test_partition.py 24.5 KB
Newer Older
1
2
import dgl
import sys
3
import os
4
5
import numpy as np
from scipy import sparse as spsp
6
from dgl.distributed import partition_graph, load_partition, load_partition_feats
7
8
from dgl.distributed.graph_partition_book import BasicPartitionBook, RangePartitionBook, \
    NodePartitionPolicy, EdgePartitionPolicy, HeteroDataName
9
from dgl import function as fn
10
11
import backend as F
import unittest
12
import tempfile
13
14
15
16
17
18
19
20
21
from utils import reset_envs
from dgl.distributed.partition import RESERVED_FIELD_DTYPE

def _verify_partition_data_types(part_g):
    for k, dtype in RESERVED_FIELD_DTYPE.items():
        if k in part_g.ndata:
            assert part_g.ndata[k].dtype == dtype
        if k in part_g.edata:
            assert part_g.edata[k].dtype == dtype
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
def _get_inner_node_mask(graph, ntype_id):
    if dgl.NTYPE in graph.ndata:
        dtype = F.dtype(graph.ndata['inner_node'])
        return graph.ndata['inner_node'] * F.astype(graph.ndata[dgl.NTYPE] == ntype_id, dtype) == 1
    else:
        return graph.ndata['inner_node'] == 1

def _get_inner_edge_mask(graph, etype_id):
    if dgl.ETYPE in graph.edata:
        dtype = F.dtype(graph.edata['inner_edge'])
        return graph.edata['inner_edge'] * F.astype(graph.edata[dgl.ETYPE] == etype_id, dtype) == 1
    else:
        return graph.edata['inner_edge'] == 1

def _get_part_ranges(id_ranges):
    if isinstance(id_ranges, dict):
        return {key:np.concatenate([np.array(l) for l in id_ranges[key]]).reshape(-1, 2) \
                for key in id_ranges}
    else:
        return np.concatenate([np.array(l) for l in id_range[key]]).reshape(-1, 2)


45
def create_random_graph(n):
Jinjing Zhou's avatar
Jinjing Zhou committed
46
    arr = (spsp.random(n, n, density=0.001, format='coo', random_state=100) != 0).astype(np.int64)
47
    return dgl.from_scipy(arr)
48

49
def create_random_hetero():
50
    num_nodes = {'n1': 1000, 'n2': 1010, 'n3': 1020}
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    etypes = [('n1', 'r1', 'n2'),
              ('n1', 'r2', 'n3'),
              ('n2', 'r3', 'n3')]
    edges = {}
    for etype in etypes:
        src_ntype, _, dst_ntype = etype
        arr = spsp.random(num_nodes[src_ntype], num_nodes[dst_ntype], density=0.001, format='coo',
                          random_state=100)
        edges[etype] = (arr.row, arr.col)
    return dgl.heterograph(edges, num_nodes)

def verify_hetero_graph(g, parts):
    num_nodes = {ntype:0 for ntype in g.ntypes}
    num_edges = {etype:0 for etype in g.etypes}
    for part in parts:
        assert len(g.ntypes) == len(F.unique(part.ndata[dgl.NTYPE]))
        assert len(g.etypes) == len(F.unique(part.edata[dgl.ETYPE]))
        for ntype in g.ntypes:
            ntype_id = g.get_ntype_id(ntype)
            inner_node_mask = _get_inner_node_mask(part, ntype_id)
            num_inner_nodes = F.sum(F.astype(inner_node_mask, F.int64), 0)
            num_nodes[ntype] += num_inner_nodes
        for etype in g.etypes:
            etype_id = g.get_etype_id(etype)
            inner_edge_mask = _get_inner_edge_mask(part, etype_id)
            num_inner_edges = F.sum(F.astype(inner_edge_mask, F.int64), 0)
            num_edges[etype] += num_inner_edges
    # Verify the number of nodes are correct.
    for ntype in g.ntypes:
        print('node {}: {}, {}'.format(ntype, g.number_of_nodes(ntype), num_nodes[ntype]))
        assert g.number_of_nodes(ntype) == num_nodes[ntype]
    # Verify the number of edges are correct.
    for etype in g.etypes:
        print('edge {}: {}, {}'.format(etype, g.number_of_edges(etype), num_edges[etype]))
        assert g.number_of_edges(etype) == num_edges[etype]

