test_minibatch.py 27.9 KB
Newer Older
1
2
import dgl
import dgl.graphbolt as gb
peizhou001's avatar
peizhou001 committed
3
import pytest
4
5
6
import torch


peizhou001's avatar
peizhou001 committed
7
8
9
10
11
relation = "A:r:B"
reverse_relation = "B:rr:A"


def create_homo_minibatch():
12
    node_pairs = [
peizhou001's avatar
peizhou001 committed
13
14
15
16
17
18
19
20
        (
            torch.tensor([0, 1, 2, 2, 2, 1]),
            torch.tensor([0, 1, 1, 2, 3, 2]),
        ),
        (
            torch.tensor([0, 1, 2]),
            torch.tensor([1, 0, 0]),
        ),
21
    ]
22
    original_column_node_ids = [
peizhou001's avatar
peizhou001 committed
23
24
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11]),
25
    ]
26
    original_row_node_ids = [
peizhou001's avatar
peizhou001 committed
27
28
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11, 12]),
29
    ]
30
    original_edge_ids = [
peizhou001's avatar
peizhou001 committed
31
32
        torch.tensor([19, 20, 21, 22, 25, 30]),
        torch.tensor([10, 15, 17]),
33
    ]
peizhou001's avatar
peizhou001 committed
34
    node_features = {"x": torch.randint(0, 10, (4,))}
35
    edge_features = [
peizhou001's avatar
peizhou001 committed
36
37
        {"x": torch.randint(0, 10, (6,))},
        {"x": torch.randint(0, 10, (3,))},
38
39
40
41
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
42
            gb.FusedSampledSubgraphImpl(
43
                node_pairs=node_pairs[i],
44
45
46
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
47
48
            )
        )
peizhou001's avatar
peizhou001 committed
49
    return gb.MiniBatch(
50
51
52
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
53
        input_nodes=torch.tensor([10, 11, 12, 13]),
54
55
56
    )


peizhou001's avatar
peizhou001 committed
57
def create_hetero_minibatch():
58
    node_pairs = [
peizhou001's avatar
peizhou001 committed
59
60
61
62
63
        {
            relation: (torch.tensor([0, 1, 1]), torch.tensor([0, 1, 2])),
            reverse_relation: (torch.tensor([1, 0]), torch.tensor([2, 3])),
        },
        {relation: (torch.tensor([0, 1]), torch.tensor([1, 0]))},
64
    ]
65
    original_column_node_ids = [
peizhou001's avatar
peizhou001 committed
66
67
        {"B": torch.tensor([10, 11, 12]), "A": torch.tensor([5, 7, 9, 11])},
        {"B": torch.tensor([10, 11])},
68
    ]
69
    original_row_node_ids = [
peizhou001's avatar
peizhou001 committed
70
71
72
73
74
75
76
77
        {
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        {
            "A": torch.tensor([5, 7]),
            "B": torch.tensor([10, 11]),
        },
78
    ]
79
    original_edge_ids = [
peizhou001's avatar
peizhou001 committed
80
81
82
83
84
        {
            relation: torch.tensor([19, 20, 21]),
            reverse_relation: torch.tensor([23, 26]),
        },
        {relation: torch.tensor([10, 12])},
85
    ]
peizhou001's avatar
peizhou001 committed
86
87
88
    node_features = {
        ("A", "x"): torch.randint(0, 10, (4,)),
    }
89
    edge_features = [
peizhou001's avatar
peizhou001 committed
90
91
        {(relation, "x"): torch.randint(0, 10, (3,))},
        {(relation, "x"): torch.randint(0, 10, (2,))},
92
93
94
95
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
96
            gb.FusedSampledSubgraphImpl(
97
                node_pairs=node_pairs[i],
98
99
100
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
101
102
            )
        )
peizhou001's avatar
peizhou001 committed
103
    return gb.MiniBatch(
104
105
106
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
107
108
109
110
        input_nodes={
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
peizhou001's avatar
peizhou001 committed
111
    )
112
113


