test_minibatch.py 31.3 KB
Newer Older
1
2
import dgl
import dgl.graphbolt as gb
peizhou001's avatar
peizhou001 committed
3
import pytest
4
5
6
import torch


peizhou001's avatar
peizhou001 committed
7
8
9
10
relation = "A:r:B"
reverse_relation = "B:rr:A"


11
12
13
14
15
def test_minibatch_representation_homo():
    csc_formats = [
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 3, 5, 6]),
            indices=torch.tensor([0, 1, 2, 2, 1, 2]),
16
        ),
17
18
19
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 2, 3]),
            indices=torch.tensor([1, 2, 0]),
20
21
        ),
    ]
22
    original_column_node_ids = [
23
24
25
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11]),
    ]
26
    original_row_node_ids = [
27
28
29
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11, 12]),
    ]
30
    original_edge_ids = [
31
32
33
        torch.tensor([19, 20, 21, 22, 25, 30]),
        torch.tensor([10, 15, 17]),
    ]
34
    node_features = {"x": torch.tensor([5, 0, 2, 1])}
35
    edge_features = [
36
37
        {"x": torch.tensor([9, 0, 1, 1, 7, 4])},
        {"x": torch.tensor([0, 2, 2])},
38
39
40
41
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
42
            gb.SampledSubgraphImpl(
43
                sampled_csc=csc_formats[i],
44
45
46
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
47
48
49
50
51
            )
        )
    negative_srcs = torch.tensor([[8], [1], [6]])
    negative_dsts = torch.tensor([[2], [8], [8]])
    input_nodes = torch.tensor([8, 1, 6, 5, 9, 0, 2, 4])
52
53
54
    compacted_csc_formats = gb.CSCFormatBase(
        indptr=torch.tensor([0, 2, 3]), indices=torch.tensor([3, 4, 5])
    )
55
56
    compacted_negative_srcs = torch.tensor([[0], [1], [2]])
    compacted_negative_dsts = torch.tensor([[6], [0], [0]])
57
58
59
60
61
62
    labels = torch.tensor([0.0, 1.0, 2.0])
    # Test minibatch without data.
    minibatch = gb.MiniBatch()
    expect_result = str(
        """MiniBatch(seed_nodes=None,
          sampled_subgraphs=None,
63
64
          positive_node_pairs=None,
          node_pairs_with_labels=None,
65
66
67
          node_pairs=None,
          node_features=None,
          negative_srcs=None,
68
          negative_node_pairs=None,
69
70
71
72
73
74
75
          negative_dsts=None,
          labels=None,
          input_nodes=None,
          edge_features=None,
          compacted_node_pairs=None,
          compacted_negative_srcs=None,
          compacted_negative_dsts=None,
76
          blocks=None,
77
78
79
80
81
82
       )"""
    )
    result = str(minibatch)
    assert result == expect_result, print(len(expect_result), len(result))
    # Test minibatch with all attributes.
    minibatch = gb.MiniBatch(
83
        node_pairs=csc_formats,
84
85
86
87
88
89
        sampled_subgraphs=subgraphs,
        labels=labels,
        node_features=node_features,
        edge_features=edge_features,
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
90
        compacted_node_pairs=compacted_csc_formats,
91
92
93
94
95
96
        input_nodes=input_nodes,
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
    expect_result = str(
        """MiniBatch(seed_nodes=None,
97
98
99
100
          sampled_subgraphs=[SampledSubgraphImpl(sampled_csc=CSCFormatBase(indptr=tensor([0, 1, 3, 5, 6]),
                                                                         indices=tensor([0, 1, 2, 2, 1, 2]),
