"vscode:/vscode.git/clone" did not exist on "a41850a21dfd329da3931fa798f874fd84343b98"
spmat_op_impl_coo.cc 23.4 KB
Newer Older
1
2
3
4
5
/*!
 *  Copyright (c) 2019 by Contributors
 * \file array/cpu/spmat_op_impl.cc
 * \brief CPU implementation of COO sparse matrix operators
 */
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
6
#include <dmlc/omp.h>
7
8
9
#include <vector>
#include <unordered_set>
#include <unordered_map>
10
#include <tuple>
11
#include <numeric>
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#include "array_utils.h"

namespace dgl {

using runtime::NDArray;

namespace aten {
namespace impl {

/*
 * TODO(BarclayII):
 * For row-major sorted COOs, we have faster implementation with binary search,
 * sorted search, etc.  Later we should benchmark how much we can gain with
 * sorted COOs on hypersparse graphs.
 */

///////////////////////////// COOIsNonZero /////////////////////////////

template <DLDeviceType XPU, typename IdType>
bool COOIsNonZero(COOMatrix coo, int64_t row, int64_t col) {
  CHECK(row >= 0 && row < coo.num_rows) << "Invalid row index: " << row;
  CHECK(col >= 0 && col < coo.num_cols) << "Invalid col index: " << col;
  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
  for (int64_t i = 0; i < coo.row->shape[0]; ++i) {
    if (coo_row_data[i] == row && coo_col_data[i] == col)
      return true;
  }
  return false;
}

template bool COOIsNonZero<kDLCPU, int32_t>(COOMatrix, int64_t, int64_t);
template bool COOIsNonZero<kDLCPU, int64_t>(COOMatrix, int64_t, int64_t);

template <DLDeviceType XPU, typename IdType>
NDArray COOIsNonZero(COOMatrix coo, NDArray row, NDArray col) {
  const auto rowlen = row->shape[0];
  const auto collen = col->shape[0];
  const auto rstlen = std::max(rowlen, collen);
  NDArray rst = NDArray::Empty({rstlen}, row->dtype, row->ctx);
  IdType* rst_data = static_cast<IdType*>(rst->data);
  const IdType* row_data = static_cast<IdType*>(row->data);
  const IdType* col_data = static_cast<IdType*>(col->data);
  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  const int64_t kmax = std::max(rowlen, collen);
#pragma omp parallel for
  for (int64_t k = 0; k < kmax; ++k) {
    int64_t i = row_stride * k;
    int64_t j = col_stride * k;
    rst_data[k] = COOIsNonZero<XPU, IdType>(coo, row_data[i], col_data[j])? 1 : 0;
  }
  return rst;
}

template NDArray COOIsNonZero<kDLCPU, int32_t>(COOMatrix, NDArray, NDArray);
template NDArray COOIsNonZero<kDLCPU, int64_t>(COOMatrix, NDArray, NDArray);

///////////////////////////// COOHasDuplicate /////////////////////////////

template <DLDeviceType XPU, typename IdType>
bool COOHasDuplicate(COOMatrix coo) {
  std::unordered_set<std::pair<IdType, IdType>, PairHash> hashmap;
  const IdType* src_data = static_cast<IdType*>(coo.row->data);
  const IdType* dst_data = static_cast<IdType*>(coo.col->data);
  const auto nnz = coo.row->shape[0];
  for (IdType eid = 0; eid < nnz; ++eid) {
    const auto& p = std::make_pair(src_data[eid], dst_data[eid]);
    if (hashmap.count(p)) {
      return true;
    } else {
      hashmap.insert(p);
    }
  }
  return false;
}

template bool COOHasDuplicate<kDLCPU, int32_t>(COOMatrix coo);
template bool COOHasDuplicate<kDLCPU, int64_t>(COOMatrix coo);

