test_partition.py 21.2 KB
Newer Older
1
2
import dgl
import sys
3
import os
4
5
6
import numpy as np
from scipy import sparse as spsp
from numpy.testing import assert_array_equal
7
from dgl.heterograph_index import create_unitgraph_from_coo
8
from dgl.distributed import partition_graph, load_partition, load_partition_feats
9
from dgl import function as fn
10
11
12
import backend as F
import unittest
import pickle
13
import random
14
import tempfile
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
def _get_inner_node_mask(graph, ntype_id):
    if dgl.NTYPE in graph.ndata:
        dtype = F.dtype(graph.ndata['inner_node'])
        return graph.ndata['inner_node'] * F.astype(graph.ndata[dgl.NTYPE] == ntype_id, dtype) == 1
    else:
        return graph.ndata['inner_node'] == 1

def _get_inner_edge_mask(graph, etype_id):
    if dgl.ETYPE in graph.edata:
        dtype = F.dtype(graph.edata['inner_edge'])
        return graph.edata['inner_edge'] * F.astype(graph.edata[dgl.ETYPE] == etype_id, dtype) == 1
    else:
        return graph.edata['inner_edge'] == 1

def _get_part_ranges(id_ranges):
    if isinstance(id_ranges, dict):
        return {key:np.concatenate([np.array(l) for l in id_ranges[key]]).reshape(-1, 2) \
                for key in id_ranges}
    else:
        return np.concatenate([np.array(l) for l in id_range[key]]).reshape(-1, 2)


38
def create_random_graph(n):
Jinjing Zhou's avatar
Jinjing Zhou committed
39
    arr = (spsp.random(n, n, density=0.001, format='coo', random_state=100) != 0).astype(np.int64)
40
    return dgl.from_scipy(arr)
41

42
def create_random_hetero():
43
    num_nodes = {'n1': 1000, 'n2': 1010, 'n3': 1020}
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    etypes = [('n1', 'r1', 'n2'),
              ('n1', 'r2', 'n3'),
              ('n2', 'r3', 'n3')]
    edges = {}
    for etype in etypes:
        src_ntype, _, dst_ntype = etype
        arr = spsp.random(num_nodes[src_ntype], num_nodes[dst_ntype], density=0.001, format='coo',
                          random_state=100)
        edges[etype] = (arr.row, arr.col)
    return dgl.heterograph(edges, num_nodes)

def verify_hetero_graph(g, parts):
    num_nodes = {ntype:0 for ntype in g.ntypes}
    num_edges = {etype:0 for etype in g.etypes}
    for part in parts:
        assert len(g.ntypes) == len(F.unique(part.ndata[dgl.NTYPE]))
        assert len(g.etypes) == len(F.unique(part.edata[dgl.ETYPE]))
        for ntype in g.ntypes:
            ntype_id = g.get_ntype_id(ntype)
            inner_node_mask = _get_inner_node_mask(part, ntype_id)
            num_inner_nodes = F.sum(F.astype(inner_node_mask, F.int64), 0)
            num_nodes[ntype] += num_inner_nodes
        for etype in g.etypes:
            etype_id = g.get_etype_id(etype)
            inner_edge_mask = _get_inner_edge_mask(part, etype_id)
            num_inner_edges = F.sum(F.astype(inner_edge_mask, F.int64), 0)
            num_edges[etype] += num_inner_edges
    # Verify the number of nodes are correct.
    for ntype in g.ntypes:
        print('node {}: {}, {}'.format(ntype, g.number_of_nodes(ntype), num_nodes[ntype]))
        assert g.number_of_nodes(ntype) == num_nodes[ntype]
    # Verify the number of edges are correct.
    for etype in g.etypes:
        print('edge {}: {}, {}'.format(etype, g.number_of_edges(etype), num_edges[etype]))
        assert g.number_of_edges(etype) == num_edges[etype]