114
115
116
117
118
def test_minibatch_representation_homo():
    csc_formats = [
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 3, 5, 6]),
            indices=torch.tensor([0, 1, 2, 2, 1, 2]),
119
        ),
120
121
122
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 2, 3]),
            indices=torch.tensor([1, 2, 0]),
123
124
        ),
    ]
125
    original_column_node_ids = [
126
127
128
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11]),
    ]
129
    original_row_node_ids = [
130
131
132
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11, 12]),
    ]
133
    original_edge_ids = [
134
135
136
        torch.tensor([19, 20, 21, 22, 25, 30]),
        torch.tensor([10, 15, 17]),
    ]
137
    node_features = {"x": torch.tensor([5, 0, 2, 1])}
138
    edge_features = [
139
140
        {"x": torch.tensor([9, 0, 1, 1, 7, 4])},
        {"x": torch.tensor([0, 2, 2])},
141
142
143
144
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
145
146
            gb.SampledSubgraphImpl(
                node_pairs=csc_formats[i],
147
148
149
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
150
151
152
153
154
            )
        )
    negative_srcs = torch.tensor([[8], [1], [6]])
    negative_dsts = torch.tensor([[2], [8], [8]])
    input_nodes = torch.tensor([8, 1, 6, 5, 9, 0, 2, 4])
155
156
157
    compacted_csc_formats = gb.CSCFormatBase(
        indptr=torch.tensor([0, 2, 3]), indices=torch.tensor([3, 4, 5])
    )
158
159
    compacted_negative_srcs = torch.tensor([[0], [1], [2]])
    compacted_negative_dsts = torch.tensor([[6], [0], [0]])
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    labels = torch.tensor([0.0, 1.0, 2.0])
    # Test minibatch without data.
    minibatch = gb.MiniBatch()
    expect_result = str(
        """MiniBatch(seed_nodes=None,
          sampled_subgraphs=None,
          node_pairs=None,
          node_features=None,
          negative_srcs=None,
          negative_dsts=None,
          labels=None,
          input_nodes=None,
          edge_features=None,
          compacted_node_pairs=None,
          compacted_negative_srcs=None,
          compacted_negative_dsts=None,
       )"""
    )
    result = str(minibatch)
    assert result == expect_result, print(len(expect_result), len(result))
    # Test minibatch with all attributes.
    minibatch = gb.MiniBatch(
182
        node_pairs=csc_formats,
183
184
185
186
187
188
        sampled_subgraphs=subgraphs,
        labels=labels,
        node_features=node_features,
        edge_features=edge_features,
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
189
        compacted_node_pairs=compacted_csc_formats,
190
191
192
193
194
195
        input_nodes=input_nodes,
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
    expect_result = str(
        """MiniBatch(seed_nodes=None,
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
          sampled_subgraphs=[SampledSubgraphImpl(original_row_node_ids=tensor([10, 11, 12, 13]),
                                               original_edge_ids=tensor([19, 20, 21, 22, 25, 30]),
                                               original_column_node_ids=tensor([10, 11, 12, 13]),
                                               node_pairs=CSCFormatBase(indptr=tensor([0, 1, 3, 5, 6]),
                                                                        indices=tensor([0, 1, 2, 2, 1, 2]),
                                                          ),
                            ),
                            SampledSubgraphImpl(original_row_node_ids=tensor([10, 11, 12]),
                                               original_edge_ids=tensor([10, 15, 17]),
                                               original_column_node_ids=tensor([10, 11]),
                                               node_pairs=CSCFormatBase(indptr=tensor([0, 2, 3]),
                                                                        indices=tensor([1, 2, 0]),
                                                          ),
                            )],
          node_pairs=[CSCFormatBase(indptr=tensor([0, 1, 3, 5, 6]),
                                   indices=tensor([0, 1, 2, 2, 1, 2]),
                     ),
                     CSCFormatBase(indptr=tensor([0, 2, 3]),
                                   indices=tensor([1, 2, 0]),
                     )],
          node_features={'x': tensor([5, 0, 2, 1])},
217
218
219
220
221
222
223
224
          negative_srcs=tensor([[8],
                                [1],
                                [6]]),
          negative_dsts=tensor([[2],
                                [8],
                                [8]]),
          labels=tensor([0., 1., 2.]),
          input_nodes=tensor([8, 1, 6, 5, 9, 0, 2, 4]),
225
226
227
228
229
          edge_features=[{'x': tensor([9, 0, 1, 1, 7, 4])},
                        {'x': tensor([0, 2, 2])}],
          compacted_node_pairs=CSCFormatBase(indptr=tensor([0, 2, 3]),
                                             indices=tensor([3, 4, 5]),
                               ),
230
231
232
233
234
235
          compacted_negative_srcs=tensor([[0],
                                          [1],
                                          [2]]),
          compacted_negative_dsts=tensor([[6],
                                          [0],
                                          [0]]),
236
237
238
239
       )"""
    )
    result = str(minibatch)
    assert result == expect_result, print(expect_result, result)
peizhou001's avatar
peizhou001 committed
240
241