    nids = {ntype:[] for ntype in g.ntypes}
    eids = {etype:[] for etype in g.etypes}
    for part in parts:
90
        _, _, eid = part.edges(form='all')
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        etype_arr = F.gather_row(part.edata[dgl.ETYPE], eid)
        eid_type = F.gather_row(part.edata[dgl.EID], eid)
        for etype in g.etypes:
            etype_id = g.get_etype_id(etype)
            eids[etype].append(F.boolean_mask(eid_type, etype_arr == etype_id))
            # Make sure edge Ids fall into a range.
            inner_edge_mask = _get_inner_edge_mask(part, etype_id)
            inner_eids = np.sort(F.asnumpy(F.boolean_mask(part.edata[dgl.EID], inner_edge_mask)))
            assert np.all(inner_eids == np.arange(inner_eids[0], inner_eids[-1] + 1))

        for ntype in g.ntypes:
            ntype_id = g.get_ntype_id(ntype)
            # Make sure inner nodes have Ids fall into a range.
            inner_node_mask = _get_inner_node_mask(part, ntype_id)
            inner_nids = F.boolean_mask(part.ndata[dgl.NID], inner_node_mask)
            assert np.all(F.asnumpy(inner_nids == F.arange(F.as_scalar(inner_nids[0]),
                                                           F.as_scalar(inner_nids[-1]) + 1)))
            nids[ntype].append(inner_nids)

    for ntype in nids:
        nids_type = F.cat(nids[ntype], 0)
        uniq_ids = F.unique(nids_type)
        # We should get all nodes.
        assert len(uniq_ids) == g.number_of_nodes(ntype)
    for etype in eids:
        eids_type = F.cat(eids[etype], 0)
        uniq_ids = F.unique(eids_type)
        assert len(uniq_ids) == g.number_of_edges(etype)
    # TODO(zhengda) this doesn't check 'part_id'

121
def verify_graph_feats(g, gpb, part, node_feats, edge_feats, orig_nids, orig_eids):
122
123
    for ntype in g.ntypes:
        ntype_id = g.get_ntype_id(ntype)
124
125
126
127
128
129
130
        inner_node_mask = _get_inner_node_mask(part, ntype_id)
        inner_nids = F.boolean_mask(part.ndata[dgl.NID],inner_node_mask)
        ntype_ids, inner_type_nids = gpb.map_to_per_ntype(inner_nids)
        partid = gpb.nid2partid(inner_type_nids, ntype)
        assert np.all(F.asnumpy(ntype_ids) == ntype_id)
        assert np.all(F.asnumpy(partid) == gpb.partid)

131
        orig_id = orig_nids[ntype][inner_type_nids]
132
133
        local_nids = gpb.nid2localnid(inner_type_nids, gpb.partid, ntype)

134
135
136
137
        for name in g.nodes[ntype].data:
            if name in [dgl.NID, 'inner_node']:
                continue
            true_feats = F.gather_row(g.nodes[ntype].data[name], orig_id)
138
            ndata = F.gather_row(node_feats[ntype + '/' + name], local_nids)
139
140
            assert np.all(F.asnumpy(ndata == true_feats))

141
142
143
144
145
146
147
148
149
    for etype in g.etypes:
        etype_id = g.get_etype_id(etype)
        inner_edge_mask = _get_inner_edge_mask(part, etype_id)
        inner_eids = F.boolean_mask(part.edata[dgl.EID],inner_edge_mask)
        etype_ids, inner_type_eids = gpb.map_to_per_etype(inner_eids)
        partid = gpb.eid2partid(inner_type_eids, etype)
        assert np.all(F.asnumpy(etype_ids) == etype_id)
        assert np.all(F.asnumpy(partid) == gpb.partid)