    nids = {ntype:[] for ntype in g.ntypes}
    eids = {etype:[] for etype in g.etypes}
    for part in parts:
        src, dst, eid = part.edges(form='all')
        orig_src = F.gather_row(part.ndata['orig_id'], src)
        orig_dst = F.gather_row(part.ndata['orig_id'], dst)
        orig_eid = F.gather_row(part.edata['orig_id'], eid)
        etype_arr = F.gather_row(part.edata[dgl.ETYPE], eid)
        eid_type = F.gather_row(part.edata[dgl.EID], eid)
        for etype in g.etypes:
            etype_id = g.get_etype_id(etype)
            src1 = F.boolean_mask(orig_src, etype_arr == etype_id)
            dst1 = F.boolean_mask(orig_dst, etype_arr == etype_id)
            eid1 = F.boolean_mask(orig_eid, etype_arr == etype_id)
            exist = g.has_edges_between(src1, dst1, etype=etype)
            assert np.all(F.asnumpy(exist))
            eid2 = g.edge_ids(src1, dst1, etype=etype)
            assert np.all(F.asnumpy(eid1 == eid2))
            eids[etype].append(F.boolean_mask(eid_type, etype_arr == etype_id))
            # Make sure edge Ids fall into a range.
            inner_edge_mask = _get_inner_edge_mask(part, etype_id)
            inner_eids = np.sort(F.asnumpy(F.boolean_mask(part.edata[dgl.EID], inner_edge_mask)))
            assert np.all(inner_eids == np.arange(inner_eids[0], inner_eids[-1] + 1))

        for ntype in g.ntypes:
            ntype_id = g.get_ntype_id(ntype)
            # Make sure inner nodes have Ids fall into a range.
            inner_node_mask = _get_inner_node_mask(part, ntype_id)
            inner_nids = F.boolean_mask(part.ndata[dgl.NID], inner_node_mask)
            assert np.all(F.asnumpy(inner_nids == F.arange(F.as_scalar(inner_nids[0]),
                                                           F.as_scalar(inner_nids[-1]) + 1)))
            nids[ntype].append(inner_nids)

    for ntype in nids:
        nids_type = F.cat(nids[ntype], 0)
        uniq_ids = F.unique(nids_type)
        # We should get all nodes.
        assert len(uniq_ids) == g.number_of_nodes(ntype)
    for etype in eids:
        eids_type = F.cat(eids[etype], 0)
        uniq_ids = F.unique(eids_type)
        assert len(uniq_ids) == g.number_of_edges(etype)
    # TODO(zhengda) this doesn't check 'part_id'

124
def verify_graph_feats(g, gpb, part, node_feats, edge_feats):
125
126
    for ntype in g.ntypes:
        ntype_id = g.get_ntype_id(ntype)
127
128
129
130
131
132
133
134
135
136
        inner_node_mask = _get_inner_node_mask(part, ntype_id)
        inner_nids = F.boolean_mask(part.ndata[dgl.NID],inner_node_mask)
        ntype_ids, inner_type_nids = gpb.map_to_per_ntype(inner_nids)
        partid = gpb.nid2partid(inner_type_nids, ntype)
        assert np.all(F.asnumpy(ntype_ids) == ntype_id)
        assert np.all(F.asnumpy(partid) == gpb.partid)

        orig_id = F.boolean_mask(part.ndata['orig_id'], inner_node_mask)
        local_nids = gpb.nid2localnid(inner_type_nids, gpb.partid, ntype)

137
138
139
140
        for name in g.nodes[ntype].data:
            if name in [dgl.NID, 'inner_node']:
                continue
            true_feats = F.gather_row(g.nodes[ntype].data[name], orig_id)
141
            ndata = F.gather_row(node_feats[ntype + '/' + name], local_nids)
142
143
            assert np.all(F.asnumpy(ndata == true_feats))

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    for etype in g.etypes:
        etype_id = g.get_etype_id(etype)
        inner_edge_mask = _get_inner_edge_mask(part, etype_id)
        inner_eids = F.boolean_mask(part.edata[dgl.EID],inner_edge_mask)
        etype_ids, inner_type_eids = gpb.map_to_per_etype(inner_eids)
        partid = gpb.eid2partid(inner_type_eids, etype)
        assert np.all(F.asnumpy(etype_ids) == etype_id)
        assert np.all(F.asnumpy(partid) == gpb.partid)

        orig_id = F.boolean_mask(part.edata['orig_id'], inner_edge_mask)
        local_eids = gpb.eid2localeid(inner_type_eids, gpb.partid, etype)

        for name in g.edges[etype].data:
            if name in [dgl.EID, 'inner_edge']:
                continue
            true_feats = F.gather_row(g.edges[etype].data[name], orig_id)
            edata = F.gather_row(edge_feats[etype + '/' + name], local_eids)
            assert np.all(F.asnumpy(edata == true_feats))

