"docs/vscode:/vscode.git/clone" did not exist on "bf073e785528970e6a1605e411e4fc382d686dc7"
spmat_op_impl_coo.cc 14.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/*!
 *  Copyright (c) 2019 by Contributors
 * \file array/cpu/spmat_op_impl.cc
 * \brief CPU implementation of COO sparse matrix operators
 */
#include <dgl/array.h>
#include <vector>
#include <unordered_set>
#include <unordered_map>
#include "array_utils.h"

namespace dgl {

using runtime::NDArray;

namespace aten {
namespace impl {

/*
 * TODO(BarclayII):
 * For row-major sorted COOs, we have faster implementation with binary search,
 * sorted search, etc.  Later we should benchmark how much we can gain with
 * sorted COOs on hypersparse graphs.
 */

///////////////////////////// COOIsNonZero /////////////////////////////

template <DLDeviceType XPU, typename IdType>
bool COOIsNonZero(COOMatrix coo, int64_t row, int64_t col) {
  CHECK(row >= 0 && row < coo.num_rows) << "Invalid row index: " << row;
  CHECK(col >= 0 && col < coo.num_cols) << "Invalid col index: " << col;
  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
  for (int64_t i = 0; i < coo.row->shape[0]; ++i) {
    if (coo_row_data[i] == row && coo_col_data[i] == col)
      return true;
  }
  return false;
}

template bool COOIsNonZero<kDLCPU, int32_t>(COOMatrix, int64_t, int64_t);
template bool COOIsNonZero<kDLCPU, int64_t>(COOMatrix, int64_t, int64_t);

template <DLDeviceType XPU, typename IdType>
NDArray COOIsNonZero(COOMatrix coo, NDArray row, NDArray col) {
  const auto rowlen = row->shape[0];
  const auto collen = col->shape[0];
  const auto rstlen = std::max(rowlen, collen);
  NDArray rst = NDArray::Empty({rstlen}, row->dtype, row->ctx);
  IdType* rst_data = static_cast<IdType*>(rst->data);
  const IdType* row_data = static_cast<IdType*>(row->data);
  const IdType* col_data = static_cast<IdType*>(col->data);
  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  const int64_t kmax = std::max(rowlen, collen);
#pragma omp parallel for
  for (int64_t k = 0; k < kmax; ++k) {
    int64_t i = row_stride * k;
    int64_t j = col_stride * k;
    rst_data[k] = COOIsNonZero<XPU, IdType>(coo, row_data[i], col_data[j])? 1 : 0;
  }
  return rst;
}

template NDArray COOIsNonZero<kDLCPU, int32_t>(COOMatrix, NDArray, NDArray);
template NDArray COOIsNonZero<kDLCPU, int64_t>(COOMatrix, NDArray, NDArray);

///////////////////////////// COOHasDuplicate /////////////////////////////

template <DLDeviceType XPU, typename IdType>
bool COOHasDuplicate(COOMatrix coo) {
  std::unordered_set<std::pair<IdType, IdType>, PairHash> hashmap;
  const IdType* src_data = static_cast<IdType*>(coo.row->data);
  const IdType* dst_data = static_cast<IdType*>(coo.col->data);
  const auto nnz = coo.row->shape[0];
  for (IdType eid = 0; eid < nnz; ++eid) {
    const auto& p = std::make_pair(src_data[eid], dst_data[eid]);
    if (hashmap.count(p)) {
      return true;
    } else {
      hashmap.insert(p);
    }
  }
  return false;
}

template bool COOHasDuplicate<kDLCPU, int32_t>(COOMatrix coo);
template bool COOHasDuplicate<kDLCPU, int64_t>(COOMatrix coo);

