze(1)), 1)
        concatenate = torch.sum(concatenate, 1) / degs.unsqueeze(1)
        return concatenate  # (B, F)


class PoolingAggregator(Aggregator):
    def __init__(self, g, in_feats, out_feats, activation, bias):  # (2F, F)
        super(PoolingAggregator, self).__init__(g, in_feats*2, out_feats, activation, bias)
        self.mlp = PoolingAggregator.MLP(in_feats, in_feats, F.relu, False, True)

    def concat(self, h, nei, nodes):
        nei = self.mlp(nei)  # (B, F)
        concatenate = torch.cat((nei, h), 1)  # (B, 2F)
        return concatenate

    class MLP(nn.Module):
        def __init__(self, in_feats, out_feats, activation, dropout, bias):  # (F, F)
            super(PoolingAggregator.MLP, self).__init__()
            self.linear = nn.Linear(in_feats, out_feats, bias=bias)  # (F, F)
            self.dropout = nn.Dropout(p=dropout)
            self.activation = activation
            nn.init.xavier_uniform_(self.linear.weight, gain=nn.init.calculate_gain('relu'))

        def forward(self, nei):
            nei = self.dropout(nei)  # (B, N, F)
            nei = self.linear(nei)
            if self.activation:
                nei = self.activation(nei)
            max_value = torch.max(nei, dim=1)[0]  # (B, F)
            return max_value


class GraphSAGELayer(nn.Module):
    def __init__(self,
                 g,
                 in_feats,
                 out_feats,
                 activation,
                 dropout,
                 aggregator_type,
                 bias=True,
                 ):
        super(GraphSAGELayer, self).__init__()
        self.g = g
        self.dropout = nn.Dropout(p=dropout)
        if aggregator_type == "pooling":
            self.aggregator = PoolingAggregator(g, in_feats, out_feats, activation, bias)
        else:
            self.aggregator = MeanAggregator(g, in_feats, out_feats, activation, bias)

    def forward(self, h):
        h = self.dropout(h)
        self.g.ndata['h'] = h
        self.g.update_all(fn.copy_src(src='h', out='m'), self.aggregator)
        h = self.g.ndata.pop('h')
        return h


class GraphSAGE(nn.Module):
    def __init__(self,
                 g,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout,
                 aggregator_type):
        super(GraphSAGE, self).__init__()
        self.layers = nn.ModuleList()

        # input layer
        self.layers.append(GraphSAGELayer(g, in_feats, n_hidden, activation, dropout, aggregator_type))
        # hidden layers
        for i in range(n_layers - 1):
            self.layers.append(GraphSAGELayer(g, n_hidden, n_hidden, activation, dropout, aggregator_type))
        # output layer
        self.layers.append(GraphSAGELayer(g, n_hidden, n_classes, None, dropout, aggregator_type))

    def forward(self, features):
        h = features
        for layer in self.layers:
            h = layer(h)
        return h


def evaluate(model, features, labels, mask):
    model.eval()
    with torch.no_grad():
        logits = model(features)
        logits = logits[mask]
        labels = labels[mask]
        _, indices = torch.max(logits, dim=1)
        correct = torch.sum(indices == labels)
        return correct.item() * 1.0 / len(labels)

def main(args):
    # load and preprocess dataset
    data = load_data(args)
    features = torch.FloatTensor(data.features)
    labels = torch.LongTensor(data.labels)
    train_mask = torch.ByteTensor(data.train_mask)
    val_mask = torch.ByteTensor(data.val_mask)
    test_mask = torch.ByteTensor(data.test_mask)
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes,
           train_mask.sum().item(),
           val_mask.sum().item(),
           test_mask.sum().item()))

    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        torch.cuda.set_device(args.gpu)
        features = features.cuda()
        labels = labels.cuda()
        train_mask = train_mask.cuda()
        val_mask = val_mask.cuda()
        test_mask = test_mask.cuda()
        print("use cuda:", args.gpu)

    # graph preprocess and calculate normalization factor
    g = DGLGraph(data.graph)
    n_edges = g.number_of_edges()

    # create GraphSAGE model
    model = GraphSAGE(g,
                      in_feats,
                      args.n_hidden,
                      n_classes,
                      args.n_layers,
                      F.relu,
                      args.dropout,
                      args.aggregator_type
                      )

    if cuda:
        model.cuda()
    loss_fcn = torch.nn.CrossEntropyLoss()

    # use optimizer
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        model.train()
        if epoch >= 3:
            t0 = time.time()
        # forward
        logits = model(features)
        loss = loss_fcn(logits[train_mask], labels[train_mask])

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch >= 3:
            dur.append(time.time() - t0)

        acc = evaluate(model, features, labels, val_mask)
        print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
              "ETputs(KTEPS) {:.2f}".format(epoch, np.mean(dur), loss.item(),
                                            acc, n_edges / np.mean(dur) / 1000))

    print()
    acc = evaluate(model, features, labels, test_mask)
    print("Test Accuracy {:.4f}".format(acc))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN')
    register_data_args(parser)
    parser.add_argument("--dropout", type=float, default=0.5,
                        help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
                        help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
                        help="learning rate")
    parser.add_argument("--n-epochs", type=int, default=200,
                        help="number of training epochs")
    parser.add_argument("--n-hidden", type=int, default=16,
                        help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
                        help="number of hidden gcn layers")
    parser.add_argument("--weight-decay", type=float, default=5e-4,
                        help="Weight for L2 loss")
    parser.add_argument("--aggregator-type", type=str, default="mean",
                        help="Weight for L2 loss")
    args = parser.parse_args()
    print(args)

    main(args)