test_partition.py 20.6 KB
Newer Older
1
2
import dgl
import sys
3
import os
4
5
6
import numpy as np
from scipy import sparse as spsp
from numpy.testing import assert_array_equal
7
from dgl.heterograph_index import create_unitgraph_from_coo
8
from dgl.distributed import partition_graph, load_partition
9
from dgl import function as fn
10
11
12
import backend as F
import unittest
import pickle
13
import random
14
import tempfile
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
def _get_inner_node_mask(graph, ntype_id):
    if dgl.NTYPE in graph.ndata:
        dtype = F.dtype(graph.ndata['inner_node'])
        return graph.ndata['inner_node'] * F.astype(graph.ndata[dgl.NTYPE] == ntype_id, dtype) == 1
    else:
        return graph.ndata['inner_node'] == 1

def _get_inner_edge_mask(graph, etype_id):
    if dgl.ETYPE in graph.edata:
        dtype = F.dtype(graph.edata['inner_edge'])
        return graph.edata['inner_edge'] * F.astype(graph.edata[dgl.ETYPE] == etype_id, dtype) == 1
    else:
        return graph.edata['inner_edge'] == 1

def _get_part_ranges(id_ranges):
    if isinstance(id_ranges, dict):
        return {key:np.concatenate([np.array(l) for l in id_ranges[key]]).reshape(-1, 2) \
                for key in id_ranges}
    else:
        return np.concatenate([np.array(l) for l in id_range[key]]).reshape(-1, 2)


38
def create_random_graph(n):
Jinjing Zhou's avatar
Jinjing Zhou committed
39
    arr = (spsp.random(n, n, density=0.001, format='coo', random_state=100) != 0).astype(np.int64)
40
    return dgl.from_scipy(arr)
41

42
def create_random_hetero():
43
    num_nodes = {'n1': 1000, 'n2': 1010, 'n3': 1020}
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    etypes = [('n1', 'r1', 'n2'),
              ('n1', 'r2', 'n3'),
              ('n2', 'r3', 'n3')]
    edges = {}
    for etype in etypes:
        src_ntype, _, dst_ntype = etype
        arr = spsp.random(num_nodes[src_ntype], num_nodes[dst_ntype], density=0.001, format='coo',
                          random_state=100)
        edges[etype] = (arr.row, arr.col)
    return dgl.heterograph(edges, num_nodes)

def verify_hetero_graph(g, parts):
    num_nodes = {ntype:0 for ntype in g.ntypes}
    num_edges = {etype:0 for etype in g.etypes}
    for part in parts:
        assert len(g.ntypes) == len(F.unique(part.ndata[dgl.NTYPE]))
        assert len(g.etypes) == len(F.unique(part.edata[dgl.ETYPE]))
        for ntype in g.ntypes:
            ntype_id = g.get_ntype_id(ntype)
            inner_node_mask = _get_inner_node_mask(part, ntype_id)
            num_inner_nodes = F.sum(F.astype(inner_node_mask, F.int64), 0)
            num_nodes[ntype] += num_inner_nodes
        for etype in g.etypes:
            etype_id = g.get_etype_id(etype)
            inner_edge_mask = _get_inner_edge_mask(part, etype_id)
            num_inner_edges = F.sum(F.astype(inner_edge_mask, F.int64), 0)
            num_edges[etype] += num_inner_edges
    # Verify the number of nodes are correct.
    for ntype in g.ntypes:
        print('node {}: {}, {}'.format(ntype, g.number_of_nodes(ntype), num_nodes[ntype]))
        assert g.number_of_nodes(ntype) == num_nodes[ntype]
    # Verify the number of edges are correct.
    for etype in g.etypes:
        print('edge {}: {}, {}'.format(etype, g.number_of_edges(etype), num_edges[etype]))
        assert g.number_of_edges(etype) == num_edges[etype]