///////////////////////////// COOGetRowNNZ /////////////////////////////

template <DLDeviceType XPU, typename IdType>
int64_t COOGetRowNNZ(COOMatrix coo, int64_t row) {
  CHECK(row >= 0 && row < coo.num_rows) << "Invalid row index: " << row;
  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  int64_t result = 0;
  for (int64_t i = 0; i < coo.row->shape[0]; ++i) {
    if (coo_row_data[i] == row)
      ++result;
  }
  return result;
}

template int64_t COOGetRowNNZ<kDLCPU, int32_t>(COOMatrix, int64_t);
template int64_t COOGetRowNNZ<kDLCPU, int64_t>(COOMatrix, int64_t);

template <DLDeviceType XPU, typename IdType>
NDArray COOGetRowNNZ(COOMatrix coo, NDArray rows) {
  const auto len = rows->shape[0];
  const IdType* vid_data = static_cast<IdType*>(rows->data);
  NDArray rst = NDArray::Empty({len}, rows->dtype, rows->ctx);
  IdType* rst_data = static_cast<IdType*>(rst->data);
#pragma omp parallel for
  for (int64_t i = 0; i < len; ++i)
    rst_data[i] = COOGetRowNNZ<XPU, IdType>(coo, vid_data[i]);
  return rst;
}

template NDArray COOGetRowNNZ<kDLCPU, int32_t>(COOMatrix, NDArray);
template NDArray COOGetRowNNZ<kDLCPU, int64_t>(COOMatrix, NDArray);

///////////////////////////// COOGetRowDataAndIndices /////////////////////////////

template <DLDeviceType XPU, typename IdType, typename DType>
std::pair<NDArray, NDArray> COOGetRowDataAndIndices(
    COOMatrix coo, int64_t row) {
  CHECK(row >= 0 && row < coo.num_rows) << "Invalid row index: " << row;

  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
  const DType* coo_data = COOHasData(coo) ? static_cast<DType*>(coo.data->data) : nullptr;

  std::vector<IdType> indices;
  std::vector<DType> data;

  for (int64_t i = 0; i < coo.row->shape[0]; ++i) {
    if (coo_row_data[i] == row) {
      indices.push_back(coo_col_data[i]);
      data.push_back(coo_data ? coo_data[i] : i);
    }
  }

  return std::make_pair(NDArray::FromVector(data), NDArray::FromVector(indices));
}

template std::pair<NDArray, NDArray>
COOGetRowDataAndIndices<kDLCPU, int32_t, int32_t>(COOMatrix, int64_t);
template std::pair<NDArray, NDArray>
COOGetRowDataAndIndices<kDLCPU, int64_t, int64_t>(COOMatrix, int64_t);

///////////////////////////// COOGetData /////////////////////////////

template <DLDeviceType XPU, typename IdType, typename DType>
NDArray COOGetData(COOMatrix coo, int64_t row, int64_t col) {
  CHECK(row >= 0 && row < coo.num_rows) << "Invalid row index: " << row;
  CHECK(col >= 0 && col < coo.num_cols) << "Invalid col index: " << col;
  std::vector<DType> ret_vec;
  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
  const DType* data = COOHasData(coo) ? static_cast<DType*>(coo.data->data) : nullptr;
  for (IdType i = 0; i < coo.row->shape[0]; ++i) {
    if (coo_row_data[i] == row && coo_col_data[i] == col)
      ret_vec.push_back(data ? data[i] : i);
  }
  return NDArray::FromVector(ret_vec);
}

template NDArray COOGetData<kDLCPU, int32_t, int32_t>(COOMatrix, int64_t, int64_t);
template NDArray COOGetData<kDLCPU, int64_t, int64_t>(COOMatrix, int64_t, int64_t);

///////////////////////////// COOGetDataAndIndices /////////////////////////////

template <DLDeviceType XPU, typename IdType, typename DType>
std::vector<NDArray> COOGetDataAndIndices(
    COOMatrix coo, NDArray rows, NDArray cols) {
  const int64_t rowlen = rows->shape[0];
  const int64_t collen = cols->shape[0];

  CHECK((rowlen == collen) || (rowlen == 1) || (collen == 1))
    << "Invalid row and col id array.";

  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  const IdType* row_data = static_cast<IdType*>(rows->data);
  const IdType* col_data = static_cast<IdType*>(cols->data);