163
def check_hetero_partition(hg, part_method, num_parts=4, num_trainers_per_machine=1, load_feats=True):
164
165
166
    hg.nodes['n1'].data['labels'] = F.arange(0, hg.number_of_nodes('n1'))
    hg.nodes['n1'].data['feats'] = F.tensor(np.random.randn(hg.number_of_nodes('n1'), 10), F.float32)
    hg.edges['r1'].data['feats'] = F.tensor(np.random.randn(hg.number_of_edges('r1'), 10), F.float32)
167
    hg.edges['r1'].data['labels'] = F.arange(0, hg.number_of_edges('r1'))
168
169
    num_hops = 1

170
    orig_nids, orig_eids = partition_graph(hg, 'test', num_parts, '/tmp/partition', num_hops=num_hops,
171
172
                                           part_method=part_method, reshuffle=True, return_mapping=True,
                                           num_trainers_per_machine=num_trainers_per_machine)
173
174
175
176
177
178
    assert len(orig_nids) == len(hg.ntypes)
    assert len(orig_eids) == len(hg.etypes)
    for ntype in hg.ntypes:
        assert len(orig_nids[ntype]) == hg.number_of_nodes(ntype)
    for etype in hg.etypes:
        assert len(orig_eids[etype]) == hg.number_of_edges(etype)
179
    parts = []
180
181
    shuffled_labels = []
    shuffled_elabels = []
182
    for i in range(num_parts):
183
184
185
186
187
188
        part_g, node_feats, edge_feats, gpb, _, ntypes, etypes = load_partition(
            '/tmp/partition/test.json', i, load_feats=load_feats)
        if not load_feats:
            assert not node_feats
            assert not edge_feats
            node_feats, edge_feats = load_partition_feats('/tmp/partition/test.json', i)
189
190
191
192
193
194
195
196
197
198
199
200
        if num_trainers_per_machine > 1:
            for ntype in hg.ntypes:
                name = ntype + '/trainer_id'
                assert name in node_feats
                part_ids = F.floor_div(node_feats[name], num_trainers_per_machine)
                assert np.all(F.asnumpy(part_ids) == i)

            for etype in hg.etypes:
                name = etype + '/trainer_id'
                assert name in edge_feats
                part_ids = F.floor_div(edge_feats[name], num_trainers_per_machine)
                assert np.all(F.asnumpy(part_ids) == i)
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
        # Verify the mapping between the reshuffled IDs and the original IDs.
        # These are partition-local IDs.
        part_src_ids, part_dst_ids = part_g.edges()
        # These are reshuffled global homogeneous IDs.
        part_src_ids = F.gather_row(part_g.ndata[dgl.NID], part_src_ids)
        part_dst_ids = F.gather_row(part_g.ndata[dgl.NID], part_dst_ids)
        part_eids = part_g.edata[dgl.EID]
        # These are reshuffled per-type IDs.
        src_ntype_ids, part_src_ids = gpb.map_to_per_ntype(part_src_ids)
        dst_ntype_ids, part_dst_ids = gpb.map_to_per_ntype(part_dst_ids)
        etype_ids, part_eids = gpb.map_to_per_etype(part_eids)
        # These are original per-type IDs.
        for etype_id, etype in enumerate(hg.etypes):
            part_src_ids1 = F.boolean_mask(part_src_ids, etype_ids == etype_id)
            src_ntype_ids1 = F.boolean_mask(src_ntype_ids, etype_ids == etype_id)
            part_dst_ids1 = F.boolean_mask(part_dst_ids, etype_ids == etype_id)
            dst_ntype_ids1 = F.boolean_mask(dst_ntype_ids, etype_ids == etype_id)
            part_eids1 = F.boolean_mask(part_eids, etype_ids == etype_id)
            assert np.all(F.asnumpy(src_ntype_ids1 == src_ntype_ids1[0]))
            assert np.all(F.asnumpy(dst_ntype_ids1 == dst_ntype_ids1[0]))
            src_ntype = hg.ntypes[F.as_scalar(src_ntype_ids1[0])]
            dst_ntype = hg.ntypes[F.as_scalar(dst_ntype_ids1[0])]
            orig_src_ids1 = F.gather_row(orig_nids[src_ntype], part_src_ids1)
            orig_dst_ids1 = F.gather_row(orig_nids[dst_ntype], part_dst_ids1)
            orig_eids1 = F.gather_row(orig_eids[etype], part_eids1)
            orig_eids2 = hg.edge_ids(orig_src_ids1, orig_dst_ids1, etype=etype)
            assert len(orig_eids1) == len(orig_eids2)
            assert np.all(F.asnumpy(orig_eids1) == F.asnumpy(orig_eids2))
229
        parts.append(part_g)
230
231
232
233
        verify_graph_feats(hg, gpb, part_g, node_feats, edge_feats)

        shuffled_labels.append(node_feats['n1/labels'])
        shuffled_elabels.append(edge_feats['r1/labels'])
234
235
    verify_hetero_graph(hg, parts)