                                                           ),
                                               original_row_node_ids=tensor([10, 11, 12, 13]),
101
102
103
                                               original_edge_ids=tensor([19, 20, 21, 22, 25, 30]),
                                               original_column_node_ids=tensor([10, 11, 12, 13]),
                            ),
104
105
106
107
                            SampledSubgraphImpl(sampled_csc=CSCFormatBase(indptr=tensor([0, 2, 3]),
                                                                         indices=tensor([1, 2, 0]),
                                                           ),
                                               original_row_node_ids=tensor([10, 11, 12]),
108
109
110
                                               original_edge_ids=tensor([10, 15, 17]),
                                               original_column_node_ids=tensor([10, 11]),
                            )],
111
112
113
114
115
116
117
          positive_node_pairs=CSCFormatBase(indptr=tensor([0, 2, 3]),
                                            indices=tensor([3, 4, 5]),
                              ),
          node_pairs_with_labels=(CSCFormatBase(indptr=tensor([0, 2, 3]),
                                               indices=tensor([3, 4, 5]),
                                 ),
                                 tensor([0., 1., 2.])),
118
119
120
121
122
123
124
          node_pairs=[CSCFormatBase(indptr=tensor([0, 1, 3, 5, 6]),
                                   indices=tensor([0, 1, 2, 2, 1, 2]),
                     ),
                     CSCFormatBase(indptr=tensor([0, 2, 3]),
                                   indices=tensor([1, 2, 0]),
                     )],
          node_features={'x': tensor([5, 0, 2, 1])},
125
126
127
          negative_srcs=tensor([[8],
                                [1],
                                [6]]),
128
129
130
131
132
133
          negative_node_pairs=(tensor([[0],
                                      [1],
                                      [2]]),
                              tensor([[6],
                                      [0],
                                      [0]])),
134
135
136
137
138
          negative_dsts=tensor([[2],
                                [8],
                                [8]]),
          labels=tensor([0., 1., 2.]),
          input_nodes=tensor([8, 1, 6, 5, 9, 0, 2, 4]),
139
140
141
142
143
          edge_features=[{'x': tensor([9, 0, 1, 1, 7, 4])},
                        {'x': tensor([0, 2, 2])}],
          compacted_node_pairs=CSCFormatBase(indptr=tensor([0, 2, 3]),
                                             indices=tensor([3, 4, 5]),
                               ),
144
145
146
147
148
149
          compacted_negative_srcs=tensor([[0],
                                          [1],
                                          [2]]),
          compacted_negative_dsts=tensor([[6],
                                          [0],
                                          [0]]),
150
151
          blocks=[Block(num_src_nodes=4, num_dst_nodes=4, num_edges=6),
                 Block(num_src_nodes=3, num_dst_nodes=2, num_edges=3)],
152
153
154
155
       )"""
    )
    result = str(minibatch)
    assert result == expect_result, print(expect_result, result)
peizhou001's avatar
peizhou001 committed
156
157