  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
  const DType* data = COOHasData(coo) ? static_cast<DType*>(coo.data->data) : nullptr;

  std::vector<IdType> ret_rows, ret_cols;
  std::vector<DType> ret_data;

  for (int64_t i = 0, j = 0; i < rowlen && j < collen; i += row_stride, j += col_stride) {
    const IdType row_id = row_data[i], col_id = col_data[j];
    CHECK(row_id >= 0 && row_id < coo.num_rows) << "Invalid row index: " << row_id;
    CHECK(col_id >= 0 && col_id < coo.num_cols) << "Invalid col index: " << col_id;
    for (int64_t k = 0; k < coo.row->shape[0]; ++k) {
      if (coo_row_data[k] == row_id && coo_col_data[k] == col_id) {
        ret_rows.push_back(row_id);
        ret_cols.push_back(col_id);
        ret_data.push_back(data ? data[k] : k);
      }
    }
  }

  return {NDArray::FromVector(ret_rows),
          NDArray::FromVector(ret_cols),
          NDArray::FromVector(ret_data)};
}

template std::vector<NDArray> COOGetDataAndIndices<kDLCPU, int32_t, int32_t>(
    COOMatrix coo, NDArray rows, NDArray cols);
template std::vector<NDArray> COOGetDataAndIndices<kDLCPU, int64_t, int64_t>(
    COOMatrix coo, NDArray rows, NDArray cols);

///////////////////////////// COOTranspose /////////////////////////////

template <DLDeviceType XPU, typename IdType, typename DType>
COOMatrix COOTranspose(COOMatrix coo) {
  return COOMatrix{coo.num_cols, coo.num_rows, coo.col, coo.row, coo.data};
}

template COOMatrix COOTranspose<kDLCPU, int32_t, int32_t>(COOMatrix coo);
template COOMatrix COOTranspose<kDLCPU, int64_t, int64_t>(COOMatrix coo);

///////////////////////////// COOToCSR /////////////////////////////

// complexity: time O(NNZ), space O(1)
template <DLDeviceType XPU, typename IdType, typename DType>
CSRMatrix COOToCSR(COOMatrix coo) {
  const int64_t N = coo.num_rows;
  const int64_t NNZ = coo.row->shape[0];
  const IdType* row_data = static_cast<IdType*>(coo.row->data);
  const IdType* col_data = static_cast<IdType*>(coo.col->data);
  NDArray ret_indptr = NDArray::Empty({N + 1}, coo.row->dtype, coo.row->ctx);
  NDArray ret_indices = NDArray::Empty({NNZ}, coo.row->dtype, coo.row->ctx);
  NDArray ret_data;
  if (COOHasData(coo)) {
    ret_data = NDArray::Empty({NNZ}, coo.data->dtype, coo.data->ctx);
  } else {
    // if no data array in the input coo, the return data array is a shuffle index.
    ret_data = NDArray::Empty({NNZ}, coo.row->dtype, coo.row->ctx);
  }

  IdType* Bp = static_cast<IdType*>(ret_indptr->data);
  IdType* Bi = static_cast<IdType*>(ret_indices->data);

  std::fill(Bp, Bp + N, 0);

  for (int64_t i = 0; i < NNZ; ++i) {
    Bp[row_data[i]]++;
  }

  // cumsum
  for (int64_t i = 0, cumsum = 0; i < N; ++i) {
    const IdType temp = Bp[i];
    Bp[i] = cumsum;
    cumsum += temp;
  }
  Bp[N] = NNZ;

  for (int64_t i = 0; i < NNZ; ++i) {
    const IdType r = row_data[i];
    Bi[Bp[r]] = col_data[i];
    if (COOHasData(coo)) {
      const DType* data = static_cast<DType*>(coo.data->data);
      DType* Bx = static_cast<DType*>(ret_data->data);
      Bx[Bp[r]] = data[i];
    } else {
      IdType* Bx = static_cast<IdType*>(ret_data->data);
      Bx[Bp[r]] = i;
    }
    Bp[r]++;
  }

  // correct the indptr
  for (int64_t i = 0, last = 0; i <= N; ++i) {
    IdType temp = Bp[i];
    Bp[i] = last;
    last = temp;
  }

  return CSRMatrix{coo.num_rows, coo.num_cols, ret_indptr, ret_indices, ret_data};
}

template CSRMatrix COOToCSR<kDLCPU, int32_t, int32_t>(COOMatrix coo);
template CSRMatrix COOToCSR<kDLCPU, int64_t, int64_t>(COOMatrix coo);

///////////////////////////// COOSliceRows /////////////////////////////

template <DLDeviceType XPU, typename IdType, typename DType>
COOMatrix COOSliceRows(COOMatrix coo, int64_t start, int64_t end) {
  CHECK(start >= 0 && start < coo.num_rows) << "Invalid start row " << start;
  CHECK(end > 0 && end <= coo.num_rows) << "Invalid end row " << end;