242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
def test_minibatch_representation_hetero():
    csc_formats = [
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2, 3]),
                indices=torch.tensor([0, 1, 1]),
            ),
            reverse_relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 0, 0, 1, 2]),
                indices=torch.tensor([1, 0]),
            ),
        },
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2]), indices=torch.tensor([1, 0])
            )
        },
    ]
    original_column_node_ids = [
        {"B": torch.tensor([10, 11, 12]), "A": torch.tensor([5, 7, 9, 11])},
        {"B": torch.tensor([10, 11])},
    ]
    original_row_node_ids = [
        {
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        {
            "A": torch.tensor([5, 7]),
            "B": torch.tensor([10, 11]),
        },
    ]
    original_edge_ids = [
        {
            relation: torch.tensor([19, 20, 21]),
            reverse_relation: torch.tensor([23, 26]),
        },
        {relation: torch.tensor([10, 12])},
    ]
    node_features = {
        ("A", "x"): torch.tensor([6, 4, 0, 1]),
    }
    edge_features = [
        {(relation, "x"): torch.tensor([4, 2, 4])},
        {(relation, "x"): torch.tensor([0, 6])},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
            gb.SampledSubgraphImpl(
                node_pairs=csc_formats[i],
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    negative_srcs = {"B": torch.tensor([[8], [1], [6]])}
    negative_dsts = {"B": torch.tensor([[2], [8], [8]])}
    compacted_csc_formats = {
        relation: gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 2, 3]), indices=torch.tensor([3, 4, 5])
        ),
        reverse_relation: gb.CSCFormatBase(
            indptr=torch.tensor([0, 0, 0, 1, 2]), indices=torch.tensor([0, 1])
        ),
    }
    compacted_negative_srcs = {relation: torch.tensor([[0], [1], [2]])}
    compacted_negative_dsts = {relation: torch.tensor([[6], [0], [0]])}
    # Test dglminibatch with all attributes.
    minibatch = gb.MiniBatch(
        seed_nodes={"B": torch.tensor([10, 15])},
        node_pairs=csc_formats,
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
        labels={"B": torch.tensor([2, 5])},
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
        compacted_node_pairs=compacted_csc_formats,
        input_nodes={
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
    expect_result = str(
        """MiniBatch(seed_nodes={'B': tensor([10, 15])},
          sampled_subgraphs=[SampledSubgraphImpl(original_row_node_ids={'A': tensor([ 5,  7,  9, 11]), 'B': tensor([10, 11, 12])},
                                               original_edge_ids={'A:r:B': tensor([19, 20, 21]), 'B:rr:A': tensor([23, 26])},
                                               original_column_node_ids={'B': tensor([10, 11, 12]), 'A': tensor([ 5,  7,  9, 11])},
                                               node_pairs={'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                                                        indices=tensor([0, 1, 1]),
                                                          ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                                                        indices=tensor([1, 0]),
                                                          )},
                            ),
                            SampledSubgraphImpl(original_row_node_ids={'A': tensor([5, 7]), 'B': tensor([10, 11])},
                                               original_edge_ids={'A:r:B': tensor([10, 12])},
                                               original_column_node_ids={'B': tensor([10, 11])},
                                               node_pairs={'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2]),
                                                                        indices=tensor([1, 0]),
                                                          )},
                            )],
          node_pairs=[{'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                   indices=tensor([0, 1, 1]),
                     ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                   indices=tensor([1, 0]),
                     )},
                     {'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2]),
                                   indices=tensor([1, 0]),
                     )}],
          node_features={('A', 'x'): tensor([6, 4, 0, 1])},
          negative_srcs={'B': tensor([[8],
                                [1],
                                [6]])},
          negative_dsts={'B': tensor([[2],
                                [8],
                                [8]])},
          labels={'B': tensor([2, 5])},
          input_nodes={'A': tensor([ 5,  7,  9, 11]), 'B': tensor([10, 11, 12])},
          edge_features=[{('A:r:B', 'x'): tensor([4, 2, 4])},
                        {('A:r:B', 'x'): tensor([0, 6])}],
          compacted_node_pairs={'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                             indices=tensor([3, 4, 5]),
                               ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                             indices=tensor([0, 1]),
                               )},
          compacted_negative_srcs={'A:r:B': tensor([[0],
                                          [1],
                                          [2]])},
          compacted_negative_dsts={'A:r:B': tensor([[6],
                                          [0],
                                          [0]])},
       )"""
    )
    result = str(minibatch)
    assert result == expect_result, print(result)


