test_minibatch.py 31.2 KB
Newer Older
1
2
import dgl
import dgl.graphbolt as gb
peizhou001's avatar
peizhou001 committed
3
import pytest
4
5
6
import torch


peizhou001's avatar
peizhou001 committed
7
8
9
10
relation = "A:r:B"
reverse_relation = "B:rr:A"


11
12
13
14
15
def test_minibatch_representation_homo():
    csc_formats = [
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 3, 5, 6]),
            indices=torch.tensor([0, 1, 2, 2, 1, 2]),
16
        ),
17
18
19
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 2, 3]),
            indices=torch.tensor([1, 2, 0]),
20
21
        ),
    ]
22
    original_column_node_ids = [
23
24
25
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11]),
    ]
26
    original_row_node_ids = [
27
28
29
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11, 12]),
    ]
30
    original_edge_ids = [
31
32
33
        torch.tensor([19, 20, 21, 22, 25, 30]),
        torch.tensor([10, 15, 17]),
    ]
34
    node_features = {"x": torch.tensor([5, 0, 2, 1])}
35
    edge_features = [
36
37
        {"x": torch.tensor([9, 0, 1, 1, 7, 4])},
        {"x": torch.tensor([0, 2, 2])},
38
39
40
41
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
42
            gb.SampledSubgraphImpl(
43
                sampled_csc=csc_formats[i],
44
45
46
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
47
48
49
50
51
            )
        )
    negative_srcs = torch.tensor([[8], [1], [6]])
    negative_dsts = torch.tensor([[2], [8], [8]])
    input_nodes = torch.tensor([8, 1, 6, 5, 9, 0, 2, 4])
52
53
54
    compacted_csc_formats = gb.CSCFormatBase(
        indptr=torch.tensor([0, 2, 3]), indices=torch.tensor([3, 4, 5])
    )
55
56
    compacted_negative_srcs = torch.tensor([[0], [1], [2]])
    compacted_negative_dsts = torch.tensor([[6], [0], [0]])
57
58
59
60
61
62
    labels = torch.tensor([0.0, 1.0, 2.0])
    # Test minibatch without data.
    minibatch = gb.MiniBatch()
    expect_result = str(
        """MiniBatch(seed_nodes=None,
          sampled_subgraphs=None,
63
64
          positive_node_pairs=None,
          node_pairs_with_labels=None,
65
66
67
          node_pairs=None,
          node_features=None,
          negative_srcs=None,
68
          negative_node_pairs=None,
69
70
71
72
73
74
75
          negative_dsts=None,
          labels=None,
          input_nodes=None,
          edge_features=None,
          compacted_node_pairs=None,
          compacted_negative_srcs=None,
          compacted_negative_dsts=None,
76
          blocks=None,
77
78
79
80
81
82
       )"""
    )
    result = str(minibatch)
    assert result == expect_result, print(len(expect_result), len(result))
    # Test minibatch with all attributes.
    minibatch = gb.MiniBatch(
83
        node_pairs=csc_formats,
84
85
86
87
88
89
        sampled_subgraphs=subgraphs,
        labels=labels,
        node_features=node_features,
        edge_features=edge_features,
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
90
        compacted_node_pairs=compacted_csc_formats,
91
92
93
94
95
96
        input_nodes=input_nodes,
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
    expect_result = str(
        """MiniBatch(seed_nodes=None,
97
98
99
100
          sampled_subgraphs=[SampledSubgraphImpl(sampled_csc=CSCFormatBase(indptr=tensor([0, 1, 3, 5, 6]),
                                                                         indices=tensor([0, 1, 2, 2, 1, 2]),
                                                           ),
                                               original_row_node_ids=tensor([10, 11, 12, 13]),
101
102
103
                                               original_edge_ids=tensor([19, 20, 21, 22, 25, 30]),
                                               original_column_node_ids=tensor([10, 11, 12, 13]),
                            ),
104
105
106
107
                            SampledSubgraphImpl(sampled_csc=CSCFormatBase(indptr=tensor([0, 2, 3]),
                                                                         indices=tensor([1, 2, 0]),
                                                           ),
                                               original_row_node_ids=tensor([10, 11, 12]),
108
109
110
                                               original_edge_ids=tensor([10, 15, 17]),
                                               original_column_node_ids=tensor([10, 11]),
                            )],
111
112
113
114
115
116
117
          positive_node_pairs=CSCFormatBase(indptr=tensor([0, 2, 3]),
                                            indices=tensor([3, 4, 5]),
                              ),
          node_pairs_with_labels=(CSCFormatBase(indptr=tensor([0, 2, 3]),
                                               indices=tensor([3, 4, 5]),
                                 ),
                                 tensor([0., 1., 2.])),
118
119
120
121
122
123
124
          node_pairs=[CSCFormatBase(indptr=tensor([0, 1, 3, 5, 6]),
                                   indices=tensor([0, 1, 2, 2, 1, 2]),
                     ),
                     CSCFormatBase(indptr=tensor([0, 2, 3]),
                                   indices=tensor([1, 2, 0]),
                     )],
          node_features={'x': tensor([5, 0, 2, 1])},
125
126
127
          negative_srcs=tensor([[8],
                                [1],
                                [6]]),
128
129
          negative_node_pairs=(tensor([0, 1, 2]),
                              tensor([6, 0, 0])),
130
131
132
133
134
          negative_dsts=tensor([[2],
                                [8],
                                [8]]),
          labels=tensor([0., 1., 2.]),
          input_nodes=tensor([8, 1, 6, 5, 9, 0, 2, 4]),
135
136
137
138
139
          edge_features=[{'x': tensor([9, 0, 1, 1, 7, 4])},
                        {'x': tensor([0, 2, 2])}],
          compacted_node_pairs=CSCFormatBase(indptr=tensor([0, 2, 3]),
                                             indices=tensor([3, 4, 5]),
                               ),
140
141
142
143
144
145
          compacted_negative_srcs=tensor([[0],
                                          [1],
                                          [2]]),
          compacted_negative_dsts=tensor([[6],
                                          [0],
                                          [0]]),
146
147
          blocks=[Block(num_src_nodes=4, num_dst_nodes=4, num_edges=6),
                 Block(num_src_nodes=3, num_dst_nodes=2, num_edges=3)],
148
149
150
151
       )"""
    )
    result = str(minibatch)
    assert result == expect_result, print(expect_result, result)
peizhou001's avatar
peizhou001 committed
152
153