///////////////////////////// COOGetRowNNZ /////////////////////////////

template <DLDeviceType XPU, typename IdType>
int64_t COOGetRowNNZ(COOMatrix coo, int64_t row) {
  CHECK(row >= 0 && row < coo.num_rows) << "Invalid row index: " << row;
  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  int64_t result = 0;
  for (int64_t i = 0; i < coo.row->shape[0]; ++i) {
    if (coo_row_data[i] == row)
      ++result;
  }
  return result;
}

template int64_t COOGetRowNNZ<kDLCPU, int32_t>(COOMatrix, int64_t);
template int64_t COOGetRowNNZ<kDLCPU, int64_t>(COOMatrix, int64_t);

template <DLDeviceType XPU, typename IdType>
NDArray COOGetRowNNZ(COOMatrix coo, NDArray rows) {
111
  CHECK_SAME_DTYPE(coo.col, rows);
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
  const auto len = rows->shape[0];
  const IdType* vid_data = static_cast<IdType*>(rows->data);
  NDArray rst = NDArray::Empty({len}, rows->dtype, rows->ctx);
  IdType* rst_data = static_cast<IdType*>(rst->data);
#pragma omp parallel for
  for (int64_t i = 0; i < len; ++i)
    rst_data[i] = COOGetRowNNZ<XPU, IdType>(coo, vid_data[i]);
  return rst;
}

template NDArray COOGetRowNNZ<kDLCPU, int32_t>(COOMatrix, NDArray);
template NDArray COOGetRowNNZ<kDLCPU, int64_t>(COOMatrix, NDArray);

///////////////////////////// COOGetRowDataAndIndices /////////////////////////////

127
template <DLDeviceType XPU, typename IdType>
128
129
130
131
132
133
std::pair<NDArray, NDArray> COOGetRowDataAndIndices(
    COOMatrix coo, int64_t row) {
  CHECK(row >= 0 && row < coo.num_rows) << "Invalid row index: " << row;

  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
134
  const IdType* coo_data = COOHasData(coo) ? static_cast<IdType*>(coo.data->data) : nullptr;
135
136

  std::vector<IdType> indices;
137
  std::vector<IdType> data;
138
139
140
141
142
143
144
145
146
147
148
149

  for (int64_t i = 0; i < coo.row->shape[0]; ++i) {
    if (coo_row_data[i] == row) {
      indices.push_back(coo_col_data[i]);
      data.push_back(coo_data ? coo_data[i] : i);
    }
  }

  return std::make_pair(NDArray::FromVector(data), NDArray::FromVector(indices));
}

template std::pair<NDArray, NDArray>
150
COOGetRowDataAndIndices<kDLCPU, int32_t>(COOMatrix, int64_t);
151
template std::pair<NDArray, NDArray>
152
COOGetRowDataAndIndices<kDLCPU, int64_t>(COOMatrix, int64_t);
153
154
155

///////////////////////////// COOGetData /////////////////////////////

156
template <DLDeviceType XPU, typename IdType>
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
IdArray COOGetData(COOMatrix coo, IdArray rows, IdArray cols) {
  const int64_t rowlen = rows->shape[0];
  const int64_t collen = cols->shape[0];
  CHECK((rowlen == collen) || (rowlen == 1) || (collen == 1))
    << "Invalid row and col Id array:" << rows << " " << cols;
  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  const IdType* row_data = rows.Ptr<IdType>();
  const IdType* col_data = cols.Ptr<IdType>();

  const IdType* coo_row = coo.row.Ptr<IdType>();
  const IdType* coo_col = coo.col.Ptr<IdType>();
  const IdType* data = COOHasData(coo) ? coo.data.Ptr<IdType>() : nullptr;
  const int64_t nnz = coo.row->shape[0];

  const int64_t retlen = std::max(rowlen, collen);
  IdArray ret = Full(-1, retlen, rows->dtype.bits, rows->ctx);
  IdType* ret_data = ret.Ptr<IdType>();

  // TODO(minjie): We might need to consider sorting the COO beforehand especially
  //   when the number of (row, col) pairs is large. Need more benchmarks to justify
  //   the choice.

