"src/vscode:/vscode.git/clone" did not exist on "0edf9ca082b0b405435767bc9e96b49b15390fd9"
spmat_op_impl_coo.cc 18.7 KB
Newer Older
1
2
3
4
5
6
7
8
/*!
 *  Copyright (c) 2019 by Contributors
 * \file array/cpu/spmat_op_impl.cc
 * \brief CPU implementation of COO sparse matrix operators
 */
#include <vector>
#include <unordered_set>
#include <unordered_map>
9
#include <tuple>
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#include "array_utils.h"

namespace dgl {

using runtime::NDArray;

namespace aten {
namespace impl {

/*
 * TODO(BarclayII):
 * For row-major sorted COOs, we have faster implementation with binary search,
 * sorted search, etc.  Later we should benchmark how much we can gain with
 * sorted COOs on hypersparse graphs.
 */

///////////////////////////// COOIsNonZero /////////////////////////////

template <DLDeviceType XPU, typename IdType>
bool COOIsNonZero(COOMatrix coo, int64_t row, int64_t col) {
  CHECK(row >= 0 && row < coo.num_rows) << "Invalid row index: " << row;
  CHECK(col >= 0 && col < coo.num_cols) << "Invalid col index: " << col;
  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
  for (int64_t i = 0; i < coo.row->shape[0]; ++i) {
    if (coo_row_data[i] == row && coo_col_data[i] == col)
      return true;
  }
  return false;
}

template bool COOIsNonZero<kDLCPU, int32_t>(COOMatrix, int64_t, int64_t);
template bool COOIsNonZero<kDLCPU, int64_t>(COOMatrix, int64_t, int64_t);

template <DLDeviceType XPU, typename IdType>
NDArray COOIsNonZero(COOMatrix coo, NDArray row, NDArray col) {
  const auto rowlen = row->shape[0];
  const auto collen = col->shape[0];
  const auto rstlen = std::max(rowlen, collen);
  NDArray rst = NDArray::Empty({rstlen}, row->dtype, row->ctx);
  IdType* rst_data = static_cast<IdType*>(rst->data);
  const IdType* row_data = static_cast<IdType*>(row->data);
  const IdType* col_data = static_cast<IdType*>(col->data);
  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  const int64_t kmax = std::max(rowlen, collen);
#pragma omp parallel for
  for (int64_t k = 0; k < kmax; ++k) {
    int64_t i = row_stride * k;
    int64_t j = col_stride * k;
    rst_data[k] = COOIsNonZero<XPU, IdType>(coo, row_data[i], col_data[j])? 1 : 0;
  }
  return rst;
}

template NDArray COOIsNonZero<kDLCPU, int32_t>(COOMatrix, NDArray, NDArray);
template NDArray COOIsNonZero<kDLCPU, int64_t>(COOMatrix, NDArray, NDArray);

///////////////////////////// COOHasDuplicate /////////////////////////////

template <DLDeviceType XPU, typename IdType>
bool COOHasDuplicate(COOMatrix coo) {
  std::unordered_set<std::pair<IdType, IdType>, PairHash> hashmap;
  const IdType* src_data = static_cast<IdType*>(coo.row->data);
  const IdType* dst_data = static_cast<IdType*>(coo.col->data);
  const auto nnz = coo.row->shape[0];
  for (IdType eid = 0; eid < nnz; ++eid) {
    const auto& p = std::make_pair(src_data[eid], dst_data[eid]);
    if (hashmap.count(p)) {
      return true;
    } else {
      hashmap.insert(p);
    }
  }
  return false;
}

template bool COOHasDuplicate<kDLCPU, int32_t>(COOMatrix coo);
template bool COOHasDuplicate<kDLCPU, int64_t>(COOMatrix coo);