154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
def test_minibatch_representation_hetero():
    csc_formats = [
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2, 3]),
                indices=torch.tensor([0, 1, 1]),
            ),
            reverse_relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 0, 0, 1, 2]),
                indices=torch.tensor([1, 0]),
            ),
        },
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2]), indices=torch.tensor([1, 0])
            )
        },
    ]
    original_column_node_ids = [
        {"B": torch.tensor([10, 11, 12]), "A": torch.tensor([5, 7, 9, 11])},
        {"B": torch.tensor([10, 11])},
    ]
    original_row_node_ids = [
        {
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        {
            "A": torch.tensor([5, 7]),
            "B": torch.tensor([10, 11]),
        },
    ]
    original_edge_ids = [
        {
            relation: torch.tensor([19, 20, 21]),
            reverse_relation: torch.tensor([23, 26]),
        },
        {relation: torch.tensor([10, 12])},
    ]
    node_features = {
        ("A", "x"): torch.tensor([6, 4, 0, 1]),
    }
    edge_features = [
        {(relation, "x"): torch.tensor([4, 2, 4])},
        {(relation, "x"): torch.tensor([0, 6])},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
            gb.SampledSubgraphImpl(
204
                sampled_csc=csc_formats[i],
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    negative_srcs = {"B": torch.tensor([[8], [1], [6]])}
    negative_dsts = {"B": torch.tensor([[2], [8], [8]])}
    compacted_csc_formats = {
        relation: gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 2, 3]), indices=torch.tensor([3, 4, 5])
        ),
        reverse_relation: gb.CSCFormatBase(
            indptr=torch.tensor([0, 0, 0, 1, 2]), indices=torch.tensor([0, 1])
        ),
    }
    compacted_negative_srcs = {relation: torch.tensor([[0], [1], [2]])}
    compacted_negative_dsts = {relation: torch.tensor([[6], [0], [0]])}
222
    # Test minibatch with all attributes.
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    minibatch = gb.MiniBatch(
        seed_nodes={"B": torch.tensor([10, 15])},
        node_pairs=csc_formats,
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
        labels={"B": torch.tensor([2, 5])},
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
        compacted_node_pairs=compacted_csc_formats,
        input_nodes={
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
    expect_result = str(
        """MiniBatch(seed_nodes={'B': tensor([10, 15])},
242
243
244
245
246
247
          sampled_subgraphs=[SampledSubgraphImpl(sampled_csc={'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                                                         indices=tensor([0, 1, 1]),
                                                           ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                                                         indices=tensor([1, 0]),
                                                           )},
                                               original_row_node_ids={'A': tensor([ 5,  7,  9, 11]), 'B': tensor([10, 11, 12])},
248
249
250
                                               original_edge_ids={'A:r:B': tensor([19, 20, 21]), 'B:rr:A': tensor([23, 26])},
                                               original_column_node_ids={'B': tensor([10, 11, 12]), 'A': tensor([ 5,  7,  9, 11])},
                            ),
251
252
253
254
                            SampledSubgraphImpl(sampled_csc={'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2]),
                                                                         indices=tensor([1, 0]),
                                                           )},
                                               original_row_node_ids={'A': tensor([5, 7]), 'B': tensor([10, 11])},
255
256
257
                                               original_edge_ids={'A:r:B': tensor([10, 12])},
                                               original_column_node_ids={'B': tensor([10, 11])},
                            )],
258
259
260
261
262
263
264
265
266
267
268
          positive_node_pairs={'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                            indices=tensor([3, 4, 5]),
                              ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                            indices=tensor([0, 1]),
                              )},
          node_pairs_with_labels=({'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                               indices=tensor([3, 4, 5]),
                                 ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                               indices=tensor([0, 1]),
                                 )},
                                 {'B': tensor([2, 5])}),
269
270
271
272
273
274
275
276
277
278
279
280
          node_pairs=[{'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                   indices=tensor([0, 1, 1]),
                     ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                   indices=tensor([1, 0]),
                     )},
                     {'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2]),
                                   indices=tensor([1, 0]),
                     )}],
          node_features={('A', 'x'): tensor([6, 4, 0, 1])},
          negative_srcs={'B': tensor([[8],
                                [1],
                                [6]])},
281
          negative_node_pairs={'A:r:B': (tensor([0, 1, 2]), tensor([6, 0, 0]))},
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
          negative_dsts={'B': tensor([[2],
                                [8],
                                [8]])},
          labels={'B': tensor([2, 5])},
          input_nodes={'A': tensor([ 5,  7,  9, 11]), 'B': tensor([10, 11, 12])},
          edge_features=[{('A:r:B', 'x'): tensor([4, 2, 4])},
                        {('A:r:B', 'x'): tensor([0, 6])}],
          compacted_node_pairs={'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                             indices=tensor([3, 4, 5]),
                               ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                             indices=tensor([0, 1]),
                               )},
          compacted_negative_srcs={'A:r:B': tensor([[0],
                                          [1],
                                          [2]])},
          compacted_negative_dsts={'A:r:B': tensor([[6],
                                          [0],
                                          [0]])},
300
301
302
303
304
305
306
307
          blocks=[Block(num_src_nodes={'A': 4, 'B': 3},
                       num_dst_nodes={'A': 4, 'B': 3},
                       num_edges={('A', 'r', 'B'): 3, ('B', 'rr', 'A'): 2},
                       metagraph=[('A', 'B', 'r'), ('B', 'A', 'rr')]),
                 Block(num_src_nodes={'A': 2, 'B': 2},
                       num_dst_nodes={'B': 2},
                       num_edges={('A', 'r', 'B'): 2},
                       metagraph=[('A', 'B', 'r')])],
308
309
310
311
312
313
       )"""
    )
    result = str(minibatch)
    assert result == expect_result, print(result)