382
def test_dgl_minibatch_representation_homo():
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
    node_pairs = [
        (
            torch.tensor([0, 1, 2, 2, 2, 1]),
            torch.tensor([0, 1, 1, 2, 3, 2]),
        ),
        (
            torch.tensor([0, 1, 2]),
            torch.tensor([1, 0, 0]),
        ),
    ]
    original_column_node_ids = [
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11]),
    ]
    original_row_node_ids = [
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11, 12]),
    ]
    original_edge_ids = [
        torch.tensor([19, 20, 21, 22, 25, 30]),
        torch.tensor([10, 15, 17]),
    ]
    node_features = {"x": torch.tensor([7, 6, 2, 2])}
    edge_features = [
        {"x": torch.tensor([[8], [1], [6]])},
        {"x": torch.tensor([[2], [8], [8]])},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
413
            gb.FusedSampledSubgraphImpl(
414
415
416
417
418
419
420
421
422
423
                node_pairs=node_pairs[i],
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    negative_srcs = torch.tensor([[8], [1], [6]])
    negative_dsts = torch.tensor([[2], [8], [8]])
    input_nodes = torch.tensor([8, 1, 6, 5, 9, 0, 2, 4])
    compacted_node_pairs = (torch.tensor([0, 1, 2]), torch.tensor([3, 4, 5]))
424
425
    compacted_negative_srcs = torch.tensor([[0], [1], [2]])
    compacted_negative_dsts = torch.tensor([[6], [0], [0]])
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
    labels = torch.tensor([0.0, 1.0, 2.0])
    # Test dglminibatch with all attributes.
    minibatch = gb.MiniBatch(
        node_pairs=node_pairs,
        sampled_subgraphs=subgraphs,
        labels=labels,
        node_features=node_features,
        edge_features=edge_features,
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
        compacted_node_pairs=compacted_node_pairs,
        input_nodes=input_nodes,
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
    dgl_minibatch = minibatch.to_dgl()
    expect_result = str(
443
444
        """DGLMiniBatch(positive_node_pairs=(tensor([0, 1, 2]),
                                  tensor([3, 4, 5])),
445
446
             output_nodes=None,
             node_features={'x': tensor([7, 6, 2, 2])},
447
448
             negative_node_pairs=(tensor([0, 1, 2]),
                                  tensor([6, 0, 0])),
449
             labels=tensor([0., 1., 2.]),
450
             input_nodes=None,
451
             edge_features=[{'x': tensor([[8],
452
453
                                    [1],
                                    [6]])},
454
                            {'x': tensor([[2],
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
                                    [8],
                                    [8]])}],
             blocks=[Block(num_src_nodes=4, num_dst_nodes=4, num_edges=6),
                     Block(num_src_nodes=3, num_dst_nodes=2, num_edges=3)],
          )"""
    )
    result = str(dgl_minibatch)
    assert result == expect_result, print(result)