158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
def test_minibatch_representation_hetero():
    csc_formats = [
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2, 3]),
                indices=torch.tensor([0, 1, 1]),
            ),
            reverse_relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 0, 0, 1, 2]),
                indices=torch.tensor([1, 0]),
            ),
        },
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2]), indices=torch.tensor([1, 0])
            )
        },
    ]
    original_column_node_ids = [
        {"B": torch.tensor([10, 11, 12]), "A": torch.tensor([5, 7, 9, 11])},
        {"B": torch.tensor([10, 11])},
    ]
    original_row_node_ids = [
        {
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        {
            "A": torch.tensor([5, 7]),
            "B": torch.tensor([10, 11]),
        },
    ]
    original_edge_ids = [
        {
            relation: torch.tensor([19, 20, 21]),
            reverse_relation: torch.tensor([23, 26]),
        },
        {relation: torch.tensor([10, 12])},
    ]
    node_features = {
        ("A", "x"): torch.tensor([6, 4, 0, 1]),
    }
    edge_features = [
        {(relation, "x"): torch.tensor([4, 2, 4])},
        {(relation, "x"): torch.tensor([0, 6])},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
            gb.SampledSubgraphImpl(
208
                sampled_csc=csc_formats[i],
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    negative_srcs = {"B": torch.tensor([[8], [1], [6]])}
    negative_dsts = {"B": torch.tensor([[2], [8], [8]])}
    compacted_csc_formats = {
        relation: gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 2, 3]), indices=torch.tensor([3, 4, 5])
        ),
        reverse_relation: gb.CSCFormatBase(
            indptr=torch.tensor([0, 0, 0, 1, 2]), indices=torch.tensor([0, 1])
        ),
    }
    compacted_negative_srcs = {relation: torch.tensor([[0], [1], [2]])}
    compacted_negative_dsts = {relation: torch.tensor([[6], [0], [0]])}
226
    # Test minibatch with all attributes.
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    minibatch = gb.MiniBatch(
        seed_nodes={"B": torch.tensor([10, 15])},
        node_pairs=csc_formats,
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
        labels={"B": torch.tensor([2, 5])},
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
        compacted_node_pairs=compacted_csc_formats,
        input_nodes={
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
    expect_result = str(
        """MiniBatch(seed_nodes={'B': tensor([10, 15])},
246
247
248
249
250
251
          sampled_subgraphs=[SampledSubgraphImpl(sampled_csc={'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                                                         indices=tensor([0, 1, 1]),
                                                           ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                                                         indices=tensor([1, 0]),
                                                           )},
                                               original_row_node_ids={'A': tensor([ 5,  7,  9, 11]), 'B': tensor([10, 11, 12])},
252
253
254
                                               original_edge_ids={'A:r:B': tensor([19, 20, 21]), 'B:rr:A': tensor([23, 26])},
                                               original_column_node_ids={'B': tensor([10, 11, 12]), 'A': tensor([ 5,  7,  9, 11])},
                            ),
255
256
257
258
                            SampledSubgraphImpl(sampled_csc={'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2]),
                                                                         indices=tensor([1, 0]),
                                                           )},
                                               original_row_node_ids={'A': tensor([5, 7]), 'B': tensor([10, 11])},
259
260
261
                                               original_edge_ids={'A:r:B': tensor([10, 12])},
                                               original_column_node_ids={'B': tensor([10, 11])},
                            )],
262
263
264
265
266
267
268
269
270
271
272
          positive_node_pairs={'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                            indices=tensor([3, 4, 5]),
                              ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                            indices=tensor([0, 1]),
                              )},
          node_pairs_with_labels=({'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                               indices=tensor([3, 4, 5]),
                                 ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                               indices=tensor([0, 1]),
                                 )},
                                 {'B': tensor([2, 5])}),
273
274
275
276
277
278
279
280
281
282
283
284
          node_pairs=[{'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                   indices=tensor([0, 1, 1]),
                     ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                   indices=tensor([1, 0]),
                     )},
                     {'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2]),
                                   indices=tensor([1, 0]),
                     )}],
          node_features={('A', 'x'): tensor([6, 4, 0, 1])},
          negative_srcs={'B': tensor([[8],
                                [1],
                                [6]])},
285
286
287
288
289
          negative_node_pairs={'A:r:B': (tensor([[0],
                                      [1],
                                      [2]]), tensor([[6],
                                      [0],
                                      [0]]))},
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
          negative_dsts={'B': tensor([[2],
                                [8],
                                [8]])},
          labels={'B': tensor([2, 5])},
          input_nodes={'A': tensor([ 5,  7,  9, 11]), 'B': tensor([10, 11, 12])},
          edge_features=[{('A:r:B', 'x'): tensor([4, 2, 4])},
                        {('A:r:B', 'x'): tensor([0, 6])}],
          compacted_node_pairs={'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                             indices=tensor([3, 4, 5]),
                               ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                             indices=tensor([0, 1]),
                               )},
          compacted_negative_srcs={'A:r:B': tensor([[0],
                                          [1],
                                          [2]])},
          compacted_negative_dsts={'A:r:B': tensor([[6],
                                          [0],
                                          [0]])},
308
309
310
311
312
313
314
315
          blocks=[Block(num_src_nodes={'A': 4, 'B': 3},
                       num_dst_nodes={'A': 4, 'B': 3},
                       num_edges={('A', 'r', 'B'): 3, ('B', 'rr', 'A'): 2},
                       metagraph=[('A', 'B', 'r'), ('B', 'A', 'rr')]),
                 Block(num_src_nodes={'A': 2, 'B': 2},
                       num_dst_nodes={'B': 2},
                       num_edges={('A', 'r', 'B'): 2},
                       metagraph=[('A', 'B', 'r')])],
316
317
318
319
320
321
       )"""
    )
    result = str(minibatch)
    assert result == expect_result, print(result)