  if (coo.row_sorted) {
#pragma omp parallel for
    for (int64_t p = 0; p < retlen; ++p) {
      const IdType row_id = row_data[p * row_stride], col_id = col_data[p * col_stride];
      auto it = std::lower_bound(coo_row, coo_row + nnz, row_id);
      for (; it < coo_row + nnz && *it == row_id; ++it) {
        const auto idx = it - coo_row;
        if (coo_col[idx] == col_id) {
          ret_data[p] = data? data[idx] : idx;
          break;
        }
      }
    }
  } else {
#pragma omp parallel for
    for (int64_t p = 0; p < retlen; ++p) {
      const IdType row_id = row_data[p * row_stride], col_id = col_data[p * col_stride];
      for (int64_t idx = 0; idx < nnz; ++idx) {
        if (coo_row[idx] == row_id && coo_col[idx] == col_id) {
          ret_data[p] = data? data[idx] : idx;
          break;
        }
      }
    }
204
  }
205
206

  return ret;
207
208
}

209
210
template IdArray COOGetData<kDLCPU, int32_t>(COOMatrix, IdArray, IdArray);
template IdArray COOGetData<kDLCPU, int64_t>(COOMatrix, IdArray, IdArray);
211
212
213

///////////////////////////// COOGetDataAndIndices /////////////////////////////

214
template <DLDeviceType XPU, typename IdType>
215
216
217
218
std::vector<NDArray> COOGetDataAndIndices(COOMatrix coo, NDArray rows,
                                          NDArray cols) {
  CHECK_SAME_DTYPE(coo.col, rows);
  CHECK_SAME_DTYPE(coo.col, cols);
219
220
  const int64_t rowlen = rows->shape[0];
  const int64_t collen = cols->shape[0];
221
  const int64_t len = std::max(rowlen, collen);
222
223
224
225
226
227
228
229
230
231
232

  CHECK((rowlen == collen) || (rowlen == 1) || (collen == 1))
    << "Invalid row and col id array.";

  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  const IdType* row_data = static_cast<IdType*>(rows->data);
  const IdType* col_data = static_cast<IdType*>(cols->data);

  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
233
  const IdType* data = COOHasData(coo) ? static_cast<IdType*>(coo.data->data) : nullptr;
234
235

  std::vector<IdType> ret_rows, ret_cols;
236
  std::vector<IdType> ret_data;
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
  ret_rows.reserve(len);
  ret_cols.reserve(len);
  ret_data.reserve(len);

  // NOTE(BarclayII): With a small number of lookups, linear scan is faster.
  // The threshold 200 comes from benchmarking both algorithms on a P3.8x instance.
  // I also tried sorting plus binary search.  The speed gain is only significant for
  // medium-sized graphs and lookups, so I didn't include it.
  if (len >= 200) {
    // TODO(BarclayII) Ideally we would want to cache this object.  However I'm not sure
    // what is the best way to do so since this object is valid for CPU only.
    std::unordered_multimap<std::pair<IdType, IdType>, IdType, PairHash> pair_map;
    pair_map.reserve(coo.row->shape[0]);
    for (int64_t k = 0; k < coo.row->shape[0]; ++k)
      pair_map.emplace(std::make_pair(coo_row_data[k], coo_col_data[k]), data ? data[k]: k);

    for (int64_t i = 0, j = 0; i < rowlen && j < collen; i += row_stride, j += col_stride) {
      const IdType row_id = row_data[i], col_id = col_data[j];
      CHECK(row_id >= 0 && row_id < coo.num_rows) << "Invalid row index: " << row_id;
      CHECK(col_id >= 0 && col_id < coo.num_cols) << "Invalid col index: " << col_id;
      auto range = pair_map.equal_range({row_id, col_id});
      for (auto it = range.first; it != range.second; ++it) {
259
260
        ret_rows.push_back(row_id);
        ret_cols.push_back(col_id);
261
262
263
264
265
266
267
268
269
270
271
272
273
274
        ret_data.push_back(it->second);
      }
    }
  } else {
    for (int64_t i = 0, j = 0; i < rowlen && j < collen; i += row_stride, j += col_stride) {
      const IdType row_id = row_data[i], col_id = col_data[j];
      CHECK(row_id >= 0 && row_id < coo.num_rows) << "Invalid row index: " << row_id;
      CHECK(col_id >= 0 && col_id < coo.num_cols) << "Invalid col index: " << col_id;
      for (int64_t k = 0; k < coo.row->shape[0]; ++k) {
        if (coo_row_data[k] == row_id && coo_col_data[k] == col_id) {
          ret_rows.push_back(row_id);
          ret_cols.push_back(col_id);
          ret_data.push_back(data ? data[k] : k);
        }
275
276
277
278
279
280
281
282
283
      }
    }
  }

  return {NDArray::FromVector(ret_rows),
          NDArray::FromVector(ret_cols),
          NDArray::FromVector(ret_data)};
}