def test_dgl_minibatch_representation_hetero():
    node_pairs = [
        {
            relation: (torch.tensor([0, 1, 1]), torch.tensor([0, 1, 2])),
            reverse_relation: (torch.tensor([1, 0]), torch.tensor([2, 3])),
        },
        {relation: (torch.tensor([0, 1]), torch.tensor([1, 0]))},
    ]
    original_column_node_ids = [
        {"B": torch.tensor([10, 11, 12]), "A": torch.tensor([5, 7, 9, 11])},
        {"B": torch.tensor([10, 11])},
    ]
    original_row_node_ids = [
        {
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        {
            "A": torch.tensor([5, 7]),
            "B": torch.tensor([10, 11]),
        },
    ]
    original_edge_ids = [
        {
            relation: torch.tensor([19, 20, 21]),
            reverse_relation: torch.tensor([23, 26]),
        },
        {relation: torch.tensor([10, 12])},
    ]
    node_features = {
        ("A", "x"): torch.tensor([6, 4, 0, 1]),
    }
    edge_features = [
        {(relation, "x"): torch.tensor([4, 2, 4])},
        {(relation, "x"): torch.tensor([0, 6])},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
            gb.FusedSampledSubgraphImpl(
                node_pairs=node_pairs[i],
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    negative_srcs = {"B": torch.tensor([[8], [1], [6]])}
    negative_dsts = {"B": torch.tensor([[2], [8], [8]])}
    compacted_node_pairs = {
        relation: (torch.tensor([0, 1, 2]), torch.tensor([3, 4, 5])),
        reverse_relation: (torch.tensor([0, 1, 2]), torch.tensor([3, 4, 5])),
    }
    compacted_negative_srcs = {relation: torch.tensor([[0], [1], [2]])}
    compacted_negative_dsts = {relation: torch.tensor([[6], [0], [0]])}
    # Test dglminibatch with all attributes.
    minibatch = gb.MiniBatch(
        seed_nodes={"B": torch.tensor([10, 15])},
        node_pairs=node_pairs,
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
        labels={"B": torch.tensor([2, 5])},
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
        compacted_node_pairs=compacted_node_pairs,
        input_nodes={
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
    dgl_minibatch = minibatch.to_dgl()
    expect_result = str(
        """DGLMiniBatch(positive_node_pairs={'A:r:B': (tensor([0, 1, 2]), tensor([3, 4, 5])), 'B:rr:A': (tensor([0, 1, 2]), tensor([3, 4, 5]))},
             output_nodes=None,
             node_features={('A', 'x'): tensor([6, 4, 0, 1])},
             negative_node_pairs={'A:r:B': (tensor([0, 1, 2]), tensor([6, 0, 0]))},
             labels={'B': tensor([2, 5])},
             input_nodes=None,
             edge_features=[{('A:r:B', 'x'): tensor([4, 2, 4])},
                            {('A:r:B', 'x'): tensor([0, 6])}],
             blocks=[Block(num_src_nodes={'A': 4, 'B': 3},
                           num_dst_nodes={'A': 4, 'B': 3},
                           num_edges={('A', 'r', 'B'): 3, ('B', 'rr', 'A'): 2},
                           metagraph=[('A', 'B', 'r'), ('B', 'A', 'rr')]),
                     Block(num_src_nodes={'A': 2, 'B': 2},
                           num_dst_nodes={'B': 2},
                           num_edges={('A', 'r', 'B'): 2},
                           metagraph=[('A', 'B', 'r')])],
555
556
557
558
559
560
          )"""
    )
    result = str(dgl_minibatch)
    assert result == expect_result, print(result)