322
def test_get_dgl_blocks_homo():
323
324
325
326
327
328
329
330
331
332
    node_pairs = [
        (
            torch.tensor([0, 1, 2, 2, 2, 1]),
            torch.tensor([0, 1, 1, 2, 3, 2]),
        ),
        (
            torch.tensor([0, 1, 2]),
            torch.tensor([1, 0, 0]),
        ),
    ]
333
334
335
336
337
338
339
340
341
342
    csc_formats = [
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 3, 5, 6]),
            indices=torch.tensor([0, 1, 2, 2, 1, 2]),
        ),
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 3]),
            indices=torch.tensor([0, 1, 2]),
        ),
    ]
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
    original_column_node_ids = [
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11]),
    ]
    original_row_node_ids = [
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11, 12]),
    ]
    original_edge_ids = [
        torch.tensor([19, 20, 21, 22, 25, 30]),
        torch.tensor([10, 15, 17]),
    ]
    node_features = {"x": torch.tensor([7, 6, 2, 2])}
    edge_features = [
        {"x": torch.tensor([[8], [1], [6]])},
        {"x": torch.tensor([[2], [8], [8]])},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
363
364
            gb.SampledSubgraphImpl(
                sampled_csc=csc_formats[i],
365
366
367
368
369
370
371
372
373
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    negative_srcs = torch.tensor([[8], [1], [6]])
    negative_dsts = torch.tensor([[2], [8], [8]])
    input_nodes = torch.tensor([8, 1, 6, 5, 9, 0, 2, 4])
    compacted_node_pairs = (torch.tensor([0, 1, 2]), torch.tensor([3, 4, 5]))
374
375
    compacted_negative_srcs = torch.tensor([[0], [1], [2]])
    compacted_negative_dsts = torch.tensor([[6], [0], [0]])
376
    labels = torch.tensor([0.0, 1.0, 2.0])
377
    # Test minibatch with all attributes.
378
379
380
381
382
383
384
385
386
387
388
389
390
    minibatch = gb.MiniBatch(
        node_pairs=node_pairs,
        sampled_subgraphs=subgraphs,
        labels=labels,
        node_features=node_features,
        edge_features=edge_features,
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
        compacted_node_pairs=compacted_node_pairs,
        input_nodes=input_nodes,
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
391
    dgl_blocks = minibatch.blocks
392
    expect_result = str(
393
        """[Block(num_src_nodes=4, num_dst_nodes=4, num_edges=6), Block(num_src_nodes=3, num_dst_nodes=2, num_edges=3)]"""
394
    )
395
    result = str(dgl_blocks)
396
397
398
    assert result == expect_result, print(result)