314
def test_get_dgl_blocks_homo():
315
316
317
318
319
320
321
322
323
324
    node_pairs = [
        (
            torch.tensor([0, 1, 2, 2, 2, 1]),
            torch.tensor([0, 1, 1, 2, 3, 2]),
        ),
        (
            torch.tensor([0, 1, 2]),
            torch.tensor([1, 0, 0]),
        ),
    ]
325
326
327
328
329
330
331
332
333
334
    csc_formats = [
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 3, 5, 6]),
            indices=torch.tensor([0, 1, 2, 2, 1, 2]),
        ),
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 3]),
            indices=torch.tensor([0, 1, 2]),
        ),
    ]
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
    original_column_node_ids = [
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11]),
    ]
    original_row_node_ids = [
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11, 12]),
    ]
    original_edge_ids = [
        torch.tensor([19, 20, 21, 22, 25, 30]),
        torch.tensor([10, 15, 17]),
    ]
    node_features = {"x": torch.tensor([7, 6, 2, 2])}
    edge_features = [
        {"x": torch.tensor([[8], [1], [6]])},
        {"x": torch.tensor([[2], [8], [8]])},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
355
356
            gb.SampledSubgraphImpl(
                sampled_csc=csc_formats[i],
357
358
359
360
361
362
363
364
365
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    negative_srcs = torch.tensor([[8], [1], [6]])
    negative_dsts = torch.tensor([[2], [8], [8]])
    input_nodes = torch.tensor([8, 1, 6, 5, 9, 0, 2, 4])
    compacted_node_pairs = (torch.tensor([0, 1, 2]), torch.tensor([3, 4, 5]))
366
367
    compacted_negative_srcs = torch.tensor([[0], [1], [2]])
    compacted_negative_dsts = torch.tensor([[6], [0], [0]])
368
    labels = torch.tensor([0.0, 1.0, 2.0])
369
    # Test minibatch with all attributes.
370
371
372
373
374
375
376
377
378
379
380
381
382
    minibatch = gb.MiniBatch(
        node_pairs=node_pairs,
        sampled_subgraphs=subgraphs,
        labels=labels,
        node_features=node_features,
        edge_features=edge_features,
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
        compacted_node_pairs=compacted_node_pairs,
        input_nodes=input_nodes,
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
383
    dgl_blocks = minibatch.blocks
384
    expect_result = str(
385
        """[Block(num_src_nodes=4, num_dst_nodes=4, num_edges=6), Block(num_src_nodes=3, num_dst_nodes=2, num_edges=3)]"""
386
    )
387
    result = str(dgl_blocks)
388
389
390
    assert result == expect_result, print(result)