150
        orig_id = orig_eids[etype][inner_type_eids]
151
152
153
154
155
156
157
158
159
        local_eids = gpb.eid2localeid(inner_type_eids, gpb.partid, etype)

        for name in g.edges[etype].data:
            if name in [dgl.EID, 'inner_edge']:
                continue
            true_feats = F.gather_row(g.edges[etype].data[name], orig_id)
            edata = F.gather_row(edge_feats[etype + '/' + name], local_eids)
            assert np.all(F.asnumpy(edata == true_feats))

160
def check_hetero_partition(hg, part_method, num_parts=4, num_trainers_per_machine=1, load_feats=True):
161
162
163
    hg.nodes['n1'].data['labels'] = F.arange(0, hg.number_of_nodes('n1'))
    hg.nodes['n1'].data['feats'] = F.tensor(np.random.randn(hg.number_of_nodes('n1'), 10), F.float32)
    hg.edges['r1'].data['feats'] = F.tensor(np.random.randn(hg.number_of_edges('r1'), 10), F.float32)
164
    hg.edges['r1'].data['labels'] = F.arange(0, hg.number_of_edges('r1'))
165
166
    num_hops = 1

167
    orig_nids, orig_eids = partition_graph(hg, 'test', num_parts, '/tmp/partition', num_hops=num_hops,
168
169
                                           part_method=part_method, reshuffle=True, return_mapping=True,
                                           num_trainers_per_machine=num_trainers_per_machine)
170
171
172
173
174
175
    assert len(orig_nids) == len(hg.ntypes)
    assert len(orig_eids) == len(hg.etypes)
    for ntype in hg.ntypes:
        assert len(orig_nids[ntype]) == hg.number_of_nodes(ntype)
    for etype in hg.etypes:
        assert len(orig_eids[etype]) == hg.number_of_edges(etype)
176
    parts = []
177
178
    shuffled_labels = []
    shuffled_elabels = []
179
    for i in range(num_parts):
180
181
        part_g, node_feats, edge_feats, gpb, _, ntypes, etypes = load_partition(
            '/tmp/partition/test.json', i, load_feats=load_feats)
182
        _verify_partition_data_types(part_g)
183
184
185
186
        if not load_feats:
            assert not node_feats
            assert not edge_feats
            node_feats, edge_feats = load_partition_feats('/tmp/partition/test.json', i)
187
188
189
190
191
192
193
194
195
196
197
198
        if num_trainers_per_machine > 1:
            for ntype in hg.ntypes:
                name = ntype + '/trainer_id'
                assert name in node_feats
                part_ids = F.floor_div(node_feats[name], num_trainers_per_machine)
                assert np.all(F.asnumpy(part_ids) == i)

