test_partition.py 24.7 KB
Newer Older
1
2
import dgl
import sys
3
import os
4
5
import numpy as np
from scipy import sparse as spsp
6
from dgl.distributed import partition_graph, load_partition, load_partition_feats
7
8
from dgl.distributed.graph_partition_book import BasicPartitionBook, RangePartitionBook, \
    NodePartitionPolicy, EdgePartitionPolicy, HeteroDataName
9
from dgl import function as fn
10
11
import backend as F
import unittest
12
import tempfile
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
def _get_inner_node_mask(graph, ntype_id):
    if dgl.NTYPE in graph.ndata:
        dtype = F.dtype(graph.ndata['inner_node'])
        return graph.ndata['inner_node'] * F.astype(graph.ndata[dgl.NTYPE] == ntype_id, dtype) == 1
    else:
        return graph.ndata['inner_node'] == 1

def _get_inner_edge_mask(graph, etype_id):
    if dgl.ETYPE in graph.edata:
        dtype = F.dtype(graph.edata['inner_edge'])
        return graph.edata['inner_edge'] * F.astype(graph.edata[dgl.ETYPE] == etype_id, dtype) == 1
    else:
        return graph.edata['inner_edge'] == 1

def _get_part_ranges(id_ranges):
    if isinstance(id_ranges, dict):
        return {key:np.concatenate([np.array(l) for l in id_ranges[key]]).reshape(-1, 2) \
                for key in id_ranges}
    else:
        return np.concatenate([np.array(l) for l in id_range[key]]).reshape(-1, 2)


36
def create_random_graph(n):
Jinjing Zhou's avatar
Jinjing Zhou committed
37
    arr = (spsp.random(n, n, density=0.001, format='coo', random_state=100) != 0).astype(np.int64)
38
    return dgl.from_scipy(arr)
39

40
def create_random_hetero():
41
    num_nodes = {'n1': 1000, 'n2': 1010, 'n3': 1020}
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    etypes = [('n1', 'r1', 'n2'),
              ('n1', 'r2', 'n3'),
              ('n2', 'r3', 'n3')]
    edges = {}
    for etype in etypes:
        src_ntype, _, dst_ntype = etype
        arr = spsp.random(num_nodes[src_ntype], num_nodes[dst_ntype], density=0.001, format='coo',
                          random_state=100)
        edges[etype] = (arr.row, arr.col)
    return dgl.heterograph(edges, num_nodes)

def verify_hetero_graph(g, parts):
    num_nodes = {ntype:0 for ntype in g.ntypes}
    num_edges = {etype:0 for etype in g.etypes}
    for part in parts:
        assert len(g.ntypes) == len(F.unique(part.ndata[dgl.NTYPE]))
        assert len(g.etypes) == len(F.unique(part.edata[dgl.ETYPE]))
        for ntype in g.ntypes:
            ntype_id = g.get_ntype_id(ntype)
            inner_node_mask = _get_inner_node_mask(part, ntype_id)
            num_inner_nodes = F.sum(F.astype(inner_node_mask, F.int64), 0)
            num_nodes[ntype] += num_inner_nodes
        for etype in g.etypes:
            etype_id = g.get_etype_id(etype)
            inner_edge_mask = _get_inner_edge_mask(part, etype_id)
            num_inner_edges = F.sum(F.astype(inner_edge_mask, F.int64), 0)
            num_edges[etype] += num_inner_edges
    # Verify the number of nodes are correct.
    for ntype in g.ntypes:
        print('node {}: {}, {}'.format(ntype, g.number_of_nodes(ntype), num_nodes[ntype]))
        assert g.number_of_nodes(ntype) == num_nodes[ntype]
    # Verify the number of edges are correct.
    for etype in g.etypes:
        print('edge {}: {}, {}'.format(etype, g.number_of_edges(etype), num_edges[etype]))
        assert g.number_of_edges(etype) == num_edges[etype]