///////////////////////////// COOGetRowNNZ /////////////////////////////

template <DLDeviceType XPU, typename IdType>
int64_t COOGetRowNNZ(COOMatrix coo, int64_t row) {
  CHECK(row >= 0 && row < coo.num_rows) << "Invalid row index: " << row;
  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  int64_t result = 0;
  for (int64_t i = 0; i < coo.row->shape[0]; ++i) {
    if (coo_row_data[i] == row)
      ++result;
  }
  return result;
}

template int64_t COOGetRowNNZ<kDLCPU, int32_t>(COOMatrix, int64_t);
template int64_t COOGetRowNNZ<kDLCPU, int64_t>(COOMatrix, int64_t);

template <DLDeviceType XPU, typename IdType>
NDArray COOGetRowNNZ(COOMatrix coo, NDArray rows) {
109
  CHECK_SAME_DTYPE(coo.col, rows);
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
  const auto len = rows->shape[0];
  const IdType* vid_data = static_cast<IdType*>(rows->data);
  NDArray rst = NDArray::Empty({len}, rows->dtype, rows->ctx);
  IdType* rst_data = static_cast<IdType*>(rst->data);
#pragma omp parallel for
  for (int64_t i = 0; i < len; ++i)
    rst_data[i] = COOGetRowNNZ<XPU, IdType>(coo, vid_data[i]);
  return rst;
}

template NDArray COOGetRowNNZ<kDLCPU, int32_t>(COOMatrix, NDArray);
template NDArray COOGetRowNNZ<kDLCPU, int64_t>(COOMatrix, NDArray);

///////////////////////////// COOGetRowDataAndIndices /////////////////////////////

125
template <DLDeviceType XPU, typename IdType>
126
127
128
129
130
131
std::pair<NDArray, NDArray> COOGetRowDataAndIndices(
    COOMatrix coo, int64_t row) {
  CHECK(row >= 0 && row < coo.num_rows) << "Invalid row index: " << row;

  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
132
  const IdType* coo_data = COOHasData(coo) ? static_cast<IdType*>(coo.data->data) : nullptr;
133
134

  std::vector<IdType> indices;
135
  std::vector<IdType> data;
136
137
138
139
140
141
142
143
144
145
146
147

  for (int64_t i = 0; i < coo.row->shape[0]; ++i) {
    if (coo_row_data[i] == row) {
      indices.push_back(coo_col_data[i]);
      data.push_back(coo_data ? coo_data[i] : i);
    }
  }

  return std::make_pair(NDArray::FromVector(data), NDArray::FromVector(indices));
}

template std::pair<NDArray, NDArray>
148
COOGetRowDataAndIndices<kDLCPU, int32_t>(COOMatrix, int64_t);
149
template std::pair<NDArray, NDArray>
150
COOGetRowDataAndIndices<kDLCPU, int64_t>(COOMatrix, int64_t);
151
152
153

///////////////////////////// COOGetData /////////////////////////////

154
template <DLDeviceType XPU, typename IdType>
155
156
157
NDArray COOGetData(COOMatrix coo, int64_t row, int64_t col) {
  CHECK(row >= 0 && row < coo.num_rows) << "Invalid row index: " << row;
  CHECK(col >= 0 && col < coo.num_cols) << "Invalid col index: " << col;
158
  std::vector<IdType> ret_vec;
159
160
  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
161
  const IdType* data = COOHasData(coo) ? static_cast<IdType*>(coo.data->data) : nullptr;
162
163
164
165
166
167
168
  for (IdType i = 0; i < coo.row->shape[0]; ++i) {
    if (coo_row_data[i] == row && coo_col_data[i] == col)
      ret_vec.push_back(data ? data[i] : i);
  }
  return NDArray::FromVector(ret_vec);
}

169
170
template NDArray COOGetData<kDLCPU, int32_t>(COOMatrix, int64_t, int64_t);
template NDArray COOGetData<kDLCPU, int64_t>(COOMatrix, int64_t, int64_t);
171
172
173