peizhou001's avatar
peizhou001 committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
def check_dgl_blocks_hetero(minibatch, blocks):
    etype = gb.etype_str_to_tuple(relation)
    node_pairs = [
        subgraph.node_pairs for subgraph in minibatch.sampled_subgraphs
    ]
    original_edge_ids = [
        subgraph.original_edge_ids for subgraph in minibatch.sampled_subgraphs
    ]
    original_row_node_ids = [
        subgraph.original_row_node_ids
        for subgraph in minibatch.sampled_subgraphs
    ]

    for i, block in enumerate(blocks):
        edges = block.edges(etype=etype)
        assert torch.equal(edges[0], node_pairs[i][relation][0])
        assert torch.equal(edges[1], node_pairs[i][relation][1])
        assert torch.equal(
            block.edges[etype].data[dgl.EID], original_edge_ids[i][relation]
        )
    edges = blocks[0].edges(etype=gb.etype_str_to_tuple(reverse_relation))
    assert torch.equal(edges[0], node_pairs[0][reverse_relation][0])
    assert torch.equal(edges[1], node_pairs[0][reverse_relation][1])
    assert torch.equal(
        blocks[0].srcdata[dgl.NID]["A"], original_row_node_ids[0]["A"]
    )
    assert torch.equal(
        blocks[0].srcdata[dgl.NID]["B"], original_row_node_ids[0]["B"]
    )


def check_dgl_blocks_homo(minibatch, blocks):
    node_pairs = [
        subgraph.node_pairs for subgraph in minibatch.sampled_subgraphs
    ]
    original_edge_ids = [
        subgraph.original_edge_ids for subgraph in minibatch.sampled_subgraphs
    ]
    original_row_node_ids = [
        subgraph.original_row_node_ids
        for subgraph in minibatch.sampled_subgraphs
    ]
    for i, block in enumerate(blocks):
        assert torch.equal(block.edges()[0], node_pairs[i][0])
        assert torch.equal(block.edges()[1], node_pairs[i][1])
        assert torch.equal(block.edata[dgl.EID], original_edge_ids[i])
    assert torch.equal(blocks[0].srcdata[dgl.NID], original_row_node_ids[0])


610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
def test_to_dgl_node_classification_without_feature():
    # Arrange
    minibatch = create_homo_minibatch()
    minibatch.node_features = None
    minibatch.labels = None
    minibatch.seed_nodes = torch.tensor([10, 15])
    # Act
    dgl_minibatch = minibatch.to_dgl()

    # Assert
    assert len(dgl_minibatch.blocks) == 2
    assert dgl_minibatch.node_features is None
    assert minibatch.edge_features is dgl_minibatch.edge_features
    assert dgl_minibatch.labels is None
    assert minibatch.input_nodes is dgl_minibatch.input_nodes
    assert minibatch.seed_nodes is dgl_minibatch.output_nodes
    check_dgl_blocks_homo(minibatch, dgl_minibatch.blocks)


peizhou001's avatar
peizhou001 committed
629
630
631
632
633
634
635
636
637
638
639
640
641
def test_to_dgl_node_classification_homo():
    # Arrange
    minibatch = create_homo_minibatch()
    minibatch.seed_nodes = torch.tensor([10, 15])
    minibatch.labels = torch.tensor([2, 5])
    # Act
    dgl_minibatch = minibatch.to_dgl()

    # Assert
    assert len(dgl_minibatch.blocks) == 2
    assert minibatch.node_features is dgl_minibatch.node_features
    assert minibatch.edge_features is dgl_minibatch.edge_features
    assert minibatch.labels is dgl_minibatch.labels
642
643
    assert dgl_minibatch.input_nodes is None
    assert dgl_minibatch.output_nodes is None
peizhou001's avatar
peizhou001 committed
644
645
646
647
648
649
650
651
652
653
654
655
656
657
    check_dgl_blocks_homo(minibatch, dgl_minibatch.blocks)


def test_to_dgl_node_classification_hetero():
    minibatch = create_hetero_minibatch()
    minibatch.labels = {"B": torch.tensor([2, 5])}
    minibatch.seed_nodes = {"B": torch.tensor([10, 15])}
    dgl_minibatch = minibatch.to_dgl()