    nids = {ntype:[] for ntype in g.ntypes}
    eids = {etype:[] for etype in g.etypes}
    for part in parts:
        src, dst, eid = part.edges(form='all')
        orig_src = F.gather_row(part.ndata['orig_id'], src)
        orig_dst = F.gather_row(part.ndata['orig_id'], dst)
        orig_eid = F.gather_row(part.edata['orig_id'], eid)
        etype_arr = F.gather_row(part.edata[dgl.ETYPE], eid)
        eid_type = F.gather_row(part.edata[dgl.EID], eid)
        for etype in g.etypes:
            etype_id = g.get_etype_id(etype)
            src1 = F.boolean_mask(orig_src, etype_arr == etype_id)
            dst1 = F.boolean_mask(orig_dst, etype_arr == etype_id)
            eid1 = F.boolean_mask(orig_eid, etype_arr == etype_id)
            exist = g.has_edges_between(src1, dst1, etype=etype)
            assert np.all(F.asnumpy(exist))
            eid2 = g.edge_ids(src1, dst1, etype=etype)
            assert np.all(F.asnumpy(eid1 == eid2))
            eids[etype].append(F.boolean_mask(eid_type, etype_arr == etype_id))
            # Make sure edge Ids fall into a range.
            inner_edge_mask = _get_inner_edge_mask(part, etype_id)
            inner_eids = np.sort(F.asnumpy(F.boolean_mask(part.edata[dgl.EID], inner_edge_mask)))
            assert np.all(inner_eids == np.arange(inner_eids[0], inner_eids[-1] + 1))

        for ntype in g.ntypes:
            ntype_id = g.get_ntype_id(ntype)
            # Make sure inner nodes have Ids fall into a range.
            inner_node_mask = _get_inner_node_mask(part, ntype_id)
            inner_nids = F.boolean_mask(part.ndata[dgl.NID], inner_node_mask)
            assert np.all(F.asnumpy(inner_nids == F.arange(F.as_scalar(inner_nids[0]),
                                                           F.as_scalar(inner_nids[-1]) + 1)))
            nids[ntype].append(inner_nids)

    for ntype in nids:
        nids_type = F.cat(nids[ntype], 0)
        uniq_ids = F.unique(nids_type)
        # We should get all nodes.
        assert len(uniq_ids) == g.number_of_nodes(ntype)
    for etype in eids:
        eids_type = F.cat(eids[etype], 0)
        uniq_ids = F.unique(eids_type)
        assert len(uniq_ids) == g.number_of_edges(etype)
    # TODO(zhengda) this doesn't check 'part_id'

122
def verify_graph_feats(g, gpb, part, node_feats, edge_feats):
123
124
    for ntype in g.ntypes:
        ntype_id = g.get_ntype_id(ntype)
125
126
127
128
129
130
131
132
133
134
        inner_node_mask = _get_inner_node_mask(part, ntype_id)
        inner_nids = F.boolean_mask(part.ndata[dgl.NID],inner_node_mask)
        ntype_ids, inner_type_nids = gpb.map_to_per_ntype(inner_nids)
        partid = gpb.nid2partid(inner_type_nids, ntype)
        assert np.all(F.asnumpy(ntype_ids) == ntype_id)
        assert np.all(F.asnumpy(partid) == gpb.partid)

        orig_id = F.boolean_mask(part.ndata['orig_id'], inner_node_mask)
        local_nids = gpb.nid2localnid(inner_type_nids, gpb.partid, ntype)

135
136
137
138
        for name in g.nodes[ntype].data:
            if name in [dgl.NID, 'inner_node']:
                continue
            true_feats = F.gather_row(g.nodes[ntype].data[name], orig_id)
139
            ndata = F.gather_row(node_feats[ntype + '/' + name], local_nids)
140
141
            assert np.all(F.asnumpy(ndata == true_feats))