399
def test_get_dgl_blocks_hetero():
400
401
402
403
404
405
406
    node_pairs = [
        {
            relation: (torch.tensor([0, 1, 1]), torch.tensor([0, 1, 2])),
            reverse_relation: (torch.tensor([1, 0]), torch.tensor([2, 3])),
        },
        {relation: (torch.tensor([0, 1]), torch.tensor([1, 0]))},
    ]
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
    csc_formats = [
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2, 3]),
                indices=torch.tensor([0, 1, 1]),
            ),
            reverse_relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 0, 0, 1, 2]),
                indices=torch.tensor([1, 0]),
            ),
        },
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2]), indices=torch.tensor([1, 0])
            )
        },
    ]
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
    original_column_node_ids = [
        {"B": torch.tensor([10, 11, 12]), "A": torch.tensor([5, 7, 9, 11])},
        {"B": torch.tensor([10, 11])},
    ]
    original_row_node_ids = [
        {
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        {
            "A": torch.tensor([5, 7]),
            "B": torch.tensor([10, 11]),
        },
    ]
    original_edge_ids = [
        {
            relation: torch.tensor([19, 20, 21]),
            reverse_relation: torch.tensor([23, 26]),
        },
        {relation: torch.tensor([10, 12])},
    ]
    node_features = {
        ("A", "x"): torch.tensor([6, 4, 0, 1]),
    }
    edge_features = [
        {(relation, "x"): torch.tensor([4, 2, 4])},
        {(relation, "x"): torch.tensor([0, 6])},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
455
456
            gb.SampledSubgraphImpl(
                sampled_csc=csc_formats[i],
457
458
459
460
461
462
463
464
465
466
467
468
469
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    negative_srcs = {"B": torch.tensor([[8], [1], [6]])}
    negative_dsts = {"B": torch.tensor([[2], [8], [8]])}
    compacted_node_pairs = {
        relation: (torch.tensor([0, 1, 2]), torch.tensor([3, 4, 5])),
        reverse_relation: (torch.tensor([0, 1, 2]), torch.tensor([3, 4, 5])),
    }
    compacted_negative_srcs = {relation: torch.tensor([[0], [1], [2]])}
    compacted_negative_dsts = {relation: torch.tensor([[6], [0], [0]])}
470
    # Test minibatch with all attributes.
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
    minibatch = gb.MiniBatch(
        seed_nodes={"B": torch.tensor([10, 15])},
        node_pairs=node_pairs,
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
        labels={"B": torch.tensor([2, 5])},
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
        compacted_node_pairs=compacted_node_pairs,
        input_nodes={
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
488
    dgl_blocks = minibatch.blocks
489
    expect_result = str(
490
491
492
493
494
495
496
        """[Block(num_src_nodes={'A': 4, 'B': 3},
      num_dst_nodes={'A': 4, 'B': 3},
      num_edges={('A', 'r', 'B'): 3, ('B', 'rr', 'A'): 2},
      metagraph=[('A', 'B', 'r'), ('B', 'A', 'rr')]), Block(num_src_nodes={'A': 2, 'B': 2},
      num_dst_nodes={'B': 2},
      num_edges={('A', 'r', 'B'): 2},
      metagraph=[('A', 'B', 'r')])]"""
497
    )
498
    result = str(dgl_blocks)
499
500
501
    assert result == expect_result, print(result)


