entity_classify_mp.py 25.2 KB
Newer Older
1
2
3
4
5
6
7
8
"""
Modeling Relational Data with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1703.06103
Code: https://github.com/tkipf/relational-gcn
Difference compared to tkipf/relation-gcn
* l2norm applied to all weights
* remove nodes that won't be touched
"""
9
import argparse, gc
10
11
12
13
14
import numpy as np
import time
import torch as th
import torch.nn as nn
import torch.nn.functional as F
15
16
import dgl.multiprocessing as mp
from dgl.multiprocessing import Queue
17
18
19
20
21
22
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader
import dgl
from dgl import DGLGraph
from functools import partial

23
from dgl.data.rdf import AIFBDataset, MUTAGDataset, BGSDataset, AMDataset
24
25
from model import RelGraphEmbedLayer
from dgl.nn import RelGraphConv
26
import tqdm
27
28

from ogb.nodeproppred import DglNodePropPredDataset
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

class EntityClassify(nn.Module):
    """ Entity classification class for RGCN
    Parameters
    ----------
    device : int
        Device to run the layer.
    num_nodes : int
        Number of nodes.
    h_dim : int
        Hidden dim size.
    out_dim : int
        Output dim size.
    num_rels : int
        Numer of relation types.
44
    num_bases : int, optional
45
        Number of bases. If is none, use number of relations.
46
47
        Default None
    num_hidden_layers : int, optional
48
        Number of hidden RelGraphConv Layer
49
50
51
52
53
54
55
56
        Default 1
    dropout : float, optional
        Dropout.
        Default 0
    use_self_loop : bool, optional
        Use self loop if True.
        Default True
    low_mem : bool, optional
57
58
        True to use low memory implementation of relation message passing function
        trade speed with memory consumption
59
60
61
62
        Default True
    layer_norm : bool, optional
        True to use layer norm.
        Default False
63
64
65
66
67
68
69
70
71
72
73
    """
    def __init__(self,
                 device,
                 num_nodes,
                 h_dim,
                 out_dim,
                 num_rels,
                 num_bases=None,
                 num_hidden_layers=1,
                 dropout=0,
                 use_self_loop=False,
74
                 low_mem=True,
75
                 layer_norm=False):
76
77
78
79
80
81
82
83
84
85
86
        super(EntityClassify, self).__init__()
        self.device = th.device(device if device >= 0 else 'cpu')
        self.num_nodes = num_nodes
        self.h_dim = h_dim
        self.out_dim = out_dim
        self.num_rels = num_rels
        self.num_bases = None if num_bases < 0 else num_bases
        self.num_hidden_layers = num_hidden_layers
        self.dropout = dropout
        self.use_self_loop = use_self_loop
        self.low_mem = low_mem
87
        self.layer_norm = layer_norm
88
89
90
91
92
93

        self.layers = nn.ModuleList()
        # i2h
        self.layers.append(RelGraphConv(
            self.h_dim, self.h_dim, self.num_rels, "basis",
            self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
94
            low_mem=self.low_mem, dropout=self.dropout, layer_norm = layer_norm))
95
96
97
98
99
        # h2h
        for idx in range(self.num_hidden_layers):
            self.layers.append(RelGraphConv(
                self.h_dim, self.h_dim, self.num_rels, "basis",
                self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
100
                low_mem=self.low_mem, dropout=self.dropout, layer_norm = layer_norm))
101
102
103
104
105
        # h2o
        self.layers.append(RelGraphConv(
            self.h_dim, self.out_dim, self.num_rels, "basis",
            self.num_bases, activation=None,
            self_loop=self.use_self_loop,
106
            low_mem=self.low_mem, layer_norm = layer_norm))
107
108
109
110
111
112
113
114
115
116
117

    def forward(self, blocks, feats, norm=None):
        if blocks is None:
            # full graph training
            blocks = [self.g] * len(self.layers)
        h = feats
        for layer, block in zip(self.layers, blocks):
            block = block.to(self.device)
            h = layer(block, h, block.edata['etype'], block.edata['norm'])
        return h