284
template std::vector<NDArray> COOGetDataAndIndices<kDLCPU, int32_t>(
285
    COOMatrix coo, NDArray rows, NDArray cols);
286
template std::vector<NDArray> COOGetDataAndIndices<kDLCPU, int64_t>(
287
288
289
290
    COOMatrix coo, NDArray rows, NDArray cols);

///////////////////////////// COOTranspose /////////////////////////////

291
template <DLDeviceType XPU, typename IdType>
292
293
294
295
COOMatrix COOTranspose(COOMatrix coo) {
  return COOMatrix{coo.num_cols, coo.num_rows, coo.col, coo.row, coo.data};
}

296
297
template COOMatrix COOTranspose<kDLCPU, int32_t>(COOMatrix coo);
template COOMatrix COOTranspose<kDLCPU, int64_t>(COOMatrix coo);
298
299
300

///////////////////////////// COOToCSR /////////////////////////////

301
302
303
// complexity: time O(NNZ), space O(1) if the coo is row sorted,
// time O(NNZ/p + N), space O(NNZ + N*p) otherwise, where p is the number of
// threads.
304
template <DLDeviceType XPU, typename IdType>
305
306
307
CSRMatrix COOToCSR(COOMatrix coo) {
  const int64_t N = coo.num_rows;
  const int64_t NNZ = coo.row->shape[0];
308
309
310
  const IdType* const row_data = static_cast<IdType*>(coo.row->data);
  const IdType* const col_data = static_cast<IdType*>(coo.col->data);
  const IdType* const data = COOHasData(coo)? static_cast<IdType*>(coo.data->data) : nullptr;
311

312
  NDArray ret_indptr = NDArray::Empty({N + 1}, coo.row->dtype, coo.row->ctx);
313
314
  NDArray ret_indices;
  NDArray ret_data;
315

316
317
  const bool row_sorted = coo.row_sorted;
  const bool col_sorted = coo.col_sorted;
318

319
320
  if (row_sorted) {
    // compute indptr
321
    IdType* const Bp = static_cast<IdType*>(ret_indptr->data);
322
323
    Bp[0] = 0;

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
    if (!data) {
      // Leave empty, and populate from inside of parallel block
      coo.data = NDArray::Empty({NNZ}, coo.row->dtype, coo.row->ctx);
    }
    IdType * const fill_data = data ? nullptr : static_cast<IdType*>(coo.data->data);

    if (NNZ > 0) {
      #pragma omp parallel
      {
        const int num_threads = omp_get_num_threads();
        const int thread_id = omp_get_thread_num();

        // We partition the set the of non-zeros among the threads
        const int64_t nz_chunk = (NNZ+num_threads-1)/num_threads;
        const int64_t nz_start = thread_id*nz_chunk;
        const int64_t nz_end = std::min(NNZ, nz_start+nz_chunk);

        // Each thread searchs the row array for a change, and marks it's
        // location in Bp. Threads, other than the first, start at the last
        // index covered by the previous, in order to detect changes in the row
        // array between thread partitions. This means that each thread after
        // the first, searches the range [nz_start-1, nz_end). That is,
        // if we had 10 non-zeros, and 4 threads, the indexes searched by each
        // thread would be:
        // 0: [0, 1, 2]
        // 1: [2, 3, 4, 5]
        // 2: [5, 6, 7, 8]
        // 3: [8, 9]
        //
        // That way, if the row array were [0, 0, 1, 2, 2, 2, 4, 5, 5, 6], each
        // change in row would be captured by one thread:
        //
        // 0: [0, 0, 1] - row 0
        // 1: [1, 2, 2, 2] - row 1
        // 2: [2, 4, 5, 5] - rows 2, 3, and 4
        // 3: [5, 6] - rows 5 and 6
        //
        int64_t row = 0;
        if (nz_start < nz_end) {
          row = nz_start == 0 ? 0 : row_data[nz_start-1];
          for (int64_t i = nz_start; i < nz_end; ++i) {
            while (row != row_data[i]) {
              ++row;
              Bp[row] = i;
            }
          }