    # Assert
    assert len(dgl_minibatch.blocks) == 2
    assert minibatch.node_features is dgl_minibatch.node_features
    assert minibatch.edge_features is dgl_minibatch.edge_features
    assert minibatch.labels is dgl_minibatch.labels
658
659
    assert dgl_minibatch.input_nodes is None
    assert dgl_minibatch.output_nodes is None
peizhou001's avatar
peizhou001 committed
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
    check_dgl_blocks_hetero(minibatch, dgl_minibatch.blocks)


@pytest.mark.parametrize("mode", ["neg_graph", "neg_src", "neg_dst"])
def test_to_dgl_link_predication_homo(mode):
    # Arrange
    minibatch = create_homo_minibatch()
    minibatch.compacted_node_pairs = (
        torch.tensor([0, 1]),
        torch.tensor([1, 0]),
    )
    if mode == "neg_graph" or mode == "neg_src":
        minibatch.compacted_negative_srcs = torch.tensor([[0, 0], [1, 1]])
    if mode == "neg_graph" or mode == "neg_dst":
        minibatch.compacted_negative_dsts = torch.tensor([[1, 0], [0, 1]])
    # Act
    dgl_minibatch = minibatch.to_dgl()

    # Assert
    assert len(dgl_minibatch.blocks) == 2
    assert minibatch.node_features is dgl_minibatch.node_features
    assert minibatch.edge_features is dgl_minibatch.edge_features
    assert minibatch.compacted_node_pairs is dgl_minibatch.positive_node_pairs
    check_dgl_blocks_homo(minibatch, dgl_minibatch.blocks)
    if mode == "neg_graph" or mode == "neg_src":
        assert torch.equal(
            dgl_minibatch.negative_node_pairs[0],
            minibatch.compacted_negative_srcs.view(-1),
        )
    if mode == "neg_graph" or mode == "neg_dst":
        assert torch.equal(
            dgl_minibatch.negative_node_pairs[1],
            minibatch.compacted_negative_dsts.view(-1),
        )


@pytest.mark.parametrize("mode", ["neg_graph", "neg_src", "neg_dst"])
def test_to_dgl_link_predication_hetero(mode):
    # Arrange
    minibatch = create_hetero_minibatch()
    minibatch.compacted_node_pairs = {
        relation: (
            torch.tensor([1, 1]),
            torch.tensor([1, 0]),
        ),
        reverse_relation: (
            torch.tensor([0, 1]),
            torch.tensor([1, 0]),
        ),
    }
    if mode == "neg_graph" or mode == "neg_src":
        minibatch.compacted_negative_srcs = {
            relation: torch.tensor([[2, 0], [1, 2]]),
            reverse_relation: torch.tensor([[1, 2], [0, 2]]),
        }
    if mode == "neg_graph" or mode == "neg_dst":
        minibatch.compacted_negative_dsts = {
            relation: torch.tensor([[1, 3], [2, 1]]),
            reverse_relation: torch.tensor([[2, 1], [3, 1]]),
        }
    # Act
    dgl_minibatch = minibatch.to_dgl()

    # Assert
    assert len(dgl_minibatch.blocks) == 2
    assert minibatch.node_features is dgl_minibatch.node_features
    assert minibatch.edge_features is dgl_minibatch.edge_features
    assert minibatch.compacted_node_pairs is dgl_minibatch.positive_node_pairs
    check_dgl_blocks_hetero(minibatch, dgl_minibatch.blocks)
    if mode == "neg_graph" or mode == "neg_src":
        for etype, src in minibatch.compacted_negative_srcs.items():
            assert torch.equal(
                dgl_minibatch.negative_node_pairs[etype][0],
                src.view(-1),
            )
    if mode == "neg_graph" or mode == "neg_dst":
        for etype, dst in minibatch.compacted_negative_dsts.items():
            assert torch.equal(
                dgl_minibatch.negative_node_pairs[etype][1],
                minibatch.compacted_negative_dsts[etype].view(-1),
            )