            for etype in hg.etypes:
                name = etype + '/trainer_id'
                assert name in edge_feats
                part_ids = F.floor_div(edge_feats[name], num_trainers_per_machine)
                assert np.all(F.asnumpy(part_ids) == i)
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        # Verify the mapping between the reshuffled IDs and the original IDs.
        # These are partition-local IDs.
        part_src_ids, part_dst_ids = part_g.edges()
        # These are reshuffled global homogeneous IDs.
        part_src_ids = F.gather_row(part_g.ndata[dgl.NID], part_src_ids)
        part_dst_ids = F.gather_row(part_g.ndata[dgl.NID], part_dst_ids)
        part_eids = part_g.edata[dgl.EID]
        # These are reshuffled per-type IDs.
        src_ntype_ids, part_src_ids = gpb.map_to_per_ntype(part_src_ids)
        dst_ntype_ids, part_dst_ids = gpb.map_to_per_ntype(part_dst_ids)
        etype_ids, part_eids = gpb.map_to_per_etype(part_eids)
        # These are original per-type IDs.
        for etype_id, etype in enumerate(hg.etypes):
            part_src_ids1 = F.boolean_mask(part_src_ids, etype_ids == etype_id)
            src_ntype_ids1 = F.boolean_mask(src_ntype_ids, etype_ids == etype_id)
            part_dst_ids1 = F.boolean_mask(part_dst_ids, etype_ids == etype_id)
            dst_ntype_ids1 = F.boolean_mask(dst_ntype_ids, etype_ids == etype_id)
            part_eids1 = F.boolean_mask(part_eids, etype_ids == etype_id)
            assert np.all(F.asnumpy(src_ntype_ids1 == src_ntype_ids1[0]))
            assert np.all(F.asnumpy(dst_ntype_ids1 == dst_ntype_ids1[0]))
            src_ntype = hg.ntypes[F.as_scalar(src_ntype_ids1[0])]
            dst_ntype = hg.ntypes[F.as_scalar(dst_ntype_ids1[0])]
            orig_src_ids1 = F.gather_row(orig_nids[src_ntype], part_src_ids1)
            orig_dst_ids1 = F.gather_row(orig_nids[dst_ntype], part_dst_ids1)
            orig_eids1 = F.gather_row(orig_eids[etype], part_eids1)
            orig_eids2 = hg.edge_ids(orig_src_ids1, orig_dst_ids1, etype=etype)
            assert len(orig_eids1) == len(orig_eids2)
            assert np.all(F.asnumpy(orig_eids1) == F.asnumpy(orig_eids2))
227
        parts.append(part_g)
228
        verify_graph_feats(hg, gpb, part_g, node_feats, edge_feats, orig_nids, orig_eids)
229
230
231

        shuffled_labels.append(node_feats['n1/labels'])
        shuffled_elabels.append(edge_feats['r1/labels'])
232
233
    verify_hetero_graph(hg, parts)

234
235
236
237
238
239
240
241
242
    shuffled_labels = F.asnumpy(F.cat(shuffled_labels, 0))
    shuffled_elabels = F.asnumpy(F.cat(shuffled_elabels, 0))
    orig_labels = np.zeros(shuffled_labels.shape, dtype=shuffled_labels.dtype)
    orig_elabels = np.zeros(shuffled_elabels.shape, dtype=shuffled_elabels.dtype)
    orig_labels[F.asnumpy(orig_nids['n1'])] = shuffled_labels
    orig_elabels[F.asnumpy(orig_eids['r1'])] = shuffled_elabels
    assert np.all(orig_labels == F.asnumpy(hg.nodes['n1'].data['labels']))
    assert np.all(orig_elabels == F.asnumpy(hg.edges['r1'].data['labels']))

243
def check_partition(g, part_method, reshuffle, num_parts=4, num_trainers_per_machine=1, load_feats=True):
244
    g.ndata['labels'] = F.arange(0, g.number_of_nodes())
245
246
    g.ndata['feats'] = F.tensor(np.random.randn(g.number_of_nodes(), 10), F.float32)
    g.edata['feats'] = F.tensor(np.random.randn(g.number_of_edges(), 10), F.float32)
247
248
    g.update_all(fn.copy_src('feats', 'msg'), fn.sum('msg', 'h'))
    g.update_all(fn.copy_edge('feats', 'msg'), fn.sum('msg', 'eh'))
249
    num_hops = 2
Da Zheng's avatar
Da Zheng committed
250