    nids = {ntype:[] for ntype in g.ntypes}
    eids = {etype:[] for etype in g.etypes}
    for part in parts:
        src, dst, eid = part.edges(form='all')
        orig_src = F.gather_row(part.ndata['orig_id'], src)
        orig_dst = F.gather_row(part.ndata['orig_id'], dst)
        orig_eid = F.gather_row(part.edata['orig_id'], eid)
        etype_arr = F.gather_row(part.edata[dgl.ETYPE], eid)
        eid_type = F.gather_row(part.edata[dgl.EID], eid)
        for etype in g.etypes:
            etype_id = g.get_etype_id(etype)
            src1 = F.boolean_mask(orig_src, etype_arr == etype_id)
            dst1 = F.boolean_mask(orig_dst, etype_arr == etype_id)
            eid1 = F.boolean_mask(orig_eid, etype_arr == etype_id)
            exist = g.has_edges_between(src1, dst1, etype=etype)
            assert np.all(F.asnumpy(exist))
            eid2 = g.edge_ids(src1, dst1, etype=etype)
            assert np.all(F.asnumpy(eid1 == eid2))
            eids[etype].append(F.boolean_mask(eid_type, etype_arr == etype_id))
            # Make sure edge Ids fall into a range.
            inner_edge_mask = _get_inner_edge_mask(part, etype_id)
            inner_eids = np.sort(F.asnumpy(F.boolean_mask(part.edata[dgl.EID], inner_edge_mask)))
            assert np.all(inner_eids == np.arange(inner_eids[0], inner_eids[-1] + 1))

        for ntype in g.ntypes:
            ntype_id = g.get_ntype_id(ntype)
            # Make sure inner nodes have Ids fall into a range.
            inner_node_mask = _get_inner_node_mask(part, ntype_id)
            inner_nids = F.boolean_mask(part.ndata[dgl.NID], inner_node_mask)
            assert np.all(F.asnumpy(inner_nids == F.arange(F.as_scalar(inner_nids[0]),
                                                           F.as_scalar(inner_nids[-1]) + 1)))
            nids[ntype].append(inner_nids)

    for ntype in nids:
        nids_type = F.cat(nids[ntype], 0)
        uniq_ids = F.unique(nids_type)
        # We should get all nodes.
        assert len(uniq_ids) == g.number_of_nodes(ntype)
    for etype in eids:
        eids_type = F.cat(eids[etype], 0)
        uniq_ids = F.unique(eids_type)
        assert len(uniq_ids) == g.number_of_edges(etype)
    # TODO(zhengda) this doesn't check 'part_id'

124
def verify_graph_feats(g, gpb, part, node_feats, edge_feats):
125
126
    for ntype in g.ntypes:
        ntype_id = g.get_ntype_id(ntype)
127
128
129
130
131
132
133
134
135
136
        inner_node_mask = _get_inner_node_mask(part, ntype_id)
        inner_nids = F.boolean_mask(part.ndata[dgl.NID],inner_node_mask)
        ntype_ids, inner_type_nids = gpb.map_to_per_ntype(inner_nids)
        partid = gpb.nid2partid(inner_type_nids, ntype)
        assert np.all(F.asnumpy(ntype_ids) == ntype_id)
        assert np.all(F.asnumpy(partid) == gpb.partid)

        orig_id = F.boolean_mask(part.ndata['orig_id'], inner_node_mask)
        local_nids = gpb.nid2localnid(inner_type_nids, gpb.partid, ntype)

137
138
139
140
        for name in g.nodes[ntype].data:
            if name in [dgl.NID, 'inner_node']:
                continue
            true_feats = F.gather_row(g.nodes[ntype].data[name], orig_id)
141
            ndata = F.gather_row(node_feats[ntype + '/' + name], local_nids)
142
143
            assert np.all(F.asnumpy(ndata == true_feats))

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    for etype in g.etypes:
        etype_id = g.get_etype_id(etype)
        inner_edge_mask = _get_inner_edge_mask(part, etype_id)
        inner_eids = F.boolean_mask(part.edata[dgl.EID],inner_edge_mask)
        etype_ids, inner_type_eids = gpb.map_to_per_etype(inner_eids)
        partid = gpb.eid2partid(inner_type_eids, etype)
        assert np.all(F.asnumpy(etype_ids) == etype_id)
        assert np.all(F.asnumpy(partid) == gpb.partid)

        orig_id = F.boolean_mask(part.edata['orig_id'], inner_edge_mask)
        local_eids = gpb.eid2localeid(inner_type_eids, gpb.partid, etype)

        for name in g.edges[etype].data:
            if name in [dgl.EID, 'inner_edge']:
                continue
            true_feats = F.gather_row(g.edges[etype].data[name], orig_id)
            edata = F.gather_row(edge_feats[etype + '/' + name], local_eids)
            assert np.all(F.asnumpy(edata == true_feats))