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    for etype in g.etypes:
        etype_id = g.get_etype_id(etype)
        inner_edge_mask = _get_inner_edge_mask(part, etype_id)
        inner_eids = F.boolean_mask(part.edata[dgl.EID],inner_edge_mask)
        etype_ids, inner_type_eids = gpb.map_to_per_etype(inner_eids)
        partid = gpb.eid2partid(inner_type_eids, etype)
        assert np.all(F.asnumpy(etype_ids) == etype_id)
        assert np.all(F.asnumpy(partid) == gpb.partid)

        orig_id = F.boolean_mask(part.edata['orig_id'], inner_edge_mask)
        local_eids = gpb.eid2localeid(inner_type_eids, gpb.partid, etype)

        for name in g.edges[etype].data:
            if name in [dgl.EID, 'inner_edge']:
                continue
            true_feats = F.gather_row(g.edges[etype].data[name], orig_id)
            edata = F.gather_row(edge_feats[etype + '/' + name], local_eids)
            assert np.all(F.asnumpy(edata == true_feats))

161
def check_hetero_partition(hg, part_method, num_parts=4, num_trainers_per_machine=1, load_feats=True):
162
163
164
    hg.nodes['n1'].data['labels'] = F.arange(0, hg.number_of_nodes('n1'))
    hg.nodes['n1'].data['feats'] = F.tensor(np.random.randn(hg.number_of_nodes('n1'), 10), F.float32)
    hg.edges['r1'].data['feats'] = F.tensor(np.random.randn(hg.number_of_edges('r1'), 10), F.float32)
165
    hg.edges['r1'].data['labels'] = F.arange(0, hg.number_of_edges('r1'))
166
167
    num_hops = 1

168
    orig_nids, orig_eids = partition_graph(hg, 'test', num_parts, '/tmp/partition', num_hops=num_hops,
169
170
                                           part_method=part_method, reshuffle=True, return_mapping=True,
                                           num_trainers_per_machine=num_trainers_per_machine)
171
172
173
174
175
176
    assert len(orig_nids) == len(hg.ntypes)
    assert len(orig_eids) == len(hg.etypes)
    for ntype in hg.ntypes:
        assert len(orig_nids[ntype]) == hg.number_of_nodes(ntype)
    for etype in hg.etypes:
        assert len(orig_eids[etype]) == hg.number_of_edges(etype)
177
    parts = []
178
179
    shuffled_labels = []
    shuffled_elabels = []
180
    for i in range(num_parts):
181
182
183
184
185
186
        part_g, node_feats, edge_feats, gpb, _, ntypes, etypes = load_partition(
            '/tmp/partition/test.json', i, load_feats=load_feats)
        if not load_feats:
            assert not node_feats
            assert not edge_feats
            node_feats, edge_feats = load_partition_feats('/tmp/partition/test.json', i)
187
188
189
190
191
192
193
194
195
196
197
198
        if num_trainers_per_machine > 1:
            for ntype in hg.ntypes:
                name = ntype + '/trainer_id'
                assert name in node_feats
                part_ids = F.floor_div(node_feats[name], num_trainers_per_machine)
                assert np.all(F.asnumpy(part_ids) == i)