///////////////////////////// COOGetDataAndIndices /////////////////////////////

174
template <DLDeviceType XPU, typename IdType>
175
176
177
178
std::vector<NDArray> COOGetDataAndIndices(COOMatrix coo, NDArray rows,
                                          NDArray cols) {
  CHECK_SAME_DTYPE(coo.col, rows);
  CHECK_SAME_DTYPE(coo.col, cols);
179
180
  const int64_t rowlen = rows->shape[0];
  const int64_t collen = cols->shape[0];
181
  const int64_t len = std::max(rowlen, collen);
182
183
184
185
186
187
188
189
190
191
192

  CHECK((rowlen == collen) || (rowlen == 1) || (collen == 1))
    << "Invalid row and col id array.";

  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  const IdType* row_data = static_cast<IdType*>(rows->data);
  const IdType* col_data = static_cast<IdType*>(cols->data);

  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
193
  const IdType* data = COOHasData(coo) ? static_cast<IdType*>(coo.data->data) : nullptr;
194
195

  std::vector<IdType> ret_rows, ret_cols;
196
  std::vector<IdType> ret_data;
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
  ret_rows.reserve(len);
  ret_cols.reserve(len);
  ret_data.reserve(len);

  // NOTE(BarclayII): With a small number of lookups, linear scan is faster.
  // The threshold 200 comes from benchmarking both algorithms on a P3.8x instance.
  // I also tried sorting plus binary search.  The speed gain is only significant for
  // medium-sized graphs and lookups, so I didn't include it.
  if (len >= 200) {
    // TODO(BarclayII) Ideally we would want to cache this object.  However I'm not sure
    // what is the best way to do so since this object is valid for CPU only.
    std::unordered_multimap<std::pair<IdType, IdType>, IdType, PairHash> pair_map;
    pair_map.reserve(coo.row->shape[0]);
    for (int64_t k = 0; k < coo.row->shape[0]; ++k)
      pair_map.emplace(std::make_pair(coo_row_data[k], coo_col_data[k]), data ? data[k]: k);

    for (int64_t i = 0, j = 0; i < rowlen && j < collen; i += row_stride, j += col_stride) {
      const IdType row_id = row_data[i], col_id = col_data[j];
      CHECK(row_id >= 0 && row_id < coo.num_rows) << "Invalid row index: " << row_id;
      CHECK(col_id >= 0 && col_id < coo.num_cols) << "Invalid col index: " << col_id;
      auto range = pair_map.equal_range({row_id, col_id});
      for (auto it = range.first; it != range.second; ++it) {
219
220
        ret_rows.push_back(row_id);
        ret_cols.push_back(col_id);
221
222
223
224
225
226
227
228
229
230
231
232
233
234
        ret_data.push_back(it->second);
      }
    }
  } else {
    for (int64_t i = 0, j = 0; i < rowlen && j < collen; i += row_stride, j += col_stride) {
      const IdType row_id = row_data[i], col_id = col_data[j];
      CHECK(row_id >= 0 && row_id < coo.num_rows) << "Invalid row index: " << row_id;
      CHECK(col_id >= 0 && col_id < coo.num_cols) << "Invalid col index: " << col_id;
      for (int64_t k = 0; k < coo.row->shape[0]; ++k) {
        if (coo_row_data[k] == row_id && coo_col_data[k] == col_id) {
          ret_rows.push_back(row_id);
          ret_cols.push_back(col_id);
          ret_data.push_back(data ? data[k] : k);
        }
235
236
237
238
239
240
241
242
243
      }
    }
  }

  return {NDArray::FromVector(ret_rows),
          NDArray::FromVector(ret_cols),
          NDArray::FromVector(ret_data)};
}

244
template std::vector<NDArray> COOGetDataAndIndices<kDLCPU, int32_t>(
245
    COOMatrix coo, NDArray rows, NDArray cols);
246
template std::vector<NDArray> COOGetDataAndIndices<kDLCPU, int64_t>(
247
248
249
250
    COOMatrix coo, NDArray rows, NDArray cols);