118
119
120
121
122
123
124
125
def gen_norm(g):
    _, v, eid = g.all_edges(form='all')
    _, inverse_index, count = th.unique(v, return_inverse=True, return_counts=True)
    degrees = count[inverse_index]
    norm = th.ones(eid.shape[0], device=eid.device) / degrees
    norm = norm.unsqueeze(1)
    g.edata['norm'] = norm

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
class NeighborSampler:
    """Neighbor sampler
    Parameters
    ----------
    g : DGLHeterograph
        Full graph
    target_idx : tensor
        The target training node IDs in g
    fanouts : list of int
        Fanout of each hop starting from the seed nodes. If a fanout is None,
        sample full neighbors.
    """
    def __init__(self, g, target_idx, fanouts):
        self.g = g
        self.target_idx = target_idx
        self.fanouts = fanouts

    """Do neighbor sample
    Parameters
    ----------
    seeds :
        Seed nodes
    Returns
    -------
    tensor
        Seed nodes, also known as target nodes
    blocks
        Sampled subgraphs
    """
    def sample_blocks(self, seeds):
        blocks = []
        etypes = []
        norms = []
        ntypes = []
        seeds = th.tensor(seeds).long()
        cur = self.target_idx[seeds]
        for fanout in self.fanouts:
            if fanout is None or fanout == -1:
                frontier = dgl.in_subgraph(self.g, cur)
            else:
                frontier = dgl.sampling.sample_neighbors(self.g, cur, fanout)
            block = dgl.to_block(frontier, cur)
168
            gen_norm(block)
169
170
171
172
            cur = block.srcdata[dgl.NID]
            blocks.insert(0, block)
        return seeds, blocks

173
174
175
176
177
def evaluate(model, embed_layer, eval_loader, node_feats):
    model.eval()
    embed_layer.eval()
    eval_logits = []
    eval_seeds = []
178

179
    with th.no_grad():
180
        th.cuda.empty_cache()
181
182
        for sample_data in tqdm.tqdm(eval_loader):
            seeds, blocks = sample_data
183

184
            feats = embed_layer(blocks[0].srcdata[dgl.NID],
185
186
187
                                blocks[0].srcdata['ntype'],
                                blocks[0].srcdata['type_id'],
                                node_feats)
188
189
190
            logits = model(blocks, feats)
            eval_logits.append(logits.cpu().detach())
            eval_seeds.append(seeds.cpu().detach())
191

192
193
194
    eval_logits = th.cat(eval_logits)
    eval_seeds = th.cat(eval_seeds)

195
    return eval_logits, eval_seeds
196

197
def run(proc_id, n_gpus, n_cpus, args, devices, dataset, split, queue=None):
198
    dev_id = devices[proc_id] if devices[proc_id] != 'cpu' else -1
199
    g, node_feats, num_of_ntype, num_classes, num_rels, target_idx, \
200
        train_idx, val_idx, test_idx, labels = dataset
201
202
203
204
205
    if split is not None:
        train_seed, val_seed, test_seed = split
        train_idx = train_idx[train_seed]
        val_idx = val_idx[val_seed]
        test_idx = test_idx[test_seed]
206

207
    fanouts = [int(fanout) for fanout in args.fanout.split(',')]
208
    node_tids = g.ndata[dgl.NTYPE]
209
    sampler = NeighborSampler(g, target_idx, fanouts)
210
211
212
213
214
215
216
    loader = DataLoader(dataset=train_idx.numpy(),
                        batch_size=args.batch_size,
                        collate_fn=sampler.sample_blocks,
                        shuffle=True,
                        num_workers=args.num_workers)