163
def check_hetero_partition(hg, part_method, num_parts=4, num_trainers_per_machine=1):
164
165
166
    hg.nodes['n1'].data['labels'] = F.arange(0, hg.number_of_nodes('n1'))
    hg.nodes['n1'].data['feats'] = F.tensor(np.random.randn(hg.number_of_nodes('n1'), 10), F.float32)
    hg.edges['r1'].data['feats'] = F.tensor(np.random.randn(hg.number_of_edges('r1'), 10), F.float32)
167
    hg.edges['r1'].data['labels'] = F.arange(0, hg.number_of_edges('r1'))
168
169
    num_hops = 1

170
    orig_nids, orig_eids = partition_graph(hg, 'test', num_parts, '/tmp/partition', num_hops=num_hops,
171
172
                                           part_method=part_method, reshuffle=True, return_mapping=True,
                                           num_trainers_per_machine=num_trainers_per_machine)
173
174
175
176
177
178
    assert len(orig_nids) == len(hg.ntypes)
    assert len(orig_eids) == len(hg.etypes)
    for ntype in hg.ntypes:
        assert len(orig_nids[ntype]) == hg.number_of_nodes(ntype)
    for etype in hg.etypes:
        assert len(orig_eids[etype]) == hg.number_of_edges(etype)
179
    parts = []
180
181
    shuffled_labels = []
    shuffled_elabels = []
182
183
    for i in range(num_parts):
        part_g, node_feats, edge_feats, gpb, _, ntypes, etypes = load_partition('/tmp/partition/test.json', i)
184
185
186
187
188
189
190
191
192
193
194
195
        if num_trainers_per_machine > 1:
            for ntype in hg.ntypes:
                name = ntype + '/trainer_id'
                assert name in node_feats
                part_ids = F.floor_div(node_feats[name], num_trainers_per_machine)
                assert np.all(F.asnumpy(part_ids) == i)

            for etype in hg.etypes:
                name = etype + '/trainer_id'
                assert name in edge_feats
                part_ids = F.floor_div(edge_feats[name], num_trainers_per_machine)
                assert np.all(F.asnumpy(part_ids) == i)
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
        # Verify the mapping between the reshuffled IDs and the original IDs.
        # These are partition-local IDs.
        part_src_ids, part_dst_ids = part_g.edges()
        # These are reshuffled global homogeneous IDs.
        part_src_ids = F.gather_row(part_g.ndata[dgl.NID], part_src_ids)
        part_dst_ids = F.gather_row(part_g.ndata[dgl.NID], part_dst_ids)
        part_eids = part_g.edata[dgl.EID]
        # These are reshuffled per-type IDs.
        src_ntype_ids, part_src_ids = gpb.map_to_per_ntype(part_src_ids)
        dst_ntype_ids, part_dst_ids = gpb.map_to_per_ntype(part_dst_ids)
        etype_ids, part_eids = gpb.map_to_per_etype(part_eids)
        # These are original per-type IDs.
        for etype_id, etype in enumerate(hg.etypes):
            part_src_ids1 = F.boolean_mask(part_src_ids, etype_ids == etype_id)
            src_ntype_ids1 = F.boolean_mask(src_ntype_ids, etype_ids == etype_id)
            part_dst_ids1 = F.boolean_mask(part_dst_ids, etype_ids == etype_id)
            dst_ntype_ids1 = F.boolean_mask(dst_ntype_ids, etype_ids == etype_id)
            part_eids1 = F.boolean_mask(part_eids, etype_ids == etype_id)
            assert np.all(F.asnumpy(src_ntype_ids1 == src_ntype_ids1[0]))
            assert np.all(F.asnumpy(dst_ntype_ids1 == dst_ntype_ids1[0]))
            src_ntype = hg.ntypes[F.as_scalar(src_ntype_ids1[0])]
            dst_ntype = hg.ntypes[F.as_scalar(dst_ntype_ids1[0])]
            orig_src_ids1 = F.gather_row(orig_nids[src_ntype], part_src_ids1)
            orig_dst_ids1 = F.gather_row(orig_nids[dst_ntype], part_dst_ids1)
            orig_eids1 = F.gather_row(orig_eids[etype], part_eids1)
            orig_eids2 = hg.edge_ids(orig_src_ids1, orig_dst_ids1, etype=etype)
            assert len(orig_eids1) == len(orig_eids2)
            assert np.all(F.asnumpy(orig_eids1) == F.asnumpy(orig_eids2))
224
        parts.append(part_g)
225
226
227
228
        verify_graph_feats(hg, gpb, part_g, node_feats, edge_feats)

        shuffled_labels.append(node_feats['n1/labels'])
        shuffled_elabels.append(edge_feats['r1/labels'])
229
230
    verify_hetero_graph(hg, parts)