///////////////////////////// COOTranspose /////////////////////////////

251
template <DLDeviceType XPU, typename IdType>
252
253
254
255
COOMatrix COOTranspose(COOMatrix coo) {
  return COOMatrix{coo.num_cols, coo.num_rows, coo.col, coo.row, coo.data};
}

256
257
template COOMatrix COOTranspose<kDLCPU, int32_t>(COOMatrix coo);
template COOMatrix COOTranspose<kDLCPU, int64_t>(COOMatrix coo);
258
259
260
261

///////////////////////////// COOToCSR /////////////////////////////

// complexity: time O(NNZ), space O(1)
262
template <DLDeviceType XPU, typename IdType>
263
264
265
266
267
CSRMatrix COOToCSR(COOMatrix coo) {
  const int64_t N = coo.num_rows;
  const int64_t NNZ = coo.row->shape[0];
  const IdType* row_data = static_cast<IdType*>(coo.row->data);
  const IdType* col_data = static_cast<IdType*>(coo.col->data);
268
  const IdType* data = COOHasData(coo)? static_cast<IdType*>(coo.data->data) : nullptr;
269

270
  NDArray ret_indptr = NDArray::Empty({N + 1}, coo.row->dtype, coo.row->ctx);
271
272
  NDArray ret_indices;
  NDArray ret_data;
273

274
275
276
277
278
279
  bool row_sorted = coo.row_sorted;
  bool col_sorted = coo.col_sorted;
  if (!row_sorted) {
    // It is possible that the flag is simply not set (default value is false),
    // so we still perform a linear scan to check the flag.
    std::tie(row_sorted, col_sorted) = COOIsSorted(coo);
280
281
  }

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
  if (row_sorted) {
    // compute indptr
    IdType* Bp = static_cast<IdType*>(ret_indptr->data);
    Bp[0] = 0;
    int64_t j = 0;
    for (int64_t i = 0; i < N; ++i) {
      const int64_t k = j;
      for (; j < NNZ && row_data[j] == i; ++j) {}
      Bp[i + 1] = Bp[i] + j - k;
    }

    // TODO(minjie): Many of our current implementation assumes that CSR must have
    //   a data array. This is a temporary workaround. Remove this after:
    //   - The old immutable graph implementation is deprecated.
    //   - The old binary reduce kernel is deprecated.
    if (!COOHasData(coo))
      coo.data = aten::Range(0, NNZ, coo.row->dtype.bits, coo.row->ctx);
299

300
    // compute indices and data
301
302
303
    ret_indices = coo.col;
    ret_data = coo.data;
  } else {
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
    // compute indptr
    IdType* Bp = static_cast<IdType*>(ret_indptr->data);
    std::fill(Bp, Bp + N, 0);
    for (int64_t i = 0; i < NNZ; ++i) {
      Bp[row_data[i]]++;
    }

    // cumsum
    for (int64_t i = 0, cumsum = 0; i < N; ++i) {
      const IdType temp = Bp[i];
      Bp[i] = cumsum;
      cumsum += temp;
    }
    Bp[N] = NNZ;

    // compute indices and data
320
321
322
323
324
325
326
327
328
329
330
    ret_indices = NDArray::Empty({NNZ}, coo.row->dtype, coo.row->ctx);
    ret_data = NDArray::Empty({NNZ}, coo.row->dtype, coo.row->ctx);
    IdType* Bi = static_cast<IdType*>(ret_indices->data);
    IdType* Bx = static_cast<IdType*>(ret_data->data);

    for (int64_t i = 0; i < NNZ; ++i) {
      const IdType r = row_data[i];
      Bi[Bp[r]] = col_data[i];
      Bx[Bp[r]] = data? data[i] : i;
      Bp[r]++;
    }
331

332
333
334
335
336
337
    // correct the indptr
    for (int64_t i = 0, last = 0; i <= N; ++i) {
      IdType temp = Bp[i];
      Bp[i] = last;
      last = temp;
    }
338
339
  }