251
    orig_nids, orig_eids = partition_graph(g, 'test', num_parts, '/tmp/partition', num_hops=num_hops,
252
253
                                           part_method=part_method, reshuffle=reshuffle, return_mapping=True,
                                           num_trainers_per_machine=num_trainers_per_machine)
Da Zheng's avatar
Da Zheng committed
254
    part_sizes = []
255
256
    shuffled_labels = []
    shuffled_edata = []
257
    for i in range(num_parts):
258
259
        part_g, node_feats, edge_feats, gpb, _, ntypes, etypes = load_partition(
            '/tmp/partition/test.json', i, load_feats=load_feats)
260
        _verify_partition_data_types(part_g)
261
262
263
264
        if not load_feats:
            assert not node_feats
            assert not edge_feats
            node_feats, edge_feats = load_partition_feats('/tmp/partition/test.json', i)
265
266
267
268
269
270
271
272
273
274
275
276
        if num_trainers_per_machine > 1:
            for ntype in g.ntypes:
                name = ntype + '/trainer_id'
                assert name in node_feats
                part_ids = F.floor_div(node_feats[name], num_trainers_per_machine)
                assert np.all(F.asnumpy(part_ids) == i)

            for etype in g.etypes:
                name = etype + '/trainer_id'
                assert name in edge_feats
                part_ids = F.floor_div(edge_feats[name], num_trainers_per_machine)
                assert np.all(F.asnumpy(part_ids) == i)
277
278

        # Check the metadata
Da Zheng's avatar
Da Zheng committed
279
280
281
282
283
284
285
286
287
288
        assert gpb._num_nodes() == g.number_of_nodes()
        assert gpb._num_edges() == g.number_of_edges()

        assert gpb.num_partitions() == num_parts
        gpb_meta = gpb.metadata()
        assert len(gpb_meta) == num_parts
        assert len(gpb.partid2nids(i)) == gpb_meta[i]['num_nodes']
        assert len(gpb.partid2eids(i)) == gpb_meta[i]['num_edges']
        part_sizes.append((gpb_meta[i]['num_nodes'], gpb_meta[i]['num_edges']))

289
290
        nid = F.boolean_mask(part_g.ndata[dgl.NID], part_g.ndata['inner_node'])
        local_nid = gpb.nid2localnid(nid, i)
291
        assert F.dtype(local_nid) in (F.int64, F.int32)
Da Zheng's avatar
Da Zheng committed
292
        assert np.all(F.asnumpy(local_nid) == np.arange(0, len(local_nid)))
293
294
        eid = F.boolean_mask(part_g.edata[dgl.EID], part_g.edata['inner_edge'])
        local_eid = gpb.eid2localeid(eid, i)
295
        assert F.dtype(local_eid) in (F.int64, F.int32)
Da Zheng's avatar
Da Zheng committed
296
        assert np.all(F.asnumpy(local_eid) == np.arange(0, len(local_eid)))
297
298

        # Check the node map.
299
300
301
        local_nodes = F.boolean_mask(part_g.ndata[dgl.NID], part_g.ndata['inner_node'])
        llocal_nodes = F.nonzero_1d(part_g.ndata['inner_node'])
        local_nodes1 = gpb.partid2nids(i)
302
        assert F.dtype(local_nodes1) in (F.int32, F.int64)
303
        assert np.all(np.sort(F.asnumpy(local_nodes)) == np.sort(F.asnumpy(local_nodes1)))
304
        assert np.all(F.asnumpy(llocal_nodes) == np.arange(len(llocal_nodes)))
305
306

        # Check the edge map.
307
        local_edges = F.boolean_mask(part_g.edata[dgl.EID], part_g.edata['inner_edge'])
308
        llocal_edges = F.nonzero_1d(part_g.edata['inner_edge'])
309
        local_edges1 = gpb.partid2eids(i)
310
        assert F.dtype(local_edges1) in (F.int32, F.int64)
311
        assert np.all(np.sort(F.asnumpy(local_edges)) == np.sort(F.asnumpy(local_edges1)))
312
        assert np.all(F.asnumpy(llocal_edges) == np.arange(len(llocal_edges)))
313