502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
@pytest.mark.parametrize(
    "mode", ["neg_graph", "neg_src", "neg_dst", "edge_classification"]
)
def test_minibatch_node_pairs_with_labels(mode):
    # Arrange
    minibatch = create_homo_minibatch()
    minibatch.compacted_node_pairs = (
        torch.tensor([0, 1]),
        torch.tensor([1, 0]),
    )
    if mode == "neg_graph" or mode == "neg_src":
        minibatch.compacted_negative_srcs = torch.tensor([[0, 0], [1, 1]])
    if mode == "neg_graph" or mode == "neg_dst":
        minibatch.compacted_negative_dsts = torch.tensor([[1, 0], [0, 1]])
    if mode == "edge_classification":
        minibatch.labels = torch.tensor([0, 1]).long()
    # Act
    node_pairs, labels = minibatch.node_pairs_with_labels

    # Assert
    if mode == "neg_src":
        expect_node_pairs = (
            torch.tensor([0, 1, 0, 0, 1, 1]),
            torch.tensor([1, 0, 1, 1, 0, 0]),
        )
        expect_labels = torch.tensor([1, 1, 0, 0, 0, 0]).float()
    elif mode != "edge_classification":
        expect_node_pairs = (
            torch.tensor([0, 1, 0, 0, 1, 1]),
            torch.tensor([1, 0, 1, 0, 0, 1]),
        )
        expect_labels = torch.tensor([1, 1, 0, 0, 0, 0]).float()
    else:
        expect_node_pairs = (
            torch.tensor([0, 1]),
            torch.tensor([1, 0]),
        )
        expect_labels = torch.tensor([0, 1]).long()
    assert torch.equal(node_pairs[0], expect_node_pairs[0])
    assert torch.equal(node_pairs[1], expect_node_pairs[1])
    assert torch.equal(labels, expect_labels)


545
def create_homo_minibatch():
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
    csc_formats = [
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 3, 5, 6]),
            indices=torch.tensor([0, 1, 2, 2, 1, 2]),
        ),
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 2, 3]),
            indices=torch.tensor([1, 2, 0]),
        ),
    ]
    original_column_node_ids = [
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11]),
    ]
    original_row_node_ids = [
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11, 12]),
    ]
    original_edge_ids = [
        torch.tensor([19, 20, 21, 22, 25, 30]),
        torch.tensor([10, 15, 17]),
    ]
    node_features = {"x": torch.randint(0, 10, (4,))}
    edge_features = [
        {"x": torch.randint(0, 10, (6,))},
        {"x": torch.randint(0, 10, (3,))},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
            gb.SampledSubgraphImpl(
577
                sampled_csc=csc_formats[i],
578
579
580
581
582
583
584
585
586
587
588
589
590
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    return gb.MiniBatch(
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
        input_nodes=torch.tensor([10, 11, 12, 13]),
    )


591
def create_hetero_minibatch():
592
    sampled_csc = [
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2, 3]),
                indices=torch.tensor([0, 1, 1]),
            ),
            reverse_relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 0, 0, 1, 2]),
                indices=torch.tensor([1, 0]),
            ),
        },
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2]), indices=torch.tensor([1, 0])
            )
        },
    ]
    original_column_node_ids = [
        {"B": torch.tensor([10, 11, 12]), "A": torch.tensor([5, 7, 9, 11])},
        {"B": torch.tensor([10, 11])},
    ]
    original_row_node_ids = [
        {
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        {
            "A": torch.tensor([5, 7]),
            "B": torch.tensor([10, 11]),
        },
    ]
    original_edge_ids = [
        {
            relation: torch.tensor([19, 20, 21]),
            reverse_relation: torch.tensor([23, 26]),
        },
        {relation: torch.tensor([10, 12])},
    ]
    node_features = {
        ("A", "x"): torch.randint(0, 10, (4,)),
    }
    edge_features = [
        {(relation, "x"): torch.randint(0, 10, (3,))},
        {(relation, "x"): torch.randint(0, 10, (2,))},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
            gb.SampledSubgraphImpl(
641
                sampled_csc=sampled_csc[i],
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    return gb.MiniBatch(
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
        input_nodes={
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
    )


658
def check_dgl_blocks_hetero(minibatch, blocks):
659
    etype = gb.etype_str_to_tuple(relation)
660
661
    sampled_csc = [
        subgraph.sampled_csc for subgraph in minibatch.sampled_subgraphs
662
663
664
665
666
667
668
669
670
671
672
673
    ]
    original_edge_ids = [
        subgraph.original_edge_ids for subgraph in minibatch.sampled_subgraphs
    ]
    original_row_node_ids = [
        subgraph.original_row_node_ids
        for subgraph in minibatch.sampled_subgraphs
    ]