    # validation sampler
217
    val_sampler = NeighborSampler(g, target_idx, fanouts)
218
    val_loader = DataLoader(dataset=val_idx.numpy(),
219
                            batch_size=args.batch_size,
220
221
222
223
                            collate_fn=val_sampler.sample_blocks,
                            shuffle=False,
                            num_workers=args.num_workers)

224
    # test sampler
225
226
    test_sampler = NeighborSampler(g, target_idx, [None] * args.n_layers)
    test_loader = DataLoader(dataset=test_idx.numpy(),
227
                             batch_size=args.eval_batch_size,
228
229
230
231
                             collate_fn=test_sampler.sample_blocks,
                             shuffle=False,
                             num_workers=args.num_workers)

232
    world_size = n_gpus
233
234
235
236
    if n_gpus > 1:
        dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
            master_ip='127.0.0.1', master_port='12345')
        backend = 'nccl'
237
238

        # using sparse embedding or usig mix_cpu_gpu model (embedding model can not be stored in GPU)
239
        if args.dgl_sparse is False:
240
            backend = 'gloo'
241
        print("backend using {}".format(backend))
242
243
244
245
246
247
248
        th.distributed.init_process_group(backend=backend,
                                          init_method=dist_init_method,
                                          world_size=world_size,
                                          rank=dev_id)

    # node features
    # None for one-hot feature, if not none, it should be the feature tensor.
249
    #
250
251
252
253
254
255
    embed_layer = RelGraphEmbedLayer(dev_id,
                                     g.number_of_nodes(),
                                     node_tids,
                                     num_of_ntype,
                                     node_feats,
                                     args.n_hidden,
256
                                     dgl_sparse=args.dgl_sparse)
257
258

    # create model
259
    # all model params are in device.
260
261
262
263
264
265
266
267
268
    model = EntityClassify(dev_id,
                           g.number_of_nodes(),
                           args.n_hidden,
                           num_classes,
                           num_rels,
                           num_bases=args.n_bases,
                           num_hidden_layers=args.n_layers - 2,
                           dropout=args.dropout,
                           use_self_loop=args.use_self_loop,
269
270
                           low_mem=args.low_mem,
                           layer_norm=args.layer_norm)
271

272
    if dev_id >= 0 and n_gpus == 1:
273
274
275
        th.cuda.set_device(dev_id)
        labels = labels.to(dev_id)
        model.cuda(dev_id)
276
277
        # with dgl_sparse emb, only node embedding is not in GPU
        if args.dgl_sparse:
278
279
280
            embed_layer.cuda(dev_id)

    if n_gpus > 1:
281
282
        labels = labels.to(dev_id)
        model.cuda(dev_id)
283
        model = DistributedDataParallel(model, device_ids=[dev_id], output_device=dev_id)
284
285
286
287
288
289
290
        if args.dgl_sparse:
            embed_layer.cuda(dev_id)
            if len(list(embed_layer.parameters())) > 0:
                embed_layer = DistributedDataParallel(embed_layer, device_ids=[dev_id], output_device=dev_id)
        else:
            if len(list(embed_layer.parameters())) > 0:
                embed_layer = DistributedDataParallel(embed_layer, device_ids=None, output_device=None)
291
292

    # optimizer
293
294
    dense_params = list(model.parameters())
    if args.node_feats:
295
        if  n_gpus > 1:
296
            dense_params += list(embed_layer.module.embeds.parameters())
297
        else:
298
299
300
301
            dense_params += list(embed_layer.embeds.parameters())
    optimizer = th.optim.Adam(dense_params, lr=args.lr, weight_decay=args.l2norm)

    if args.dgl_sparse:
302
        all_params = list(model.parameters()) + list(embed_layer.parameters())
303
        optimizer = th.optim.Adam(all_params, lr=args.lr, weight_decay=args.l2norm)
304
305
306
307
308
309
310
311
312
313
314
        if n_gpus > 1 and isinstance(embed_layer, DistributedDataParallel):
            dgl_emb = embed_layer.module.dgl_emb
        else:
            dgl_emb = embed_layer.dgl_emb
        emb_optimizer = dgl.optim.SparseAdam(params=dgl_emb, lr=args.sparse_lr, eps=1e-8) if len(dgl_emb) > 0 else None
    else:
        if n_gpus > 1:
            embs = list(embed_layer.module.node_embeds.parameters())
        else:
            embs = list(embed_layer.node_embeds.parameters())
        emb_optimizer = th.optim.SparseAdam(embs, lr=args.sparse_lr) if len(embs) > 0 else None
315
316
317
318
319
320