231
232
233
234
235
236
237
238
239
    shuffled_labels = F.asnumpy(F.cat(shuffled_labels, 0))
    shuffled_elabels = F.asnumpy(F.cat(shuffled_elabels, 0))
    orig_labels = np.zeros(shuffled_labels.shape, dtype=shuffled_labels.dtype)
    orig_elabels = np.zeros(shuffled_elabels.shape, dtype=shuffled_elabels.dtype)
    orig_labels[F.asnumpy(orig_nids['n1'])] = shuffled_labels
    orig_elabels[F.asnumpy(orig_eids['r1'])] = shuffled_elabels
    assert np.all(orig_labels == F.asnumpy(hg.nodes['n1'].data['labels']))
    assert np.all(orig_elabels == F.asnumpy(hg.edges['r1'].data['labels']))

240
def check_partition(g, part_method, reshuffle, num_parts=4, num_trainers_per_machine=1):
241
    g.ndata['labels'] = F.arange(0, g.number_of_nodes())
242
243
    g.ndata['feats'] = F.tensor(np.random.randn(g.number_of_nodes(), 10), F.float32)
    g.edata['feats'] = F.tensor(np.random.randn(g.number_of_edges(), 10), F.float32)
244
245
    g.update_all(fn.copy_src('feats', 'msg'), fn.sum('msg', 'h'))
    g.update_all(fn.copy_edge('feats', 'msg'), fn.sum('msg', 'eh'))
246
    num_hops = 2
Da Zheng's avatar
Da Zheng committed
247

248
    orig_nids, orig_eids = partition_graph(g, 'test', num_parts, '/tmp/partition', num_hops=num_hops,
249
250
                                           part_method=part_method, reshuffle=reshuffle, return_mapping=True,
                                           num_trainers_per_machine=num_trainers_per_machine)
Da Zheng's avatar
Da Zheng committed
251
    part_sizes = []
252
253
    shuffled_labels = []
    shuffled_edata = []
254
    for i in range(num_parts):
255
        part_g, node_feats, edge_feats, gpb, _, ntypes, etypes = load_partition('/tmp/partition/test.json', i)
256
257
258
259
260
261
262
263
264
265
266
267
        if num_trainers_per_machine > 1:
            for ntype in g.ntypes:
                name = ntype + '/trainer_id'
                assert name in node_feats
                part_ids = F.floor_div(node_feats[name], num_trainers_per_machine)
                assert np.all(F.asnumpy(part_ids) == i)

            for etype in g.etypes:
                name = etype + '/trainer_id'
                assert name in edge_feats
                part_ids = F.floor_div(edge_feats[name], num_trainers_per_machine)
                assert np.all(F.asnumpy(part_ids) == i)
268
269

        # Check the metadata
Da Zheng's avatar
Da Zheng committed
270
271
272
273
274
275
276
277
278
279
        assert gpb._num_nodes() == g.number_of_nodes()
        assert gpb._num_edges() == g.number_of_edges()

        assert gpb.num_partitions() == num_parts
        gpb_meta = gpb.metadata()
        assert len(gpb_meta) == num_parts
        assert len(gpb.partid2nids(i)) == gpb_meta[i]['num_nodes']
        assert len(gpb.partid2eids(i)) == gpb_meta[i]['num_edges']
        part_sizes.append((gpb_meta[i]['num_nodes'], gpb_meta[i]['num_edges']))

280
281
        nid = F.boolean_mask(part_g.ndata[dgl.NID], part_g.ndata['inner_node'])
        local_nid = gpb.nid2localnid(nid, i)
282
        assert F.dtype(local_nid) in (F.int64, F.int32)
Da Zheng's avatar
Da Zheng committed
283
        assert np.all(F.asnumpy(local_nid) == np.arange(0, len(local_nid)))
284
285
        eid = F.boolean_mask(part_g.edata[dgl.EID], part_g.edata['inner_edge'])
        local_eid = gpb.eid2localeid(eid, i)
286
        assert F.dtype(local_eid) in (F.int64, F.int32)
Da Zheng's avatar
Da Zheng committed
287
        assert np.all(F.asnumpy(local_eid) == np.arange(0, len(local_eid)))
288
289