          // We will not detect the row change for the last row, nor any empty
          // rows at the end of the matrix, so the last active thread needs
          // mark all remaining rows in Bp with NNZ.
          if (nz_end == NNZ) {
            while (row < N) {
              ++row;
              Bp[row] = NNZ;
            }
          }

          if (fill_data) {
            // TODO(minjie): Many of our current implementation assumes that CSR must have
            //   a data array. This is a temporary workaround. Remove this after:
            //   - The old immutable graph implementation is deprecated.
            //   - The old binary reduce kernel is deprecated.
            std::iota(fill_data+nz_start,
                      fill_data+nz_end,
                      nz_start);
          }
        }
      }
    } else {
      std::fill(Bp, Bp+N+1, 0);
    }
395

396
    // compute indices and data
397
398
399
    ret_indices = coo.col;
    ret_data = coo.data;
  } else {
400
    // compute indptr
401
402
    IdType* const Bp = static_cast<IdType*>(ret_indptr->data);
    Bp[0] = 0;
403
404

    // compute indices and data
405
406
    ret_indices = NDArray::Empty({NNZ}, coo.row->dtype, coo.row->ctx);
    ret_data = NDArray::Empty({NNZ}, coo.row->dtype, coo.row->ctx);
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
    IdType* const Bi = static_cast<IdType*>(ret_indices->data);
    IdType* const Bx = static_cast<IdType*>(ret_data->data);

    // the offset within each row, that each thread will write to
    std::vector<std::vector<IdType>> local_ptrs;
    std::vector<int64_t> thread_prefixsum;

#pragma omp parallel
    {
      const int num_threads = omp_get_num_threads();
      const int thread_id = omp_get_thread_num();
      CHECK_LT(thread_id, num_threads);

      const int64_t nz_chunk = (NNZ+num_threads-1)/num_threads;
      const int64_t nz_start = thread_id*nz_chunk;
      const int64_t nz_end = std::min(NNZ, nz_start+nz_chunk);

      const int64_t n_chunk = (N+num_threads-1)/num_threads;
      const int64_t n_start = thread_id*n_chunk;
      const int64_t n_end = std::min(N, n_start+n_chunk);

#pragma omp master
      {
        local_ptrs.resize(num_threads);
        thread_prefixsum.resize(num_threads+1);
      }

#pragma omp barrier
      local_ptrs[thread_id].resize(N, 0);

      for (int64_t i = nz_start; i < nz_end; ++i) {
        ++local_ptrs[thread_id][row_data[i]];
      }

#pragma omp barrier
      // compute prefixsum in parallel
      int64_t sum = 0;
      for (int64_t i = n_start; i < n_end; ++i) {
        IdType tmp = 0;
        for (int j = 0; j < num_threads; ++j) {
          std::swap(tmp, local_ptrs[j][i]);
          tmp += local_ptrs[j][i];
        }
        sum += tmp;
        Bp[i+1] = sum;
      }
      thread_prefixsum[thread_id+1] = sum;

#pragma omp barrier
#pragma omp master
      {
        for (int64_t i = 0; i < num_threads; ++i) {
          thread_prefixsum[i+1] += thread_prefixsum[i];
        }
        CHECK_EQ(thread_prefixsum[num_threads], NNZ);
      }
#pragma omp barrier

      sum = thread_prefixsum[thread_id];
      for (int64_t i = n_start; i < n_end; ++i) {
        Bp[i+1] += sum;
      }