314
315
316
317
318
319
320
321
322
323
324
325
        # Verify the mapping between the reshuffled IDs and the original IDs.
        part_src_ids, part_dst_ids = part_g.edges()
        part_src_ids = F.gather_row(part_g.ndata[dgl.NID], part_src_ids)
        part_dst_ids = F.gather_row(part_g.ndata[dgl.NID], part_dst_ids)
        part_eids = part_g.edata[dgl.EID]
        orig_src_ids = F.gather_row(orig_nids, part_src_ids)
        orig_dst_ids = F.gather_row(orig_nids, part_dst_ids)
        orig_eids1 = F.gather_row(orig_eids, part_eids)
        orig_eids2 = g.edge_ids(orig_src_ids, orig_dst_ids)
        assert F.shape(orig_eids1)[0] == F.shape(orig_eids2)[0]
        assert np.all(F.asnumpy(orig_eids1) == F.asnumpy(orig_eids2))

326
        if reshuffle:
327
328
329
330
331
332
            local_orig_nids = orig_nids[part_g.ndata[dgl.NID]]
            local_orig_eids = orig_eids[part_g.edata[dgl.EID]]
            part_g.ndata['feats'] = F.gather_row(g.ndata['feats'], local_orig_nids)
            part_g.edata['feats'] = F.gather_row(g.edata['feats'], local_orig_eids)
            local_nodes = orig_nids[local_nodes]
            local_edges = orig_eids[local_edges]
333
334
335
        else:
            part_g.ndata['feats'] = F.gather_row(g.ndata['feats'], part_g.ndata[dgl.NID])
            part_g.edata['feats'] = F.gather_row(g.edata['feats'], part_g.edata[dgl.NID])
336

337
338
339
340
341
342
        part_g.update_all(fn.copy_src('feats', 'msg'), fn.sum('msg', 'h'))
        part_g.update_all(fn.copy_edge('feats', 'msg'), fn.sum('msg', 'eh'))
        assert F.allclose(F.gather_row(g.ndata['h'], local_nodes),
                          F.gather_row(part_g.ndata['h'], llocal_nodes))
        assert F.allclose(F.gather_row(g.ndata['eh'], local_nodes),
                          F.gather_row(part_g.ndata['eh'], llocal_nodes))
343
344

        for name in ['labels', 'feats']:
345
346
            assert '_N/' + name in node_feats
            assert node_feats['_N/' + name].shape[0] == len(local_nodes)
347
348
349
            true_feats = F.gather_row(g.ndata[name], local_nodes)
            ndata = F.gather_row(node_feats['_N/' + name], local_nid)
            assert np.all(F.asnumpy(true_feats) == F.asnumpy(ndata))
350
        for name in ['feats']:
351
352
            assert '_E/' + name in edge_feats
            assert edge_feats['_E/' + name].shape[0] == len(local_edges)
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
            true_feats = F.gather_row(g.edata[name], local_edges)
            edata = F.gather_row(edge_feats['_E/' + name], local_eid)
            assert np.all(F.asnumpy(true_feats) == F.asnumpy(edata))

        # This only works if node/edge IDs are shuffled.
        if reshuffle:
            shuffled_labels.append(node_feats['_N/labels'])
            shuffled_edata.append(edge_feats['_E/feats'])

    # Verify that we can reconstruct node/edge data for original IDs.
    if reshuffle:
        shuffled_labels = F.asnumpy(F.cat(shuffled_labels, 0))
        shuffled_edata = F.asnumpy(F.cat(shuffled_edata, 0))
        orig_labels = np.zeros(shuffled_labels.shape, dtype=shuffled_labels.dtype)
        orig_edata = np.zeros(shuffled_edata.shape, dtype=shuffled_edata.dtype)
        orig_labels[F.asnumpy(orig_nids)] = shuffled_labels
        orig_edata[F.asnumpy(orig_eids)] = shuffled_edata
        assert np.all(orig_labels == F.asnumpy(g.ndata['labels']))
        assert np.all(orig_edata == F.asnumpy(g.edata['feats']))
372