        # Check the node map.
290
291
292
        local_nodes = F.boolean_mask(part_g.ndata[dgl.NID], part_g.ndata['inner_node'])
        llocal_nodes = F.nonzero_1d(part_g.ndata['inner_node'])
        local_nodes1 = gpb.partid2nids(i)
293
        assert F.dtype(local_nodes1) in (F.int32, F.int64)
294
        assert np.all(np.sort(F.asnumpy(local_nodes)) == np.sort(F.asnumpy(local_nodes1)))
295
        assert np.all(F.asnumpy(llocal_nodes) == np.arange(len(llocal_nodes)))
296
297

        # Check the edge map.
298
        local_edges = F.boolean_mask(part_g.edata[dgl.EID], part_g.edata['inner_edge'])
299
        llocal_edges = F.nonzero_1d(part_g.edata['inner_edge'])
300
        local_edges1 = gpb.partid2eids(i)
301
        assert F.dtype(local_edges1) in (F.int32, F.int64)
302
        assert np.all(np.sort(F.asnumpy(local_edges)) == np.sort(F.asnumpy(local_edges1)))
303
        assert np.all(F.asnumpy(llocal_edges) == np.arange(len(llocal_edges)))
304

305
306
307
308
309
310
311
312
313
314
315
316
        # Verify the mapping between the reshuffled IDs and the original IDs.
        part_src_ids, part_dst_ids = part_g.edges()
        part_src_ids = F.gather_row(part_g.ndata[dgl.NID], part_src_ids)
        part_dst_ids = F.gather_row(part_g.ndata[dgl.NID], part_dst_ids)
        part_eids = part_g.edata[dgl.EID]
        orig_src_ids = F.gather_row(orig_nids, part_src_ids)
        orig_dst_ids = F.gather_row(orig_nids, part_dst_ids)
        orig_eids1 = F.gather_row(orig_eids, part_eids)
        orig_eids2 = g.edge_ids(orig_src_ids, orig_dst_ids)
        assert F.shape(orig_eids1)[0] == F.shape(orig_eids2)[0]
        assert np.all(F.asnumpy(orig_eids1) == F.asnumpy(orig_eids2))

317
318
319
320
321
322
323
324
325
        if reshuffle:
            part_g.ndata['feats'] = F.gather_row(g.ndata['feats'], part_g.ndata['orig_id'])
            part_g.edata['feats'] = F.gather_row(g.edata['feats'], part_g.edata['orig_id'])
            # when we read node data from the original global graph, we should use orig_id.
            local_nodes = F.boolean_mask(part_g.ndata['orig_id'], part_g.ndata['inner_node'])
            local_edges = F.boolean_mask(part_g.edata['orig_id'], part_g.edata['inner_edge'])
        else:
            part_g.ndata['feats'] = F.gather_row(g.ndata['feats'], part_g.ndata[dgl.NID])
            part_g.edata['feats'] = F.gather_row(g.edata['feats'], part_g.edata[dgl.NID])
326

327
328
329
330
331
332
        part_g.update_all(fn.copy_src('feats', 'msg'), fn.sum('msg', 'h'))
        part_g.update_all(fn.copy_edge('feats', 'msg'), fn.sum('msg', 'eh'))
        assert F.allclose(F.gather_row(g.ndata['h'], local_nodes),
                          F.gather_row(part_g.ndata['h'], llocal_nodes))
        assert F.allclose(F.gather_row(g.ndata['eh'], local_nodes),
                          F.gather_row(part_g.ndata['eh'], llocal_nodes))
333
334

        for name in ['labels', 'feats']:
335
336
            assert '_N/' + name in node_feats
            assert node_feats['_N/' + name].shape[0] == len(local_nodes)
337
338
339
            true_feats = F.gather_row(g.ndata[name], local_nodes)
            ndata = F.gather_row(node_feats['_N/' + name], local_nid)
            assert np.all(F.asnumpy(true_feats) == F.asnumpy(ndata))
340
        for name in ['feats']:
341
342
            assert '_E/' + name in edge_feats
            assert edge_feats['_E/' + name].shape[0] == len(local_edges)
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
            true_feats = F.gather_row(g.edata[name], local_edges)
            edata = F.gather_row(edge_feats['_E/' + name], local_eid)
            assert np.all(F.asnumpy(true_feats) == F.asnumpy(edata))