            for etype in hg.etypes:
                name = etype + '/trainer_id'
                assert name in edge_feats
                part_ids = F.floor_div(edge_feats[name], num_trainers_per_machine)
                assert np.all(F.asnumpy(part_ids) == i)
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        # Verify the mapping between the reshuffled IDs and the original IDs.
        # These are partition-local IDs.
        part_src_ids, part_dst_ids = part_g.edges()
        # These are reshuffled global homogeneous IDs.
        part_src_ids = F.gather_row(part_g.ndata[dgl.NID], part_src_ids)
        part_dst_ids = F.gather_row(part_g.ndata[dgl.NID], part_dst_ids)
        part_eids = part_g.edata[dgl.EID]
        # These are reshuffled per-type IDs.
        src_ntype_ids, part_src_ids = gpb.map_to_per_ntype(part_src_ids)
        dst_ntype_ids, part_dst_ids = gpb.map_to_per_ntype(part_dst_ids)
        etype_ids, part_eids = gpb.map_to_per_etype(part_eids)
        # These are original per-type IDs.
        for etype_id, etype in enumerate(hg.etypes):
            part_src_ids1 = F.boolean_mask(part_src_ids, etype_ids == etype_id)
            src_ntype_ids1 = F.boolean_mask(src_ntype_ids, etype_ids == etype_id)
            part_dst_ids1 = F.boolean_mask(part_dst_ids, etype_ids == etype_id)
            dst_ntype_ids1 = F.boolean_mask(dst_ntype_ids, etype_ids == etype_id)
            part_eids1 = F.boolean_mask(part_eids, etype_ids == etype_id)
            assert np.all(F.asnumpy(src_ntype_ids1 == src_ntype_ids1[0]))
            assert np.all(F.asnumpy(dst_ntype_ids1 == dst_ntype_ids1[0]))
            src_ntype = hg.ntypes[F.as_scalar(src_ntype_ids1[0])]
            dst_ntype = hg.ntypes[F.as_scalar(dst_ntype_ids1[0])]
            orig_src_ids1 = F.gather_row(orig_nids[src_ntype], part_src_ids1)
            orig_dst_ids1 = F.gather_row(orig_nids[dst_ntype], part_dst_ids1)
            orig_eids1 = F.gather_row(orig_eids[etype], part_eids1)
            orig_eids2 = hg.edge_ids(orig_src_ids1, orig_dst_ids1, etype=etype)
            assert len(orig_eids1) == len(orig_eids2)
            assert np.all(F.asnumpy(orig_eids1) == F.asnumpy(orig_eids2))
227
        parts.append(part_g)
228
229
230
231
        verify_graph_feats(hg, gpb, part_g, node_feats, edge_feats)

        shuffled_labels.append(node_feats['n1/labels'])
        shuffled_elabels.append(edge_feats['r1/labels'])
232
233
    verify_hetero_graph(hg, parts)

234
235
236
237
238
239
240
241
242
    shuffled_labels = F.asnumpy(F.cat(shuffled_labels, 0))
    shuffled_elabels = F.asnumpy(F.cat(shuffled_elabels, 0))
    orig_labels = np.zeros(shuffled_labels.shape, dtype=shuffled_labels.dtype)
    orig_elabels = np.zeros(shuffled_elabels.shape, dtype=shuffled_elabels.dtype)
    orig_labels[F.asnumpy(orig_nids['n1'])] = shuffled_labels
    orig_elabels[F.asnumpy(orig_eids['r1'])] = shuffled_elabels
    assert np.all(orig_labels == F.asnumpy(hg.nodes['n1'].data['labels']))
    assert np.all(orig_elabels == F.asnumpy(hg.edges['r1'].data['labels']))

243
def check_partition(g, part_method, reshuffle, num_parts=4, num_trainers_per_machine=1, load_feats=True):
244
    g.ndata['labels'] = F.arange(0, g.number_of_nodes())
245
246
    g.ndata['feats'] = F.tensor(np.random.randn(g.number_of_nodes(), 10), F.float32)
    g.edata['feats'] = F.tensor(np.random.randn(g.number_of_edges(), 10), F.float32)
247
248
    g.update_all(fn.copy_src('feats', 'msg'), fn.sum('msg', 'h'))
    g.update_all(fn.copy_edge('feats', 'msg'), fn.sum('msg', 'eh'))
249
    num_hops = 2
Da Zheng's avatar
Da Zheng committed
250