Da Zheng's avatar
Da Zheng committed
373
374
375
376
377
378
379
380
    if reshuffle:
        node_map = []
        edge_map = []
        for i, (num_nodes, num_edges) in enumerate(part_sizes):
            node_map.append(np.ones(num_nodes) * i)
            edge_map.append(np.ones(num_edges) * i)
        node_map = np.concatenate(node_map)
        edge_map = np.concatenate(edge_map)
381
382
383
384
385
386
        nid2pid = gpb.nid2partid(F.arange(0, len(node_map)))
        assert F.dtype(nid2pid) in (F.int32, F.int64)
        assert np.all(F.asnumpy(nid2pid) == node_map)
        eid2pid = gpb.eid2partid(F.arange(0, len(edge_map)))
        assert F.dtype(eid2pid) in (F.int32, F.int64)
        assert np.all(F.asnumpy(eid2pid) == edge_map)
Da Zheng's avatar
Da Zheng committed
387

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
def check_hetero_partition_single_etype(num_trainers):
    user_ids = np.arange(1000)
    item_ids = np.arange(2000)
    num_edges = 3 * 1000
    src_ids = np.random.choice(user_ids, size=num_edges)
    dst_ids = np.random.choice(item_ids, size=num_edges)
    hg = dgl.heterograph({('user', 'like', 'item'): (src_ids, dst_ids)})

    with tempfile.TemporaryDirectory() as test_dir:
        orig_nids, orig_eids = partition_graph(
            hg, 'test', 2, test_dir, num_trainers_per_machine=num_trainers, return_mapping=True)
        assert len(orig_nids) == len(hg.ntypes)
        assert len(orig_eids) == len(hg.etypes)
        for ntype in hg.ntypes:
            assert len(orig_nids[ntype]) == hg.number_of_nodes(ntype)
        for etype in hg.etypes:
            assert len(orig_eids[etype]) == hg.number_of_edges(etype)

406
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
Da Zheng's avatar
Da Zheng committed
407
def test_partition():
408
    os.environ['DGL_DIST_DEBUG'] = '1'
409
    g = create_random_graph(1000)
410
    check_partition(g, 'metis', False)
411
    check_partition(g, 'metis', True)
412
413
    check_partition(g, 'metis', True, 4, 8)
    check_partition(g, 'metis', True, 1, 8)
414
    check_partition(g, 'random', False)
415
    check_partition(g, 'random', True)
416
    check_partition(g, 'metis', True, 4, 8, load_feats=False)
417
    reset_envs()
418

419
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
420
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support some of operations in DistGraph")
421
def test_hetero_partition():
422
    os.environ['DGL_DIST_DEBUG'] = '1'
423
424
    check_hetero_partition_single_etype(1)
    check_hetero_partition_single_etype(4)
425
426
    hg = create_random_hetero()
    check_hetero_partition(hg, 'metis')
427
428
    check_hetero_partition(hg, 'metis', 1, 8)
    check_hetero_partition(hg, 'metis', 4, 8)
429
    check_hetero_partition(hg, 'random')
430
    check_hetero_partition(hg, 'metis', 4, 8, load_feats=False)
431
    reset_envs()
Da Zheng's avatar
Da Zheng committed
432

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
def test_BasicPartitionBook():
    part_id = 0
    num_parts = 2
    node_map = np.random.choice(num_parts, 1000)
    edge_map = np.random.choice(num_parts, 5000)
    graph = dgl.rand_graph(1000, 5000)
    graph = dgl.node_subgraph(graph, F.arange(0, graph.num_nodes()))
    gpb = BasicPartitionBook(part_id, num_parts, node_map, edge_map, graph)
    c_etype = ('_N', '_E', '_N')
    assert gpb.etypes == ['_E']
    assert gpb.canonical_etypes == [c_etype]

    node_policy = NodePartitionPolicy(gpb, '_N')
    assert node_policy.type_name == '_N'
    edge_policy = EdgePartitionPolicy(gpb, '_E')
    assert edge_policy.type_name == '_E'