#pragma omp barrier
      for (int64_t i = nz_start; i < nz_end; ++i) {
        const IdType r = row_data[i];
        const int64_t index = Bp[r] + local_ptrs[thread_id][r]++;
        Bi[index] = col_data[i];
        Bx[index] = data ? data[i] : i;
      }
477
    }
478
    CHECK_EQ(Bp[N], NNZ);
479
480
  }

481
482
  return CSRMatrix(coo.num_rows, coo.num_cols,
                   ret_indptr, ret_indices, ret_data,
483
                   col_sorted);
484
485
}

486
487
template CSRMatrix COOToCSR<kDLCPU, int32_t>(COOMatrix coo);
template CSRMatrix COOToCSR<kDLCPU, int64_t>(COOMatrix coo);
488
489
490

///////////////////////////// COOSliceRows /////////////////////////////

491
template <DLDeviceType XPU, typename IdType>
492
COOMatrix COOSliceRows(COOMatrix coo, int64_t start, int64_t end) {
493
  // TODO(minjie): use binary search when coo.row_sorted is true
494
495
496
497
498
  CHECK(start >= 0 && start < coo.num_rows) << "Invalid start row " << start;
  CHECK(end > 0 && end <= coo.num_rows) << "Invalid end row " << end;

  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
499
  const IdType* coo_data = COOHasData(coo) ? static_cast<IdType*>(coo.data->data) : nullptr;
500
501

  std::vector<IdType> ret_row, ret_col;
502
  std::vector<IdType> ret_data;
503
504
505
506
507
508
509
510
511
512

  for (int64_t i = 0; i < coo.row->shape[0]; ++i) {
    const IdType row_id = coo_row_data[i];
    const IdType col_id = coo_col_data[i];
    if (row_id < end && row_id >= start) {
      ret_row.push_back(row_id - start);
      ret_col.push_back(col_id);
      ret_data.push_back(coo_data ? coo_data[i] : i);
    }
  }
513
  return COOMatrix(
514
515
516
517
    end - start,
    coo.num_cols,
    NDArray::FromVector(ret_row),
    NDArray::FromVector(ret_col),
518
519
520
    NDArray::FromVector(ret_data),
    coo.row_sorted,
    coo.col_sorted);
521
522
}

523
524
template COOMatrix COOSliceRows<kDLCPU, int32_t>(COOMatrix, int64_t, int64_t);
template COOMatrix COOSliceRows<kDLCPU, int64_t>(COOMatrix, int64_t, int64_t);
525

526
template <DLDeviceType XPU, typename IdType>
527
528
529
COOMatrix COOSliceRows(COOMatrix coo, NDArray rows) {
  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
530
  const IdType* coo_data = COOHasData(coo) ? static_cast<IdType*>(coo.data->data) : nullptr;
531
532

  std::vector<IdType> ret_row, ret_col;
533
  std::vector<IdType> ret_data;
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

  IdHashMap<IdType> hashmap(rows);

  for (int64_t i = 0; i < coo.row->shape[0]; ++i) {
    const IdType row_id = coo_row_data[i];
    const IdType col_id = coo_col_data[i];
    const IdType mapped_row_id = hashmap.Map(row_id, -1);
    if (mapped_row_id != -1) {
      ret_row.push_back(mapped_row_id);
      ret_col.push_back(col_id);
      ret_data.push_back(coo_data ? coo_data[i] : i);
    }
  }

  return COOMatrix{
    rows->shape[0],
    coo.num_cols,
    NDArray::FromVector(ret_row),
    NDArray::FromVector(ret_col),
553
554
    NDArray::FromVector(ret_data),
    coo.row_sorted, coo.col_sorted};
555
556
}

557
558
template COOMatrix COOSliceRows<kDLCPU, int32_t>(COOMatrix , NDArray);
template COOMatrix COOSliceRows<kDLCPU, int64_t>(COOMatrix , NDArray);
559
560
561

///////////////////////////// COOSliceMatrix /////////////////////////////

562
template <DLDeviceType XPU, typename IdType>
563
564
565
COOMatrix COOSliceMatrix(COOMatrix coo, runtime::NDArray rows, runtime::NDArray cols) {
  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
566
  const IdType* coo_data = COOHasData(coo) ? static_cast<IdType*>(coo.data->data) : nullptr;
567
568
569
570