    for i, block in enumerate(blocks):
        edges = block.edges(etype=etype)
        dst_ndoes = torch.arange(
674
            0, len(sampled_csc[i][relation].indptr) - 1
675
        ).repeat_interleave(sampled_csc[i][relation].indptr.diff())
676
        assert torch.equal(edges[0], sampled_csc[i][relation].indices)
677
678
679
680
681
682
        assert torch.equal(edges[1], dst_ndoes)
        assert torch.equal(
            block.edges[etype].data[dgl.EID], original_edge_ids[i][relation]
        )
    edges = blocks[0].edges(etype=gb.etype_str_to_tuple(reverse_relation))
    dst_ndoes = torch.arange(
683
        0, len(sampled_csc[0][reverse_relation].indptr) - 1
684
    ).repeat_interleave(sampled_csc[0][reverse_relation].indptr.diff())
685
    assert torch.equal(edges[0], sampled_csc[0][reverse_relation].indices)
686
687
688
689
690
691
692
693
694
    assert torch.equal(edges[1], dst_ndoes)
    assert torch.equal(
        blocks[0].srcdata[dgl.NID]["A"], original_row_node_ids[0]["A"]
    )
    assert torch.equal(
        blocks[0].srcdata[dgl.NID]["B"], original_row_node_ids[0]["B"]
    )


695
def check_dgl_blocks_homo(minibatch, blocks):
696
697
    sampled_csc = [
        subgraph.sampled_csc for subgraph in minibatch.sampled_subgraphs
698
699
700
701
702
703
704
705
706
707
    ]
    original_edge_ids = [
        subgraph.original_edge_ids for subgraph in minibatch.sampled_subgraphs
    ]
    original_row_node_ids = [
        subgraph.original_row_node_ids
        for subgraph in minibatch.sampled_subgraphs
    ]
    for i, block in enumerate(blocks):
        dst_ndoes = torch.arange(
708
            0, len(sampled_csc[i].indptr) - 1
709
        ).repeat_interleave(sampled_csc[i].indptr.diff())
710
        assert torch.equal(block.edges()[0], sampled_csc[i].indices), print(
711
712
713
714
715
716
717
718
719
720
721
            block.edges()
        )
        assert torch.equal(block.edges()[1], dst_ndoes), print(block.edges())
        assert torch.equal(block.edata[dgl.EID], original_edge_ids[i]), print(
            block.edata[dgl.EID]
        )
    assert torch.equal(
        blocks[0].srcdata[dgl.NID], original_row_node_ids[0]
    ), print(blocks[0].srcdata[dgl.NID])


722
def test_dgl_node_classification_without_feature():
723
    # Arrange
724
    minibatch = create_homo_minibatch()
725
726
727
728
    minibatch.node_features = None
    minibatch.labels = None
    minibatch.seed_nodes = torch.tensor([10, 15])
    # Act
729
    dgl_blocks = minibatch.blocks
730
731

    # Assert
732
733
734
    assert len(dgl_blocks) == 2
    assert minibatch.node_features is None
    assert minibatch.labels is None
735
    check_dgl_blocks_homo(minibatch, dgl_blocks)
736
737


738
def test_dgl_node_classification_homo():
739
    # Arrange
740
    minibatch = create_homo_minibatch()
741
742
743
    minibatch.seed_nodes = torch.tensor([10, 15])
    minibatch.labels = torch.tensor([2, 5])
    # Act
744
    dgl_blocks = minibatch.blocks
745
746

    # Assert
747
    assert len(dgl_blocks) == 2
748
    check_dgl_blocks_homo(minibatch, dgl_blocks)
749
750


751
752
def test_dgl_node_classification_hetero():
    minibatch = create_hetero_minibatch()
753
754
    minibatch.labels = {"B": torch.tensor([2, 5])}
    minibatch.seed_nodes = {"B": torch.tensor([10, 15])}
755
756
    # Act
    dgl_blocks = minibatch.blocks
757
758