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
def test_RangePartitionBook():
    part_id = 0
    num_parts = 2
    # homogeneous
    node_map = {'_N': F.tensor([[0, 1000], [1000, 2000]])}
    edge_map = {'_E': F.tensor([[0, 5000], [5000, 10000]])}
    ntypes = {'_N': 0}
    etypes = {'_E': 0}
    gpb = RangePartitionBook(
        part_id, num_parts, node_map, edge_map, ntypes, etypes)
    assert gpb.etypes == ['_E']
    assert gpb.canonical_etypes == [None]
    assert gpb._to_canonical_etype('_E') == '_E'

    node_policy = NodePartitionPolicy(gpb, '_N')
    assert node_policy.type_name == '_N'
    edge_policy = EdgePartitionPolicy(gpb, '_E')
    assert edge_policy.type_name == '_E'

    # heterogeneous, init via etype
    node_map = {'node1': F.tensor([[0, 1000], [1000, 2000]]), 'node2': F.tensor([
        [0, 1000], [1000, 2000]])}
    edge_map = {'edge1': F.tensor([[0, 5000], [5000, 10000]])}
    ntypes = {'node1': 0, 'node2': 1}
    etypes = {'edge1': 0}
    gpb = RangePartitionBook(
        part_id, num_parts, node_map, edge_map, ntypes, etypes)
    assert gpb.etypes == ['edge1']
    assert gpb.canonical_etypes == [None]
    assert gpb._to_canonical_etype('edge1') == 'edge1'

    node_policy = NodePartitionPolicy(gpb, 'node1')
    assert node_policy.type_name == 'node1'
    edge_policy = EdgePartitionPolicy(gpb, 'edge1')
    assert edge_policy.type_name == 'edge1'

    # heterogeneous, init via canonical etype
    node_map = {'node1': F.tensor([[0, 1000], [1000, 2000]]), 'node2': F.tensor([
        [0, 1000], [1000, 2000]])}
    edge_map = {('node1', 'edge1', 'node2'): F.tensor([[0, 5000], [5000, 10000]])}
    ntypes = {'node1': 0, 'node2': 1}
    etypes = {('node1', 'edge1', 'node2'): 0}
    c_etype = list(etypes.keys())[0]
    gpb = RangePartitionBook(
        part_id, num_parts, node_map, edge_map, ntypes, etypes)
    assert gpb.etypes == ['edge1']
    assert gpb.canonical_etypes == [c_etype]
    assert gpb._to_canonical_etype('edge1') == c_etype
    assert gpb._to_canonical_etype(c_etype) == c_etype
    expect_except = False
    try:
        gpb._to_canonical_etype(('node1', 'edge2', 'node2'))
    except:
        expect_except = True
    assert expect_except
    expect_except = False
    try:
        gpb._to_canonical_etype('edge2')
    except:
        expect_except = True
    assert expect_except

    node_policy = NodePartitionPolicy(gpb, 'node1')
    assert node_policy.type_name == 'node1'
    edge_policy = EdgePartitionPolicy(gpb, c_etype)
    assert edge_policy.type_name == c_etype

    data_name = HeteroDataName(False, 'edge1', 'edge1')
    assert data_name.get_type() == 'edge1'
    data_name = HeteroDataName(False, c_etype, 'edge1')
    assert data_name.get_type() == c_etype
523
524

if __name__ == '__main__':
Da Zheng's avatar
Da Zheng committed
525
    os.makedirs('/tmp/partition', exist_ok=True)
526
    test_partition()
527
    test_hetero_partition()
528
529
    test_BasicPartitionBook()
    test_RangePartitionBook()