    # training loop
    print("start training...")
    forward_time = []
    backward_time = []

321
322
323
324
    train_time = 0
    validation_time = 0
    test_time = 0
    last_val_acc = 0.0
325
    do_test = False
326
327
    if n_gpus > 1 and n_cpus - args.num_workers > 0:
        th.set_num_threads(n_cpus-args.num_workers)
328
    for epoch in range(args.n_epochs):
329
        tstart = time.time()
330
        model.train()
331
        embed_layer.train()
332
333
334
335

        for i, sample_data in enumerate(loader):
            seeds, blocks = sample_data
            t0 = time.time()
336
            feats = embed_layer(blocks[0].srcdata[dgl.NID],
337
                                blocks[0].srcdata['ntype'],
338
                                blocks[0].srcdata['type_id'],
339
340
341
342
                                node_feats)
            logits = model(blocks, feats)
            loss = F.cross_entropy(logits, labels[seeds])
            t1 = time.time()
343
            optimizer.zero_grad()
344
            if emb_optimizer is not None:
345
346
                emb_optimizer.zero_grad()

347
            loss.backward()
348
            if emb_optimizer is not None:
349
                emb_optimizer.step()
350
            optimizer.step()
351
352
353
354
355
            t2 = time.time()

            forward_time.append(t1 - t0)
            backward_time.append(t2 - t1)
            train_acc = th.sum(logits.argmax(dim=1) == labels[seeds]).item() / len(seeds)
356
357
358
            if i % 100 and proc_id == 0:
                print("Train Accuracy: {:.4f} | Train Loss: {:.4f}".
                    format(train_acc, loss.item()))
359
        gc.collect()
360
        print("Epoch {:05d}:{:05d} | Train Forward Time(s) {:.4f} | Backward Time(s) {:.4f}".
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
            format(epoch, args.n_epochs, forward_time[-1], backward_time[-1]))
        tend = time.time()
        train_time += (tend - tstart)

        def collect_eval():
            eval_logits = []
            eval_seeds = []
            for i in range(n_gpus):
                log = queue.get()
                eval_l, eval_s = log
                eval_logits.append(eval_l)
                eval_seeds.append(eval_s)
            eval_logits = th.cat(eval_logits)
            eval_seeds = th.cat(eval_seeds)
            eval_loss = F.cross_entropy(eval_logits, labels[eval_seeds].cpu()).item()
            eval_acc = th.sum(eval_logits.argmax(dim=1) == labels[eval_seeds].cpu()).item() / len(eval_seeds)

            return eval_loss, eval_acc

        vstart = time.time()
381
382
383
384
385
386
387
        if (queue is not None) or (proc_id == 0):
            val_logits, val_seeds = evaluate(model, embed_layer, val_loader, node_feats)
            if queue is not None:
                queue.put((val_logits, val_seeds))

            # gather evaluation result from multiple processes
            if proc_id == 0:
388
389
390
                val_loss, val_acc = collect_eval() if queue is not None else \
                    (F.cross_entropy(val_logits, labels[val_seeds].cpu()).item(), \
                    th.sum(val_logits.argmax(dim=1) == labels[val_seeds].cpu()).item() / len(val_seeds))
391