236
237
238
239
240
241
242
243
244
    shuffled_labels = F.asnumpy(F.cat(shuffled_labels, 0))
    shuffled_elabels = F.asnumpy(F.cat(shuffled_elabels, 0))
    orig_labels = np.zeros(shuffled_labels.shape, dtype=shuffled_labels.dtype)
    orig_elabels = np.zeros(shuffled_elabels.shape, dtype=shuffled_elabels.dtype)
    orig_labels[F.asnumpy(orig_nids['n1'])] = shuffled_labels
    orig_elabels[F.asnumpy(orig_eids['r1'])] = shuffled_elabels
    assert np.all(orig_labels == F.asnumpy(hg.nodes['n1'].data['labels']))
    assert np.all(orig_elabels == F.asnumpy(hg.edges['r1'].data['labels']))

245
def check_partition(g, part_method, reshuffle, num_parts=4, num_trainers_per_machine=1, load_feats=True):
246
    g.ndata['labels'] = F.arange(0, g.number_of_nodes())
247
248
    g.ndata['feats'] = F.tensor(np.random.randn(g.number_of_nodes(), 10), F.float32)
    g.edata['feats'] = F.tensor(np.random.randn(g.number_of_edges(), 10), F.float32)
249
250
    g.update_all(fn.copy_src('feats', 'msg'), fn.sum('msg', 'h'))
    g.update_all(fn.copy_edge('feats', 'msg'), fn.sum('msg', 'eh'))
251
    num_hops = 2
Da Zheng's avatar
Da Zheng committed
252

253
    orig_nids, orig_eids = partition_graph(g, 'test', num_parts, '/tmp/partition', num_hops=num_hops,
254
255
                                           part_method=part_method, reshuffle=reshuffle, return_mapping=True,
                                           num_trainers_per_machine=num_trainers_per_machine)
Da Zheng's avatar
Da Zheng committed
256
    part_sizes = []
257
258
    shuffled_labels = []
    shuffled_edata = []
259
    for i in range(num_parts):
260
261
262
263
264
265
        part_g, node_feats, edge_feats, gpb, _, ntypes, etypes = load_partition(
            '/tmp/partition/test.json', i, load_feats=load_feats)
        if not load_feats:
            assert not node_feats
            assert not edge_feats
            node_feats, edge_feats = load_partition_feats('/tmp/partition/test.json', i)
266
267
268
269
270
271
272
273
274
275
276
277
        if num_trainers_per_machine > 1:
            for ntype in g.ntypes:
                name = ntype + '/trainer_id'
                assert name in node_feats
                part_ids = F.floor_div(node_feats[name], num_trainers_per_machine)
                assert np.all(F.asnumpy(part_ids) == i)

            for etype in g.etypes:
                name = etype + '/trainer_id'
                assert name in edge_feats
                part_ids = F.floor_div(edge_feats[name], num_trainers_per_machine)
                assert np.all(F.asnumpy(part_ids) == i)
278
279

        # Check the metadata
Da Zheng's avatar
Da Zheng committed
280
281
282
283
284
285
286
287
288
289
        assert gpb._num_nodes() == g.number_of_nodes()
        assert gpb._num_edges() == g.number_of_edges()

        assert gpb.num_partitions() == num_parts
        gpb_meta = gpb.metadata()
        assert len(gpb_meta) == num_parts
        assert len(gpb.partid2nids(i)) == gpb_meta[i]['num_nodes']
        assert len(gpb.partid2eids(i)) == gpb_meta[i]['num_edges']
        part_sizes.append((gpb_meta[i]['num_nodes'], gpb_meta[i]['num_edges']))

290
291
        nid = F.boolean_mask(part_g.ndata[dgl.NID], part_g.ndata['inner_node'])
        local_nid = gpb.nid2localnid(nid, i)
292
        assert F.dtype(local_nid) in (F.int64, F.int32)
Da Zheng's avatar
Da Zheng committed
293
        assert np.all(F.asnumpy(local_nid) == np.arange(0, len(local_nid)))
294
295
        eid = F.boolean_mask(part_g.edata[dgl.EID], part_g.edata['inner_edge'])
        local_eid = gpb.eid2localeid(eid, i)
296
        assert F.dtype(local_eid) in (F.int64, F.int32)
Da Zheng's avatar
Da Zheng committed
297
        assert np.all(F.asnumpy(local_eid) == np.arange(0, len(local_eid)))
298
299