        # This only works if node/edge IDs are shuffled.
        if reshuffle:
            shuffled_labels.append(node_feats['_N/labels'])
            shuffled_edata.append(edge_feats['_E/feats'])

    # Verify that we can reconstruct node/edge data for original IDs.
    if reshuffle:
        shuffled_labels = F.asnumpy(F.cat(shuffled_labels, 0))
        shuffled_edata = F.asnumpy(F.cat(shuffled_edata, 0))
        orig_labels = np.zeros(shuffled_labels.shape, dtype=shuffled_labels.dtype)
        orig_edata = np.zeros(shuffled_edata.shape, dtype=shuffled_edata.dtype)
        orig_labels[F.asnumpy(orig_nids)] = shuffled_labels
        orig_edata[F.asnumpy(orig_eids)] = shuffled_edata
        assert np.all(orig_labels == F.asnumpy(g.ndata['labels']))
        assert np.all(orig_edata == F.asnumpy(g.edata['feats']))
362

Da Zheng's avatar
Da Zheng committed
363
364
365
366
367
368
369
370
    if reshuffle:
        node_map = []
        edge_map = []
        for i, (num_nodes, num_edges) in enumerate(part_sizes):
            node_map.append(np.ones(num_nodes) * i)
            edge_map.append(np.ones(num_edges) * i)
        node_map = np.concatenate(node_map)
        edge_map = np.concatenate(edge_map)
371
372
373
374
375
376
        nid2pid = gpb.nid2partid(F.arange(0, len(node_map)))
        assert F.dtype(nid2pid) in (F.int32, F.int64)
        assert np.all(F.asnumpy(nid2pid) == node_map)
        eid2pid = gpb.eid2partid(F.arange(0, len(edge_map)))
        assert F.dtype(eid2pid) in (F.int32, F.int64)
        assert np.all(F.asnumpy(eid2pid) == edge_map)
Da Zheng's avatar
Da Zheng committed
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
def check_hetero_partition_single_etype(num_trainers):
    user_ids = np.arange(1000)
    item_ids = np.arange(2000)
    num_edges = 3 * 1000
    src_ids = np.random.choice(user_ids, size=num_edges)
    dst_ids = np.random.choice(item_ids, size=num_edges)
    hg = dgl.heterograph({('user', 'like', 'item'): (src_ids, dst_ids)})

    with tempfile.TemporaryDirectory() as test_dir:
        orig_nids, orig_eids = partition_graph(
            hg, 'test', 2, test_dir, num_trainers_per_machine=num_trainers, return_mapping=True)
        assert len(orig_nids) == len(hg.ntypes)
        assert len(orig_eids) == len(hg.etypes)
        for ntype in hg.ntypes:
            assert len(orig_nids[ntype]) == hg.number_of_nodes(ntype)
        for etype in hg.etypes:
            assert len(orig_eids[etype]) == hg.number_of_edges(etype)

396
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
Da Zheng's avatar
Da Zheng committed
397
def test_partition():
398
    g = create_random_graph(1000)
399
    check_partition(g, 'metis', False)
400
    check_partition(g, 'metis', True)
401
402
    check_partition(g, 'metis', True, 4, 8)
    check_partition(g, 'metis', True, 1, 8)
403
    check_partition(g, 'random', False)
404
    check_partition(g, 'random', True)
405

406
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
407
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support some of operations in DistGraph")
408
def test_hetero_partition():
409
410
    check_hetero_partition_single_etype(1)
    check_hetero_partition_single_etype(4)
411
412
    hg = create_random_hetero()
    check_hetero_partition(hg, 'metis')
413
414
    check_hetero_partition(hg, 'metis', 1, 8)
    check_hetero_partition(hg, 'metis', 4, 8)
415
    check_hetero_partition(hg, 'random')
Da Zheng's avatar
Da Zheng committed
416

417
418

if __name__ == '__main__':
Da Zheng's avatar
Da Zheng committed
419
    os.makedirs('/tmp/partition', exist_ok=True)
420
    test_partition()
421
    test_hetero_partition()