340
341
  return CSRMatrix(coo.num_rows, coo.num_cols,
                   ret_indptr, ret_indices, ret_data,
342
                   col_sorted);
343
344
}

345
346
template CSRMatrix COOToCSR<kDLCPU, int32_t>(COOMatrix coo);
template CSRMatrix COOToCSR<kDLCPU, int64_t>(COOMatrix coo);
347
348
349

///////////////////////////// COOSliceRows /////////////////////////////

350
template <DLDeviceType XPU, typename IdType>
351
COOMatrix COOSliceRows(COOMatrix coo, int64_t start, int64_t end) {
352
  // TODO(minjie): use binary search when coo.row_sorted is true
353
354
355
356
357
  CHECK(start >= 0 && start < coo.num_rows) << "Invalid start row " << start;
  CHECK(end > 0 && end <= coo.num_rows) << "Invalid end row " << end;

  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
358
  const IdType* coo_data = COOHasData(coo) ? static_cast<IdType*>(coo.data->data) : nullptr;
359
360

  std::vector<IdType> ret_row, ret_col;
361
  std::vector<IdType> ret_data;
362
363
364
365
366
367
368
369
370
371

  for (int64_t i = 0; i < coo.row->shape[0]; ++i) {
    const IdType row_id = coo_row_data[i];
    const IdType col_id = coo_col_data[i];
    if (row_id < end && row_id >= start) {
      ret_row.push_back(row_id - start);
      ret_col.push_back(col_id);
      ret_data.push_back(coo_data ? coo_data[i] : i);
    }
  }
372
  return COOMatrix(
373
374
375
376
    end - start,
    coo.num_cols,
    NDArray::FromVector(ret_row),
    NDArray::FromVector(ret_col),
377
378
379
    NDArray::FromVector(ret_data),
    coo.row_sorted,
    coo.col_sorted);
380
381
}

382
383
template COOMatrix COOSliceRows<kDLCPU, int32_t>(COOMatrix, int64_t, int64_t);
template COOMatrix COOSliceRows<kDLCPU, int64_t>(COOMatrix, int64_t, int64_t);
384

385
template <DLDeviceType XPU, typename IdType>
386
387
388
COOMatrix COOSliceRows(COOMatrix coo, NDArray rows) {
  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
389
  const IdType* coo_data = COOHasData(coo) ? static_cast<IdType*>(coo.data->data) : nullptr;
390
391

  std::vector<IdType> ret_row, ret_col;
392
  std::vector<IdType> ret_data;
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

  IdHashMap<IdType> hashmap(rows);

  for (int64_t i = 0; i < coo.row->shape[0]; ++i) {
    const IdType row_id = coo_row_data[i];
    const IdType col_id = coo_col_data[i];
    const IdType mapped_row_id = hashmap.Map(row_id, -1);
    if (mapped_row_id != -1) {
      ret_row.push_back(mapped_row_id);
      ret_col.push_back(col_id);
      ret_data.push_back(coo_data ? coo_data[i] : i);
    }
  }

  return COOMatrix{
    rows->shape[0],
    coo.num_cols,
    NDArray::FromVector(ret_row),
    NDArray::FromVector(ret_col),
412
413
    NDArray::FromVector(ret_data),
    coo.row_sorted, coo.col_sorted};
414
415
}

416
417
template COOMatrix COOSliceRows<kDLCPU, int32_t>(COOMatrix , NDArray);
template COOMatrix COOSliceRows<kDLCPU, int64_t>(COOMatrix , NDArray);
418
419
420

///////////////////////////// COOSliceMatrix /////////////////////////////

421
template <DLDeviceType XPU, typename IdType>
422
423
424
COOMatrix COOSliceMatrix(COOMatrix coo, runtime::NDArray rows, runtime::NDArray cols) {
  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
425
  const IdType* coo_data = COOHasData(coo) ? static_cast<IdType*>(coo.data->data) : nullptr;
426
427
428
429

