"examples/vscode:/vscode.git/clone" did not exist on "e0004f7199598c390b73553e84964467303e15f6"
test_minibatch.py 8.87 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import dgl
import dgl.graphbolt as gb
import torch


def test_to_dgl_blocks_hetero():
    relation = "A:r:B"
    reverse_relation = "B:rr:A"
    node_pairs = [
        {
            relation: (torch.tensor([0, 1, 1]), torch.tensor([0, 1, 2])),
            reverse_relation: (torch.tensor([1, 0]), torch.tensor([2, 3])),
        },
        {relation: (torch.tensor([0, 1]), torch.tensor([1, 0]))},
    ]
16
    original_column_node_ids = [
17
18
19
        {"B": torch.tensor([10, 11, 12]), "A": torch.tensor([5, 7, 9, 11])},
        {"B": torch.tensor([10, 11])},
    ]
20
    original_row_node_ids = [
21
22
23
24
25
26
27
28
29
        {
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        {
            "A": torch.tensor([5, 7]),
            "B": torch.tensor([10, 11]),
        },
    ]
30
    original_edge_ids = [
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
        {
            relation: torch.tensor([19, 20, 21]),
            reverse_relation: torch.tensor([23, 26]),
        },
        {relation: torch.tensor([10, 12])},
    ]
    node_features = {
        ("A", "x"): torch.randint(0, 10, (4,)),
    }
    edge_features = [
        {(relation, "x"): torch.randint(0, 10, (3,))},
        {(relation, "x"): torch.randint(0, 10, (2,))},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
            gb.SampledSubgraphImpl(
                node_pairs=node_pairs[i],
49
50
51
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
52
53
54
55
56
57
58
59
60
61
62
63
64
65
            )
        )
    blocks = gb.MiniBatch(
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
    ).to_dgl_blocks()

    etype = gb.etype_str_to_tuple(relation)
    for i, block in enumerate(blocks):
        edges = block.edges(etype=etype)
        assert torch.equal(edges[0], node_pairs[i][relation][0])
        assert torch.equal(edges[1], node_pairs[i][relation][1])
        assert torch.equal(
66
            block.edges[etype].data[dgl.EID], original_edge_ids[i][relation]
67
68
69
70
71
72
73
74
75
        )
        assert torch.equal(
            block.edges[etype].data["x"],
            edge_features[i][(relation, "x")],
        )
    edges = blocks[0].edges(etype=gb.etype_str_to_tuple(reverse_relation))
    assert torch.equal(edges[0], node_pairs[0][reverse_relation][0])
    assert torch.equal(edges[1], node_pairs[0][reverse_relation][1])
    assert torch.equal(
76
        blocks[0].srcdata[dgl.NID]["A"], original_row_node_ids[0]["A"]
77
78
    )
    assert torch.equal(
79
        blocks[0].srcdata[dgl.NID]["B"], original_row_node_ids[0]["B"]
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    )
    assert torch.equal(
        blocks[0].srcnodes["A"].data["x"], node_features[("A", "x")]
    )


test_to_dgl_blocks_hetero()


def test_to_dgl_blocks_homo():
    node_pairs = [
        (
            torch.tensor([0, 1, 2, 2, 2, 1]),
            torch.tensor([0, 1, 1, 2, 3, 2]),
        ),
        (
            torch.tensor([0, 1, 2]),
            torch.tensor([1, 0, 0]),
        ),
    ]
100
    original_column_node_ids = [
101
102
103
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11]),
    ]
104
    original_row_node_ids = [
105
106
107
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11, 12]),
    ]
108
    original_edge_ids = [
109
110
111
112
113
114
115
116
117
118
119
120
121
        torch.tensor([19, 20, 21, 22, 25, 30]),
        torch.tensor([10, 15, 17]),
    ]
    node_features = {"x": torch.randint(0, 10, (4,))}
    edge_features = [
        {"x": torch.randint(0, 10, (6,))},
        {"x": torch.randint(0, 10, (3,))},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
            gb.SampledSubgraphImpl(
                node_pairs=node_pairs[i],
122
123
124
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
125
126
127
128
129
130
131
132
133
134
135
            )
        )
    blocks = gb.MiniBatch(
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
    ).to_dgl_blocks()

    for i, block in enumerate(blocks):
        assert torch.equal(block.edges()[0], node_pairs[i][0])
        assert torch.equal(block.edges()[1], node_pairs[i][1])
136
        assert torch.equal(block.edata[dgl.EID], original_edge_ids[i])
137
        assert torch.equal(block.edata["x"], edge_features[i]["x"])
138
    assert torch.equal(blocks[0].srcdata[dgl.NID], original_row_node_ids[0])
139
    assert torch.equal(blocks[0].srcdata["x"], node_features["x"])
140
141
142
143
144
145
146
147
148
149
150
151
152