392
393
                do_test = val_acc > last_val_acc
                last_val_acc = val_acc
394
395
                print("Validation Accuracy: {:.4f} | Validation loss: {:.4f}".
                        format(val_acc, val_loss))
396
397
        if n_gpus > 1:
            th.distributed.barrier()
398
399
400
401
402
            if proc_id == 0:
                for i in range(1, n_gpus):
                    queue.put(do_test)
            else:
                do_test = queue.get()
403

404
405
        vend = time.time()
        validation_time += (vend - vstart)
406

407
        if epoch > 0 and do_test:
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
            tstart = time.time()
            if (queue is not None) or (proc_id == 0):
                test_logits, test_seeds = evaluate(model, embed_layer, test_loader, node_feats)
                if queue is not None:
                    queue.put((test_logits, test_seeds))

                # gather evaluation result from multiple processes
                if proc_id == 0:
                    test_loss, test_acc = collect_eval() if queue is not None else \
                        (F.cross_entropy(test_logits, labels[test_seeds].cpu()).item(), \
                        th.sum(test_logits.argmax(dim=1) == labels[test_seeds].cpu()).item() / len(test_seeds))
                    print("Test Accuracy: {:.4f} | Test loss: {:.4f}".format(test_acc, test_loss))
                    print()
            tend = time.time()
            test_time += (tend-tstart)

            # sync for test
            if n_gpus > 1:
                th.distributed.barrier()
427
428
429
430

    print("{}/{} Mean forward time: {:4f}".format(proc_id, n_gpus,
                                                  np.mean(forward_time[len(forward_time) // 4:])))
    print("{}/{} Mean backward time: {:4f}".format(proc_id, n_gpus,
431
                                                   np.mean(backward_time[len(backward_time) // 4:])))
432
    if proc_id == 0:
xiang song(charlie.song)'s avatar
xiang song(charlie.song) committed
433
        print("Final Test Accuracy: {:.4f} | Test loss: {:.4f}".format(test_acc, test_loss))
434
        print("Train {}s, valid {}s, test {}s".format(train_time, validation_time, test_time))
435
436
437
438
439

def main(args, devices):
    # load graph data
    ogb_dataset = False
    if args.dataset == 'aifb':
440
        dataset = AIFBDataset()
441
    elif args.dataset == 'mutag':
442
        dataset = MUTAGDataset()
443
    elif args.dataset == 'bgs':
444
        dataset = BGSDataset()
445
    elif args.dataset == 'am':
446
        dataset = AMDataset()
447
448
449
    elif args.dataset == 'ogbn-mag':
        dataset = DglNodePropPredDataset(name=args.dataset)
        ogb_dataset = True
450
451
452
    else:
        raise ValueError()

453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
    if ogb_dataset is True:
        split_idx = dataset.get_idx_split()
        train_idx = split_idx["train"]['paper']
        val_idx = split_idx["valid"]['paper']
        test_idx = split_idx["test"]['paper']
        hg_orig, labels = dataset[0]
        subgs = {}
        for etype in hg_orig.canonical_etypes:
            u, v = hg_orig.all_edges(etype=etype)
            subgs[etype] = (u, v)
            subgs[(etype[2], 'rev-'+etype[1], etype[0])] = (v, u)
        hg = dgl.heterograph(subgs)
        hg.nodes['paper'].data['feat'] = hg_orig.nodes['paper'].data['feat']
        labels = labels['paper'].squeeze()

        num_rels = len(hg.canonical_etypes)
        num_of_ntype = len(hg.ntypes)
        num_classes = dataset.num_classes
        if args.dataset == 'ogbn-mag':
            category = 'paper'
        print('Number of relations: {}'.format(num_rels))
        print('Number of class: {}'.format(num_classes))
        print('Number of train: {}'.format(len(train_idx)))
        print('Number of valid: {}'.format(len(val_idx)))
        print('Number of test: {}'.format(len(test_idx)))