  IdHashMap<IdType> row_map(rows), col_map(cols);

  std::vector<IdType> ret_row, ret_col;
571
  std::vector<IdType> ret_data;
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586

  for (int64_t i = 0; i < coo.row->shape[0]; ++i) {
    const IdType row_id = coo_row_data[i];
    const IdType col_id = coo_col_data[i];
    const IdType mapped_row_id = row_map.Map(row_id, -1);
    if (mapped_row_id != -1) {
      const IdType mapped_col_id = col_map.Map(col_id, -1);
      if (mapped_col_id != -1) {
        ret_row.push_back(mapped_row_id);
        ret_col.push_back(mapped_col_id);
        ret_data.push_back(coo_data ? coo_data[i] : i);
      }
    }
  }

587
588
589
590
591
  return COOMatrix(rows->shape[0], cols->shape[0],
                   NDArray::FromVector(ret_row),
                   NDArray::FromVector(ret_col),
                   NDArray::FromVector(ret_data),
                   coo.row_sorted, coo.col_sorted);
592
593
}

594
template COOMatrix COOSliceMatrix<kDLCPU, int32_t>(
595
    COOMatrix coo, runtime::NDArray rows, runtime::NDArray cols);
596
template COOMatrix COOSliceMatrix<kDLCPU, int64_t>(
597
598
    COOMatrix coo, runtime::NDArray rows, runtime::NDArray cols);

Da Zheng's avatar
Da Zheng committed
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642

///////////////////////////// COOReorder /////////////////////////////

template <DLDeviceType XPU, typename IdType>
COOMatrix COOReorder(COOMatrix coo, runtime::NDArray new_row_id_arr,
                     runtime::NDArray new_col_id_arr) {
  CHECK_SAME_DTYPE(coo.row, new_row_id_arr);
  CHECK_SAME_DTYPE(coo.col, new_col_id_arr);

  // Input COO
  const IdType* in_rows = static_cast<IdType*>(coo.row->data);
  const IdType* in_cols = static_cast<IdType*>(coo.col->data);
  int64_t num_rows = coo.num_rows;
  int64_t num_cols = coo.num_cols;
  int64_t nnz = coo.row->shape[0];
  CHECK_EQ(num_rows, new_row_id_arr->shape[0])
      << "The new row Id array needs to be the same as the number of rows of COO";
  CHECK_EQ(num_cols, new_col_id_arr->shape[0])
      << "The new col Id array needs to be the same as the number of cols of COO";

  // New row/col Ids.
  const IdType* new_row_ids = static_cast<IdType*>(new_row_id_arr->data);
  const IdType* new_col_ids = static_cast<IdType*>(new_col_id_arr->data);

  // Output COO
  NDArray out_row_arr = NDArray::Empty({nnz}, coo.row->dtype, coo.row->ctx);
  NDArray out_col_arr = NDArray::Empty({nnz}, coo.col->dtype, coo.col->ctx);
  NDArray out_data_arr = COOHasData(coo) ? coo.data : NullArray();
  IdType *out_row = static_cast<IdType*>(out_row_arr->data);
  IdType *out_col = static_cast<IdType*>(out_col_arr->data);

#pragma omp parallel for
  for (int64_t i = 0; i < nnz; i++) {
    out_row[i] = new_row_ids[in_rows[i]];
    out_col[i] = new_col_ids[in_cols[i]];
  }
  return COOMatrix(num_rows, num_cols, out_row_arr, out_col_arr, out_data_arr);
}

template COOMatrix COOReorder<kDLCPU, int64_t>(COOMatrix csr, runtime::NDArray new_row_ids,
                                               runtime::NDArray new_col_ids);
template COOMatrix COOReorder<kDLCPU, int32_t>(COOMatrix csr, runtime::NDArray new_row_ids,
                                               runtime::NDArray new_col_ids);

643
644
645
}  // namespace impl
}  // namespace aten
}  // namespace dgl