251
    orig_nids, orig_eids = partition_graph(g, 'test', num_parts, '/tmp/partition', num_hops=num_hops,
252
253
                                           part_method=part_method, reshuffle=reshuffle, return_mapping=True,
                                           num_trainers_per_machine=num_trainers_per_machine)
Da Zheng's avatar
Da Zheng committed
254
    part_sizes = []
255
256
    shuffled_labels = []
    shuffled_edata = []
257
    for i in range(num_parts):
258
259
260
261
262
263
        part_g, node_feats, edge_feats, gpb, _, ntypes, etypes = load_partition(
            '/tmp/partition/test.json', i, load_feats=load_feats)
        if not load_feats:
            assert not node_feats
            assert not edge_feats
            node_feats, edge_feats = load_partition_feats('/tmp/partition/test.json', i)
264
265
266
267
268
269
270
271
272
273
274
275
        if num_trainers_per_machine > 1:
            for ntype in g.ntypes:
                name = ntype + '/trainer_id'
                assert name in node_feats
                part_ids = F.floor_div(node_feats[name], num_trainers_per_machine)
                assert np.all(F.asnumpy(part_ids) == i)

            for etype in g.etypes:
                name = etype + '/trainer_id'
                assert name in edge_feats
                part_ids = F.floor_div(edge_feats[name], num_trainers_per_machine)
                assert np.all(F.asnumpy(part_ids) == i)
276
277

        # Check the metadata
Da Zheng's avatar
Da Zheng committed
278
279
280
281
282
283
284
285
286
287
        assert gpb._num_nodes() == g.number_of_nodes()
        assert gpb._num_edges() == g.number_of_edges()

        assert gpb.num_partitions() == num_parts
        gpb_meta = gpb.metadata()
        assert len(gpb_meta) == num_parts
        assert len(gpb.partid2nids(i)) == gpb_meta[i]['num_nodes']
        assert len(gpb.partid2eids(i)) == gpb_meta[i]['num_edges']
        part_sizes.append((gpb_meta[i]['num_nodes'], gpb_meta[i]['num_edges']))

288
289
        nid = F.boolean_mask(part_g.ndata[dgl.NID], part_g.ndata['inner_node'])
        local_nid = gpb.nid2localnid(nid, i)
290
        assert F.dtype(local_nid) in (F.int64, F.int32)
Da Zheng's avatar
Da Zheng committed
291
        assert np.all(F.asnumpy(local_nid) == np.arange(0, len(local_nid)))
292
293
        eid = F.boolean_mask(part_g.edata[dgl.EID], part_g.edata['inner_edge'])
        local_eid = gpb.eid2localeid(eid, i)
294
        assert F.dtype(local_eid) in (F.int64, F.int32)
Da Zheng's avatar
Da Zheng committed
295
        assert np.all(F.asnumpy(local_eid) == np.arange(0, len(local_eid)))
296
297

        # Check the node map.
298
299
300
        local_nodes = F.boolean_mask(part_g.ndata[dgl.NID], part_g.ndata['inner_node'])
        llocal_nodes = F.nonzero_1d(part_g.ndata['inner_node'])
        local_nodes1 = gpb.partid2nids(i)
301
        assert F.dtype(local_nodes1) in (F.int32, F.int64)
302
        assert np.all(np.sort(F.asnumpy(local_nodes)) == np.sort(F.asnumpy(local_nodes1)))
303
        assert np.all(F.asnumpy(llocal_nodes) == np.arange(len(llocal_nodes)))
304
305

        # Check the edge map.
306
        local_edges = F.boolean_mask(part_g.edata[dgl.EID], part_g.edata['inner_edge'])
307
        llocal_edges = F.nonzero_1d(part_g.edata['inner_edge'])
308
        local_edges1 = gpb.partid2eids(i)
309
        assert F.dtype(local_edges1) in (F.int32, F.int64)
310
        assert np.all(np.sort(F.asnumpy(local_edges)) == np.sort(F.asnumpy(local_edges1)))
311
        assert np.all(F.asnumpy(llocal_edges) == np.arange(len(llocal_edges)))
312