    # Assert
759
    assert len(dgl_blocks) == 2
760
    check_dgl_blocks_hetero(minibatch, dgl_blocks)
761
762
763


@pytest.mark.parametrize("mode", ["neg_graph", "neg_src", "neg_dst"])
764
def test_dgl_link_predication_homo(mode):
765
    # Arrange
766
    minibatch = create_homo_minibatch()
767
768
769
770
771
772
773
774
775
    minibatch.compacted_node_pairs = (
        torch.tensor([0, 1]),
        torch.tensor([1, 0]),
    )
    if mode == "neg_graph" or mode == "neg_src":
        minibatch.compacted_negative_srcs = torch.tensor([[0, 0], [1, 1]])
    if mode == "neg_graph" or mode == "neg_dst":
        minibatch.compacted_negative_dsts = torch.tensor([[1, 0], [0, 1]])
    # Act
776
    dgl_blocks = minibatch.blocks
777
778

    # Assert
779
    assert len(dgl_blocks) == 2
780
    check_dgl_blocks_homo(minibatch, dgl_blocks)
781
782
    if mode == "neg_graph" or mode == "neg_src":
        assert torch.equal(
783
            minibatch.negative_node_pairs[0],
784
            minibatch.compacted_negative_srcs,
785
786
787
        )
    if mode == "neg_graph" or mode == "neg_dst":
        assert torch.equal(
788
            minibatch.negative_node_pairs[1],
789
            minibatch.compacted_negative_dsts,
790
        )
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
    (
        node_pairs,
        labels,
    ) = minibatch.node_pairs_with_labels
    if mode == "neg_src":
        expect_node_pairs = (
            torch.tensor([0, 1, 0, 0, 1, 1]),
            torch.tensor([1, 0, 1, 1, 0, 0]),
        )
    else:
        expect_node_pairs = (
            torch.tensor([0, 1, 0, 0, 1, 1]),
            torch.tensor([1, 0, 1, 0, 0, 1]),
        )
    expect_labels = torch.tensor([1, 1, 0, 0, 0, 0]).float()
    assert torch.equal(node_pairs[0], expect_node_pairs[0])
    assert torch.equal(node_pairs[1], expect_node_pairs[1])
    assert torch.equal(labels, expect_labels)
809
810
811


@pytest.mark.parametrize("mode", ["neg_graph", "neg_src", "neg_dst"])
812
def test_dgl_link_predication_hetero(mode):
813
    # Arrange
814
    minibatch = create_hetero_minibatch()
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
    minibatch.compacted_node_pairs = {
        relation: (
            torch.tensor([1, 1]),
            torch.tensor([1, 0]),
        ),
        reverse_relation: (
            torch.tensor([0, 1]),
            torch.tensor([1, 0]),
        ),
    }
    if mode == "neg_graph" or mode == "neg_src":
        minibatch.compacted_negative_srcs = {
            relation: torch.tensor([[2, 0], [1, 2]]),
            reverse_relation: torch.tensor([[1, 2], [0, 2]]),
        }
    if mode == "neg_graph" or mode == "neg_dst":
        minibatch.compacted_negative_dsts = {
            relation: torch.tensor([[1, 3], [2, 1]]),
            reverse_relation: torch.tensor([[2, 1], [3, 1]]),
        }
    # Act
836
    dgl_blocks = minibatch.blocks
837
838

    # Assert
839
    assert len(dgl_blocks) == 2
840
    check_dgl_blocks_hetero(minibatch, dgl_blocks)
841
842
843
    if mode == "neg_graph" or mode == "neg_src":
        for etype, src in minibatch.compacted_negative_srcs.items():
            assert torch.equal(
844
                minibatch.negative_node_pairs[etype][0],
845
                src,
846
847
848
849
            )
    if mode == "neg_graph" or mode == "neg_dst":
        for etype, dst in minibatch.compacted_negative_dsts.items():
            assert torch.equal(
850
                minibatch.negative_node_pairs[etype][1],
851
                minibatch.compacted_negative_dsts[etype],
852
            )