  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
  const DType* coo_data = COOHasData(coo) ? static_cast<DType*>(coo.data->data) : nullptr;

  std::vector<IdType> ret_row, ret_col;
  std::vector<DType> ret_data;

  for (int64_t i = 0; i < coo.row->shape[0]; ++i) {
    const IdType row_id = coo_row_data[i];
    const IdType col_id = coo_col_data[i];
    if (row_id < end && row_id >= start) {
      ret_row.push_back(row_id - start);
      ret_col.push_back(col_id);
      ret_data.push_back(coo_data ? coo_data[i] : i);
    }
  }
  return COOMatrix{
    end - start,
    coo.num_cols,
    NDArray::FromVector(ret_row),
    NDArray::FromVector(ret_col),
    NDArray::FromVector(ret_data)};
}

template COOMatrix COOSliceRows<kDLCPU, int32_t, int32_t>(COOMatrix, int64_t, int64_t);
template COOMatrix COOSliceRows<kDLCPU, int64_t, int64_t>(COOMatrix, int64_t, int64_t);

template <DLDeviceType XPU, typename IdType, typename DType>
COOMatrix COOSliceRows(COOMatrix coo, NDArray rows) {
  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
  const DType* coo_data = COOHasData(coo) ? static_cast<DType*>(coo.data->data) : nullptr;

  std::vector<IdType> ret_row, ret_col;
  std::vector<DType> ret_data;

  IdHashMap<IdType> hashmap(rows);

  for (int64_t i = 0; i < coo.row->shape[0]; ++i) {
    const IdType row_id = coo_row_data[i];
    const IdType col_id = coo_col_data[i];
    const IdType mapped_row_id = hashmap.Map(row_id, -1);
    if (mapped_row_id != -1) {
      ret_row.push_back(mapped_row_id);
      ret_col.push_back(col_id);
      ret_data.push_back(coo_data ? coo_data[i] : i);
    }
  }

  return COOMatrix{
    rows->shape[0],
    coo.num_cols,
    NDArray::FromVector(ret_row),
    NDArray::FromVector(ret_col),
    NDArray::FromVector(ret_data)};
}

template COOMatrix COOSliceRows<kDLCPU, int32_t, int32_t>(COOMatrix , NDArray);
template COOMatrix COOSliceRows<kDLCPU, int64_t, int64_t>(COOMatrix , NDArray);

///////////////////////////// COOSliceMatrix /////////////////////////////

template <DLDeviceType XPU, typename IdType, typename DType>
COOMatrix COOSliceMatrix(COOMatrix coo, runtime::NDArray rows, runtime::NDArray cols) {
  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
  const DType* coo_data = COOHasData(coo) ? static_cast<DType*>(coo.data->data) : nullptr;

  IdHashMap<IdType> row_map(rows), col_map(cols);

  std::vector<IdType> ret_row, ret_col;
  std::vector<DType> ret_data;

  for (int64_t i = 0; i < coo.row->shape[0]; ++i) {
    const IdType row_id = coo_row_data[i];
    const IdType col_id = coo_col_data[i];
    const IdType mapped_row_id = row_map.Map(row_id, -1);
    if (mapped_row_id != -1) {
      const IdType mapped_col_id = col_map.Map(col_id, -1);
      if (mapped_col_id != -1) {
        ret_row.push_back(mapped_row_id);
        ret_col.push_back(mapped_col_id);
        ret_data.push_back(coo_data ? coo_data[i] : i);
      }
    }
  }

  return COOMatrix{
    rows->shape[0],
    cols->shape[0],
    NDArray::FromVector(ret_row),
    NDArray::FromVector(ret_col),
    NDArray::FromVector(ret_data)};
}

template COOMatrix COOSliceMatrix<kDLCPU, int32_t, int32_t>(
    COOMatrix coo, runtime::NDArray rows, runtime::NDArray cols);
template COOMatrix COOSliceMatrix<kDLCPU, int64_t, int64_t>(
    COOMatrix coo, runtime::NDArray rows, runtime::NDArray cols);

}  // namespace impl
}  // namespace aten
}  // namespace dgl