313
314
315
316
317
318
319
320
321
322
323
324
        # Verify the mapping between the reshuffled IDs and the original IDs.
        part_src_ids, part_dst_ids = part_g.edges()
        part_src_ids = F.gather_row(part_g.ndata[dgl.NID], part_src_ids)
        part_dst_ids = F.gather_row(part_g.ndata[dgl.NID], part_dst_ids)
        part_eids = part_g.edata[dgl.EID]
        orig_src_ids = F.gather_row(orig_nids, part_src_ids)
        orig_dst_ids = F.gather_row(orig_nids, part_dst_ids)
        orig_eids1 = F.gather_row(orig_eids, part_eids)
        orig_eids2 = g.edge_ids(orig_src_ids, orig_dst_ids)
        assert F.shape(orig_eids1)[0] == F.shape(orig_eids2)[0]
        assert np.all(F.asnumpy(orig_eids1) == F.asnumpy(orig_eids2))

325
326
327
328
329
330
331
332
333
        if reshuffle:
            part_g.ndata['feats'] = F.gather_row(g.ndata['feats'], part_g.ndata['orig_id'])
            part_g.edata['feats'] = F.gather_row(g.edata['feats'], part_g.edata['orig_id'])
            # when we read node data from the original global graph, we should use orig_id.
            local_nodes = F.boolean_mask(part_g.ndata['orig_id'], part_g.ndata['inner_node'])
            local_edges = F.boolean_mask(part_g.edata['orig_id'], part_g.edata['inner_edge'])
        else:
            part_g.ndata['feats'] = F.gather_row(g.ndata['feats'], part_g.ndata[dgl.NID])
            part_g.edata['feats'] = F.gather_row(g.edata['feats'], part_g.edata[dgl.NID])
334

335
336
337
338
339
340
        part_g.update_all(fn.copy_src('feats', 'msg'), fn.sum('msg', 'h'))
        part_g.update_all(fn.copy_edge('feats', 'msg'), fn.sum('msg', 'eh'))
        assert F.allclose(F.gather_row(g.ndata['h'], local_nodes),
                          F.gather_row(part_g.ndata['h'], llocal_nodes))
        assert F.allclose(F.gather_row(g.ndata['eh'], local_nodes),
                          F.gather_row(part_g.ndata['eh'], llocal_nodes))
341
342

        for name in ['labels', 'feats']:
343
344
            assert '_N/' + name in node_feats
            assert node_feats['_N/' + name].shape[0] == len(local_nodes)
345
346
347
            true_feats = F.gather_row(g.ndata[name], local_nodes)
            ndata = F.gather_row(node_feats['_N/' + name], local_nid)
            assert np.all(F.asnumpy(true_feats) == F.asnumpy(ndata))
348
        for name in ['feats']:
349
350
            assert '_E/' + name in edge_feats
            assert edge_feats['_E/' + name].shape[0] == len(local_edges)
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
            true_feats = F.gather_row(g.edata[name], local_edges)
            edata = F.gather_row(edge_feats['_E/' + name], local_eid)
            assert np.all(F.asnumpy(true_feats) == F.asnumpy(edata))

        # This only works if node/edge IDs are shuffled.
        if reshuffle:
            shuffled_labels.append(node_feats['_N/labels'])
            shuffled_edata.append(edge_feats['_E/feats'])

    # Verify that we can reconstruct node/edge data for original IDs.
    if reshuffle:
        shuffled_labels = F.asnumpy(F.cat(shuffled_labels, 0))
        shuffled_edata = F.asnumpy(F.cat(shuffled_edata, 0))
        orig_labels = np.zeros(shuffled_labels.shape, dtype=shuffled_labels.dtype)
        orig_edata = np.zeros(shuffled_edata.shape, dtype=shuffled_edata.dtype)
        orig_labels[F.asnumpy(orig_nids)] = shuffled_labels
        orig_edata[F.asnumpy(orig_eids)] = shuffled_edata
        assert np.all(orig_labels == F.asnumpy(g.ndata['labels']))
        assert np.all(orig_edata == F.asnumpy(g.edata['feats']))
370