479
    else:
480
481
482
483
484
485
486
487
488
489
        # Load from hetero-graph
        hg = dataset[0]

        num_rels = len(hg.canonical_etypes)
        num_of_ntype = len(hg.ntypes)
        category = dataset.predict_category
        num_classes = dataset.num_classes
        train_mask = hg.nodes[category].data.pop('train_mask')
        test_mask = hg.nodes[category].data.pop('test_mask')
        labels = hg.nodes[category].data.pop('labels')
490
491
        train_idx = th.nonzero(train_mask, as_tuple=False).squeeze()
        test_idx = th.nonzero(test_mask, as_tuple=False).squeeze()
492
493
494
495
496
497
498
499
500

        # AIFB, MUTAG, BGS and AM datasets do not provide validation set split.
        # Split train set into train and validation if args.validation is set
        # otherwise use train set as the validation set.
        if args.validation:
            val_idx = train_idx[:len(train_idx) // 5]
            train_idx = train_idx[len(train_idx) // 5:]
        else:
            val_idx = train_idx
501

502
503
504
505
506
507
508
509
    node_feats = []
    for ntype in hg.ntypes:
        if len(hg.nodes[ntype].data) == 0 or args.node_feats is False:
            node_feats.append(hg.number_of_nodes(ntype))
        else:
            assert len(hg.nodes[ntype].data) == 1
            feat = hg.nodes[ntype].data.pop('feat')
            node_feats.append(feat.share_memory_())
510

511
512
513
514
515
    # get target category id
    category_id = len(hg.ntypes)
    for i, ntype in enumerate(hg.ntypes):
        if ntype == category:
            category_id = i
516
517
518
519
520
521
522
523
524
        print('{}:{}'.format(i, ntype))

    g = dgl.to_homogeneous(hg)
    g.ndata['ntype'] = g.ndata[dgl.NTYPE]
    g.ndata['ntype'].share_memory_()
    g.edata['etype'] = g.edata[dgl.ETYPE]
    g.edata['etype'].share_memory_()
    g.ndata['type_id'] = g.ndata[dgl.NID]
    g.ndata['type_id'].share_memory_()
525
526
527
528
529
530
531
    node_ids = th.arange(g.number_of_nodes())

    # find out the target node ids
    node_tids = g.ndata[dgl.NTYPE]
    loc = (node_tids == category_id)
    target_idx = node_ids[loc]
    target_idx.share_memory_()
532
533
534
    train_idx.share_memory_()
    val_idx.share_memory_()
    test_idx.share_memory_()
535
536
537
    # Create csr/coo/csc formats before launching training processes with multi-gpu.
    # This avoids creating certain formats in each sub-process, which saves momory and CPU.
    g.create_formats_()
538
539