def test_representation():
    node_pairs = [
        (
            torch.tensor([0, 1, 2, 2, 2, 1]),
            torch.tensor([0, 1, 1, 2, 3, 2]),
        ),
        (
            torch.tensor([0, 1, 2]),
            torch.tensor([1, 0, 0]),
        ),
    ]
153
    original_column_node_ids = [
154
155
156
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11]),
    ]
157
    original_row_node_ids = [
158
159
160
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11, 12]),
    ]
161
    original_edge_ids = [
162
163
164
165
166
167
168
169
170
171
172
173
174
        torch.tensor([19, 20, 21, 22, 25, 30]),
        torch.tensor([10, 15, 17]),
    ]
    node_features = {"x": torch.tensor([7, 6, 2, 2])}
    edge_features = [
        {"x": torch.tensor([[8], [1], [6]])},
        {"x": torch.tensor([[2], [8], [8]])},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
            gb.SampledSubgraphImpl(
                node_pairs=node_pairs[i],
175
176
177
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
            )
        )
    negative_srcs = torch.tensor([[8], [1], [6]])
    negative_dsts = torch.tensor([[2], [8], [8]])
    input_nodes = torch.tensor([8, 1, 6, 5, 9, 0, 2, 4])
    compacted_node_pairs = (torch.tensor([0, 1, 2]), torch.tensor([3, 4, 5]))
    compacted_negative_srcs = torch.tensor([0, 1, 2])
    compacted_negative_dsts = torch.tensor([6, 0, 0])
    labels = torch.tensor([0.0, 1.0, 2.0])
    # Test minibatch without data.
    minibatch = gb.MiniBatch()
    expect_result = str(
        """MiniBatch(seed_nodes=None,
          sampled_subgraphs=None,
          node_pairs=None,
          node_features=None,
          negative_srcs=None,
          negative_dsts=None,
          labels=None,
          input_nodes=None,
          edge_features=None,
          compacted_node_pairs=None,
          compacted_negative_srcs=None,
          compacted_negative_dsts=None,
       )"""
    )
    result = str(minibatch)
    assert result == expect_result, print(len(expect_result), len(result))
    # Test minibatch with all attributes.
    minibatch = gb.MiniBatch(
        node_pairs=node_pairs,
        sampled_subgraphs=subgraphs,
        labels=labels,
        node_features=node_features,
        edge_features=edge_features,
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
        compacted_node_pairs=compacted_node_pairs,
        input_nodes=input_nodes,
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
    expect_result = str(
        """MiniBatch(seed_nodes=None,
          sampled_subgraphs=[SampledSubgraphImpl(node_pairs=(tensor([0, 1, 2, 2, 2, 1]), tensor([0, 1, 1, 2, 3, 2])),
223
224
225
                                                original_column_node_ids=tensor([10, 11, 12, 13]),
                                                original_edge_ids=tensor([19, 20, 21, 22, 25, 30]),
                                                original_row_node_ids=tensor([10, 11, 12, 13]),),
226
                            SampledSubgraphImpl(node_pairs=(tensor([0, 1, 2]), tensor([1, 0, 0])),
227
228
229
                                                original_column_node_ids=tensor([10, 11]),
                                                original_edge_ids=tensor([10, 15, 17]),
                                                original_row_node_ids=tensor([10, 11, 12]),)],
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
          node_pairs=[(tensor([0, 1, 2, 2, 2, 1]), tensor([0, 1, 1, 2, 3, 2])),
                     (tensor([0, 1, 2]), tensor([1, 0, 0]))],
          node_features={'x': tensor([7, 6, 2, 2])},
          negative_srcs=tensor([[8],
                                [1],
                                [6]]),
          negative_dsts=tensor([[2],
                                [8],
                                [8]]),
          labels=tensor([0., 1., 2.]),
          input_nodes=tensor([8, 1, 6, 5, 9, 0, 2, 4]),
          edge_features=[{'x': tensor([[8],
                                       [1],
                                       [6]])},
                        {'x': tensor([[2],
                                       [8],
                                       [8]])}],
          compacted_node_pairs=(tensor([0, 1, 2]), tensor([3, 4, 5])),
          compacted_negative_srcs=tensor([0, 1, 2]),
          compacted_negative_dsts=tensor([6, 0, 0]),
       )"""
    )
    result = str(minibatch)
    assert result == expect_result, print(expect_result, result)