Da Zheng's avatar
Da Zheng committed
371
372
373
374
375
376
377
378
    if reshuffle:
        node_map = []
        edge_map = []
        for i, (num_nodes, num_edges) in enumerate(part_sizes):
            node_map.append(np.ones(num_nodes) * i)
            edge_map.append(np.ones(num_edges) * i)
        node_map = np.concatenate(node_map)
        edge_map = np.concatenate(edge_map)
379
380
381
382
383
384
        nid2pid = gpb.nid2partid(F.arange(0, len(node_map)))
        assert F.dtype(nid2pid) in (F.int32, F.int64)
        assert np.all(F.asnumpy(nid2pid) == node_map)
        eid2pid = gpb.eid2partid(F.arange(0, len(edge_map)))
        assert F.dtype(eid2pid) in (F.int32, F.int64)
        assert np.all(F.asnumpy(eid2pid) == edge_map)
Da Zheng's avatar
Da Zheng committed
385

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
def check_hetero_partition_single_etype(num_trainers):
    user_ids = np.arange(1000)
    item_ids = np.arange(2000)
    num_edges = 3 * 1000
    src_ids = np.random.choice(user_ids, size=num_edges)
    dst_ids = np.random.choice(item_ids, size=num_edges)
    hg = dgl.heterograph({('user', 'like', 'item'): (src_ids, dst_ids)})

    with tempfile.TemporaryDirectory() as test_dir:
        orig_nids, orig_eids = partition_graph(
            hg, 'test', 2, test_dir, num_trainers_per_machine=num_trainers, return_mapping=True)
        assert len(orig_nids) == len(hg.ntypes)
        assert len(orig_eids) == len(hg.etypes)
        for ntype in hg.ntypes:
            assert len(orig_nids[ntype]) == hg.number_of_nodes(ntype)
        for etype in hg.etypes:
            assert len(orig_eids[etype]) == hg.number_of_edges(etype)

404
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
Da Zheng's avatar
Da Zheng committed
405
def test_partition():
406
    g = create_random_graph(1000)
407
    check_partition(g, 'metis', False)
408
    check_partition(g, 'metis', True)
409
410
    check_partition(g, 'metis', True, 4, 8)
    check_partition(g, 'metis', True, 1, 8)
411
    check_partition(g, 'random', False)
412
    check_partition(g, 'random', True)
413
    check_partition(g, 'metis', True, 4, 8, load_feats=False)
414

415
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
416
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support some of operations in DistGraph")
417
def test_hetero_partition():
418
419
    check_hetero_partition_single_etype(1)
    check_hetero_partition_single_etype(4)
420
421
    hg = create_random_hetero()
    check_hetero_partition(hg, 'metis')
422
423
    check_hetero_partition(hg, 'metis', 1, 8)
    check_hetero_partition(hg, 'metis', 4, 8)
424
    check_hetero_partition(hg, 'random')
425
    check_hetero_partition(hg, 'metis', 4, 8, load_feats=False)
Da Zheng's avatar
Da Zheng committed
426

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
def test_BasicPartitionBook():
    part_id = 0
    num_parts = 2
    node_map = np.random.choice(num_parts, 1000)
    edge_map = np.random.choice(num_parts, 5000)
    graph = dgl.rand_graph(1000, 5000)
    graph = dgl.node_subgraph(graph, F.arange(0, graph.num_nodes()))
    gpb = BasicPartitionBook(part_id, num_parts, node_map, edge_map, graph)
    c_etype = ('_N', '_E', '_N')
    assert gpb.etypes == ['_E']
    assert gpb.canonical_etypes == [c_etype]

    node_policy = NodePartitionPolicy(gpb, '_N')
    assert node_policy.type_name == '_N'
    edge_policy = EdgePartitionPolicy(gpb, '_E')
    assert edge_policy.type_name == '_E'