    n_gpus = len(devices)
540
    n_cpus = mp.cpu_count()
541
542
    # cpu
    if devices[0] == -1:
543
        run(0, 0, n_cpus, args, ['cpu'],
544
545
            (g, node_feats, num_of_ntype, num_classes, num_rels, target_idx,
             train_idx, val_idx, test_idx, labels), None, None)
546
547
    # gpu
    elif n_gpus == 1:
548
        run(0, n_gpus, n_cpus, args, devices,
549
550
            (g, node_feats, num_of_ntype, num_classes, num_rels, target_idx,
            train_idx, val_idx, test_idx, labels), None, None)
551
552
    # multi gpu
    else:
553
        queue = mp.Queue(n_gpus)
554
555
        procs = []
        num_train_seeds = train_idx.shape[0]
556
557
558
559
560
        num_valid_seeds = val_idx.shape[0]
        num_test_seeds = test_idx.shape[0]
        train_seeds = th.randperm(num_train_seeds)
        valid_seeds = th.randperm(num_valid_seeds)
        test_seeds = th.randperm(num_test_seeds)
561
        tseeds_per_proc = num_train_seeds // n_gpus
562
563
        vseeds_per_proc = num_valid_seeds // n_gpus
        tstseeds_per_proc = num_test_seeds // n_gpus
564
        for proc_id in range(n_gpus):
565
566
567
568
569
570
571
572
573
574
575
576
577
578
            # we have multi-gpu for training, evaluation and testing
            # so split trian set, valid set and test set into num-of-gpu parts.
            proc_train_seeds = train_seeds[proc_id * tseeds_per_proc :
                                           (proc_id + 1) * tseeds_per_proc \
                                           if (proc_id + 1) * tseeds_per_proc < num_train_seeds \
                                           else num_train_seeds]
            proc_valid_seeds = valid_seeds[proc_id * vseeds_per_proc :
                                           (proc_id + 1) * vseeds_per_proc \
                                           if (proc_id + 1) * vseeds_per_proc < num_valid_seeds \
                                           else num_valid_seeds]
            proc_test_seeds = test_seeds[proc_id * tstseeds_per_proc :
                                         (proc_id + 1) * tstseeds_per_proc \
                                         if (proc_id + 1) * tstseeds_per_proc < num_test_seeds \
                                         else num_test_seeds]
579
            p = mp.Process(target=run, args=(proc_id, n_gpus, n_cpus // n_gpus, args, devices,
580
581
582
583
                                             (g, node_feats, num_of_ntype, num_classes, num_rels, target_idx,
                                             train_idx, val_idx, test_idx, labels),
                                             (proc_train_seeds, proc_valid_seeds, proc_test_seeds),
                                             queue))
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
            p.start()
            procs.append(p)
        for p in procs:
            p.join()


def config():
    parser = argparse.ArgumentParser(description='RGCN')
    parser.add_argument("--dropout", type=float, default=0,
            help="dropout probability")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden units")
    parser.add_argument("--gpu", type=str, default='0',
            help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
            help="learning rate")
600
601
    parser.add_argument("--sparse-lr", type=float, default=2e-2,
            help="sparse embedding learning rate")
602
603
604
605
606
607
608
609
610
611
    parser.add_argument("--n-bases", type=int, default=-1,
            help="number of filter weight matrices, default: -1 [use all]")
    parser.add_argument("--n-layers", type=int, default=2,
            help="number of propagation rounds")
    parser.add_argument("-e", "--n-epochs", type=int, default=50,
            help="number of training epochs")
    parser.add_argument("-d", "--dataset", type=str, required=True,
            help="dataset to use")
    parser.add_argument("--l2norm", type=float, default=0,
            help="l2 norm coef")
612
    parser.add_argument("--fanout", type=str, default="4, 4",
613
614
615
616
617
618
619
620
            help="Fan-out of neighbor sampling.")
    parser.add_argument("--use-self-loop", default=False, action='store_true',
            help="include self feature as a special relation")
    fp = parser.add_mutually_exclusive_group(required=False)
    fp.add_argument('--validation', dest='validation', action='store_true')
    fp.add_argument('--testing', dest='validation', action='store_false')
    parser.add_argument("--batch-size", type=int, default=100,
            help="Mini-batch size. ")
621
    parser.add_argument("--eval-batch-size", type=int, default=32,
622
            help="Mini-batch size. ")
623
624
625
626
    parser.add_argument("--num-workers", type=int, default=0,
            help="Number of workers for dataloader.")
    parser.add_argument("--low-mem", default=False, action='store_true',
            help="Whether use low mem RelGraphCov")
627
    parser.add_argument("--dgl-sparse", default=False, action='store_true',
628
            help='Use sparse embedding for node embeddings.')
629
630
631
632
    parser.add_argument('--node-feats', default=False, action='store_true',
            help='Whether use node features')
    parser.add_argument('--layer-norm', default=False, action='store_true',
            help='Use layer norm')
633
634
635
636
637
638
639
640
641
    parser.set_defaults(validation=True)
    args = parser.parse_args()
    return args

if __name__ == '__main__':
    args = config()
    devices = list(map(int, args.gpu.split(',')))
    print(args)
    main(args, devices)