        # Check the node map.
300
301
302
        local_nodes = F.boolean_mask(part_g.ndata[dgl.NID], part_g.ndata['inner_node'])
        llocal_nodes = F.nonzero_1d(part_g.ndata['inner_node'])
        local_nodes1 = gpb.partid2nids(i)
303
        assert F.dtype(local_nodes1) in (F.int32, F.int64)
304
        assert np.all(np.sort(F.asnumpy(local_nodes)) == np.sort(F.asnumpy(local_nodes1)))
305
        assert np.all(F.asnumpy(llocal_nodes) == np.arange(len(llocal_nodes)))
306
307

        # Check the edge map.
308
        local_edges = F.boolean_mask(part_g.edata[dgl.EID], part_g.edata['inner_edge'])
309
        llocal_edges = F.nonzero_1d(part_g.edata['inner_edge'])
310
        local_edges1 = gpb.partid2eids(i)
311
        assert F.dtype(local_edges1) in (F.int32, F.int64)
312
        assert np.all(np.sort(F.asnumpy(local_edges)) == np.sort(F.asnumpy(local_edges1)))
313
        assert np.all(F.asnumpy(llocal_edges) == np.arange(len(llocal_edges)))
314

315
316
317
318
319
320
321
322
323
324
325
326
        # Verify the mapping between the reshuffled IDs and the original IDs.
        part_src_ids, part_dst_ids = part_g.edges()
        part_src_ids = F.gather_row(part_g.ndata[dgl.NID], part_src_ids)
        part_dst_ids = F.gather_row(part_g.ndata[dgl.NID], part_dst_ids)
        part_eids = part_g.edata[dgl.EID]
        orig_src_ids = F.gather_row(orig_nids, part_src_ids)
        orig_dst_ids = F.gather_row(orig_nids, part_dst_ids)
        orig_eids1 = F.gather_row(orig_eids, part_eids)
        orig_eids2 = g.edge_ids(orig_src_ids, orig_dst_ids)
        assert F.shape(orig_eids1)[0] == F.shape(orig_eids2)[0]
        assert np.all(F.asnumpy(orig_eids1) == F.asnumpy(orig_eids2))

327
328
329
330
331
332
333
334
335
        if reshuffle:
            part_g.ndata['feats'] = F.gather_row(g.ndata['feats'], part_g.ndata['orig_id'])
            part_g.edata['feats'] = F.gather_row(g.edata['feats'], part_g.edata['orig_id'])
            # when we read node data from the original global graph, we should use orig_id.
            local_nodes = F.boolean_mask(part_g.ndata['orig_id'], part_g.ndata['inner_node'])
            local_edges = F.boolean_mask(part_g.edata['orig_id'], part_g.edata['inner_edge'])
        else:
            part_g.ndata['feats'] = F.gather_row(g.ndata['feats'], part_g.ndata[dgl.NID])
            part_g.edata['feats'] = F.gather_row(g.edata['feats'], part_g.edata[dgl.NID])
336

337
338
339
340
341
342
        part_g.update_all(fn.copy_src('feats', 'msg'), fn.sum('msg', 'h'))
        part_g.update_all(fn.copy_edge('feats', 'msg'), fn.sum('msg', 'eh'))
        assert F.allclose(F.gather_row(g.ndata['h'], local_nodes),
                          F.gather_row(part_g.ndata['h'], llocal_nodes))
        assert F.allclose(F.gather_row(g.ndata['eh'], local_nodes),
                          F.gather_row(part_g.ndata['eh'], llocal_nodes))
343
344

        for name in ['labels', 'feats']:
345
346
            assert '_N/' + name in node_feats
            assert node_feats['_N/' + name].shape[0] == len(local_nodes)
347
348
349
            true_feats = F.gather_row(g.ndata[name], local_nodes)
            ndata = F.gather_row(node_feats['_N/' + name], local_nid)
            assert np.all(F.asnumpy(true_feats) == F.asnumpy(ndata))
350
        for name in ['feats']:
351
352
            assert '_E/' + name in edge_feats
            assert edge_feats['_E/' + name].shape[0] == len(local_edges)
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
            true_feats = F.gather_row(g.edata[name], local_edges)
            edata = F.gather_row(edge_feats['_E/' + name], local_eid)
            assert np.all(F.asnumpy(true_feats) == F.asnumpy(edata))