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
def test_RangePartitionBook():
    part_id = 0
    num_parts = 2
    # homogeneous
    node_map = {'_N': F.tensor([[0, 1000], [1000, 2000]])}
    edge_map = {'_E': F.tensor([[0, 5000], [5000, 10000]])}
    ntypes = {'_N': 0}
    etypes = {'_E': 0}
    gpb = RangePartitionBook(
        part_id, num_parts, node_map, edge_map, ntypes, etypes)
    assert gpb.etypes == ['_E']
    assert gpb.canonical_etypes == [None]
    assert gpb._to_canonical_etype('_E') == '_E'

    node_policy = NodePartitionPolicy(gpb, '_N')
    assert node_policy.type_name == '_N'
    edge_policy = EdgePartitionPolicy(gpb, '_E')
    assert edge_policy.type_name == '_E'

    # heterogeneous, init via etype
    node_map = {'node1': F.tensor([[0, 1000], [1000, 2000]]), 'node2': F.tensor([
        [0, 1000], [1000, 2000]])}
    edge_map = {'edge1': F.tensor([[0, 5000], [5000, 10000]])}
    ntypes = {'node1': 0, 'node2': 1}
    etypes = {'edge1': 0}
    gpb = RangePartitionBook(
        part_id, num_parts, node_map, edge_map, ntypes, etypes)
    assert gpb.etypes == ['edge1']
    assert gpb.canonical_etypes == [None]
    assert gpb._to_canonical_etype('edge1') == 'edge1'

    node_policy = NodePartitionPolicy(gpb, 'node1')
    assert node_policy.type_name == 'node1'
    edge_policy = EdgePartitionPolicy(gpb, 'edge1')
    assert edge_policy.type_name == 'edge1'

    # heterogeneous, init via canonical etype
    node_map = {'node1': F.tensor([[0, 1000], [1000, 2000]]), 'node2': F.tensor([
        [0, 1000], [1000, 2000]])}
    edge_map = {('node1', 'edge1', 'node2'): F.tensor([[0, 5000], [5000, 10000]])}
    ntypes = {'node1': 0, 'node2': 1}
    etypes = {('node1', 'edge1', 'node2'): 0}
    c_etype = list(etypes.keys())[0]
    gpb = RangePartitionBook(
        part_id, num_parts, node_map, edge_map, ntypes, etypes)
    assert gpb.etypes == ['edge1']
    assert gpb.canonical_etypes == [c_etype]
    assert gpb._to_canonical_etype('edge1') == c_etype
    assert gpb._to_canonical_etype(c_etype) == c_etype
    expect_except = False
    try:
        gpb._to_canonical_etype(('node1', 'edge2', 'node2'))
    except:
        expect_except = True
    assert expect_except
    expect_except = False
    try:
        gpb._to_canonical_etype('edge2')
    except:
        expect_except = True
    assert expect_except

    node_policy = NodePartitionPolicy(gpb, 'node1')
    assert node_policy.type_name == 'node1'
    edge_policy = EdgePartitionPolicy(gpb, c_etype)
    assert edge_policy.type_name == c_etype

    data_name = HeteroDataName(False, 'edge1', 'edge1')
    assert data_name.get_type() == 'edge1'
    data_name = HeteroDataName(False, c_etype, 'edge1')
    assert data_name.get_type() == c_etype
517
518

if __name__ == '__main__':
Da Zheng's avatar
Da Zheng committed
519
    os.makedirs('/tmp/partition', exist_ok=True)
520
    test_partition()
521
    test_hetero_partition()
522
523
    test_BasicPartitionBook()
    test_RangePartitionBook()