  IdHashMap<IdType> row_map(rows), col_map(cols);

  std::vector<IdType> ret_row, ret_col;
430
  std::vector<IdType> ret_data;
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

  for (int64_t i = 0; i < coo.row->shape[0]; ++i) {
    const IdType row_id = coo_row_data[i];
    const IdType col_id = coo_col_data[i];
    const IdType mapped_row_id = row_map.Map(row_id, -1);
    if (mapped_row_id != -1) {
      const IdType mapped_col_id = col_map.Map(col_id, -1);
      if (mapped_col_id != -1) {
        ret_row.push_back(mapped_row_id);
        ret_col.push_back(mapped_col_id);
        ret_data.push_back(coo_data ? coo_data[i] : i);
      }
    }
  }

446
447
448
449
450
  return COOMatrix(rows->shape[0], cols->shape[0],
                   NDArray::FromVector(ret_row),
                   NDArray::FromVector(ret_col),
                   NDArray::FromVector(ret_data),
                   coo.row_sorted, coo.col_sorted);
451
452
}

453
template COOMatrix COOSliceMatrix<kDLCPU, int32_t>(
454
    COOMatrix coo, runtime::NDArray rows, runtime::NDArray cols);
455
template COOMatrix COOSliceMatrix<kDLCPU, int64_t>(
456
457
    COOMatrix coo, runtime::NDArray rows, runtime::NDArray cols);

Da Zheng's avatar
Da Zheng committed
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501

///////////////////////////// COOReorder /////////////////////////////

template <DLDeviceType XPU, typename IdType>
COOMatrix COOReorder(COOMatrix coo, runtime::NDArray new_row_id_arr,
                     runtime::NDArray new_col_id_arr) {
  CHECK_SAME_DTYPE(coo.row, new_row_id_arr);
  CHECK_SAME_DTYPE(coo.col, new_col_id_arr);

  // Input COO
  const IdType* in_rows = static_cast<IdType*>(coo.row->data);
  const IdType* in_cols = static_cast<IdType*>(coo.col->data);
  int64_t num_rows = coo.num_rows;
  int64_t num_cols = coo.num_cols;
  int64_t nnz = coo.row->shape[0];
  CHECK_EQ(num_rows, new_row_id_arr->shape[0])
      << "The new row Id array needs to be the same as the number of rows of COO";
  CHECK_EQ(num_cols, new_col_id_arr->shape[0])
      << "The new col Id array needs to be the same as the number of cols of COO";

  // New row/col Ids.
  const IdType* new_row_ids = static_cast<IdType*>(new_row_id_arr->data);
  const IdType* new_col_ids = static_cast<IdType*>(new_col_id_arr->data);

  // Output COO
  NDArray out_row_arr = NDArray::Empty({nnz}, coo.row->dtype, coo.row->ctx);
  NDArray out_col_arr = NDArray::Empty({nnz}, coo.col->dtype, coo.col->ctx);
  NDArray out_data_arr = COOHasData(coo) ? coo.data : NullArray();
  IdType *out_row = static_cast<IdType*>(out_row_arr->data);
  IdType *out_col = static_cast<IdType*>(out_col_arr->data);

#pragma omp parallel for
  for (int64_t i = 0; i < nnz; i++) {
    out_row[i] = new_row_ids[in_rows[i]];
    out_col[i] = new_col_ids[in_cols[i]];
  }
  return COOMatrix(num_rows, num_cols, out_row_arr, out_col_arr, out_data_arr);
}

template COOMatrix COOReorder<kDLCPU, int64_t>(COOMatrix csr, runtime::NDArray new_row_ids,
                                               runtime::NDArray new_col_ids);
template COOMatrix COOReorder<kDLCPU, int32_t>(COOMatrix csr, runtime::NDArray new_row_ids,
                                               runtime::NDArray new_col_ids);

502
503
504
}  // namespace impl
}  // namespace aten
}  // namespace dgl