        # This only works if node/edge IDs are shuffled.
        if reshuffle:
            shuffled_labels.append(node_feats['_N/labels'])
            shuffled_edata.append(edge_feats['_E/feats'])

    # Verify that we can reconstruct node/edge data for original IDs.
    if reshuffle:
        shuffled_labels = F.asnumpy(F.cat(shuffled_labels, 0))
        shuffled_edata = F.asnumpy(F.cat(shuffled_edata, 0))
        orig_labels = np.zeros(shuffled_labels.shape, dtype=shuffled_labels.dtype)
        orig_edata = np.zeros(shuffled_edata.shape, dtype=shuffled_edata.dtype)
        orig_labels[F.asnumpy(orig_nids)] = shuffled_labels
        orig_edata[F.asnumpy(orig_eids)] = shuffled_edata
        assert np.all(orig_labels == F.asnumpy(g.ndata['labels']))
        assert np.all(orig_edata == F.asnumpy(g.edata['feats']))
372

Da Zheng's avatar
Da Zheng committed
373
374
375
376
377
378
379
380
    if reshuffle:
        node_map = []
        edge_map = []
        for i, (num_nodes, num_edges) in enumerate(part_sizes):
            node_map.append(np.ones(num_nodes) * i)
            edge_map.append(np.ones(num_edges) * i)
        node_map = np.concatenate(node_map)
        edge_map = np.concatenate(edge_map)
381
382
383
384
385
386
        nid2pid = gpb.nid2partid(F.arange(0, len(node_map)))
        assert F.dtype(nid2pid) in (F.int32, F.int64)
        assert np.all(F.asnumpy(nid2pid) == node_map)
        eid2pid = gpb.eid2partid(F.arange(0, len(edge_map)))
        assert F.dtype(eid2pid) in (F.int32, F.int64)
        assert np.all(F.asnumpy(eid2pid) == edge_map)
Da Zheng's avatar
Da Zheng committed
387

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
def check_hetero_partition_single_etype(num_trainers):
    user_ids = np.arange(1000)
    item_ids = np.arange(2000)
    num_edges = 3 * 1000
    src_ids = np.random.choice(user_ids, size=num_edges)
    dst_ids = np.random.choice(item_ids, size=num_edges)
    hg = dgl.heterograph({('user', 'like', 'item'): (src_ids, dst_ids)})

    with tempfile.TemporaryDirectory() as test_dir:
        orig_nids, orig_eids = partition_graph(
            hg, 'test', 2, test_dir, num_trainers_per_machine=num_trainers, return_mapping=True)
        assert len(orig_nids) == len(hg.ntypes)
        assert len(orig_eids) == len(hg.etypes)
        for ntype in hg.ntypes:
            assert len(orig_nids[ntype]) == hg.number_of_nodes(ntype)
        for etype in hg.etypes:
            assert len(orig_eids[etype]) == hg.number_of_edges(etype)

406
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
Da Zheng's avatar
Da Zheng committed
407
def test_partition():
408
    g = create_random_graph(1000)
409
    check_partition(g, 'metis', False)
410
    check_partition(g, 'metis', True)
411
412
    check_partition(g, 'metis', True, 4, 8)
    check_partition(g, 'metis', True, 1, 8)
413
    check_partition(g, 'random', False)
414
    check_partition(g, 'random', True)
415
    check_partition(g, 'metis', True, 4, 8, load_feats=False)
416

417
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
418
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support some of operations in DistGraph")
419
def test_hetero_partition():
420
421
    check_hetero_partition_single_etype(1)
    check_hetero_partition_single_etype(4)
422
423
    hg = create_random_hetero()
    check_hetero_partition(hg, 'metis')
424
425
    check_hetero_partition(hg, 'metis', 1, 8)
    check_hetero_partition(hg, 'metis', 4, 8)
426
    check_hetero_partition(hg, 'random')
427
    check_hetero_partition(hg, 'metis', 4, 8, load_feats=False)
Da Zheng's avatar
Da Zheng committed
428

429
430

if __name__ == '__main__':
Da Zheng's avatar
Da Zheng committed
431
    os.makedirs('/tmp/partition', exist_ok=True)
432
    test_partition()
433
    test_hetero_partition()