391
def test_get_dgl_blocks_hetero():
392
393
394
395
396
397
398
    node_pairs = [
        {
            relation: (torch.tensor([0, 1, 1]), torch.tensor([0, 1, 2])),
            reverse_relation: (torch.tensor([1, 0]), torch.tensor([2, 3])),
        },
        {relation: (torch.tensor([0, 1]), torch.tensor([1, 0]))},
    ]
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    csc_formats = [
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2, 3]),
                indices=torch.tensor([0, 1, 1]),
            ),
            reverse_relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 0, 0, 1, 2]),
                indices=torch.tensor([1, 0]),
            ),
        },
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2]), indices=torch.tensor([1, 0])
            )
        },
    ]
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
    original_column_node_ids = [
        {"B": torch.tensor([10, 11, 12]), "A": torch.tensor([5, 7, 9, 11])},
        {"B": torch.tensor([10, 11])},
    ]
    original_row_node_ids = [
        {
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        {
            "A": torch.tensor([5, 7]),
            "B": torch.tensor([10, 11]),
        },
    ]
    original_edge_ids = [
        {
            relation: torch.tensor([19, 20, 21]),
            reverse_relation: torch.tensor([23, 26]),
        },
        {relation: torch.tensor([10, 12])},
    ]
    node_features = {
        ("A", "x"): torch.tensor([6, 4, 0, 1]),
    }
    edge_features = [
        {(relation, "x"): torch.tensor([4, 2, 4])},
        {(relation, "x"): torch.tensor([0, 6])},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
447
448
            gb.SampledSubgraphImpl(
                sampled_csc=csc_formats[i],
449
450
451
452
453
454
455
456
457
458
459
460
461
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    negative_srcs = {"B": torch.tensor([[8], [1], [6]])}
    negative_dsts = {"B": torch.tensor([[2], [8], [8]])}
    compacted_node_pairs = {
        relation: (torch.tensor([0, 1, 2]), torch.tensor([3, 4, 5])),
        reverse_relation: (torch.tensor([0, 1, 2]), torch.tensor([3, 4, 5])),
    }
    compacted_negative_srcs = {relation: torch.tensor([[0], [1], [2]])}
    compacted_negative_dsts = {relation: torch.tensor([[6], [0], [0]])}
462
    # Test minibatch with all attributes.
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
    minibatch = gb.MiniBatch(
        seed_nodes={"B": torch.tensor([10, 15])},
        node_pairs=node_pairs,
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
        labels={"B": torch.tensor([2, 5])},
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
        compacted_node_pairs=compacted_node_pairs,
        input_nodes={
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
480
    dgl_blocks = minibatch.blocks
481
    expect_result = str(
482
483
484
485
486
487
488
        """[Block(num_src_nodes={'A': 4, 'B': 3},
      num_dst_nodes={'A': 4, 'B': 3},
      num_edges={('A', 'r', 'B'): 3, ('B', 'rr', 'A'): 2},
      metagraph=[('A', 'B', 'r'), ('B', 'A', 'rr')]), Block(num_src_nodes={'A': 2, 'B': 2},
      num_dst_nodes={'B': 2},
      num_edges={('A', 'r', 'B'): 2},
      metagraph=[('A', 'B', 'r')])]"""
489
    )
490
    result = str(dgl_blocks)
491
492
493
    assert result == expect_result, print(result)


494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
@pytest.mark.parametrize(
    "mode", ["neg_graph", "neg_src", "neg_dst", "edge_classification"]
)
def test_minibatch_node_pairs_with_labels(mode):
    # Arrange
    minibatch = create_homo_minibatch()
    minibatch.compacted_node_pairs = (
        torch.tensor([0, 1]),
        torch.tensor([1, 0]),
    )
    if mode == "neg_graph" or mode == "neg_src":
        minibatch.compacted_negative_srcs = torch.tensor([[0, 0], [1, 1]])
    if mode == "neg_graph" or mode == "neg_dst":
        minibatch.compacted_negative_dsts = torch.tensor([[1, 0], [0, 1]])
    if mode == "edge_classification":
        minibatch.labels = torch.tensor([0, 1]).long()
    # Act
    node_pairs, labels = minibatch.node_pairs_with_labels

    # Assert
    if mode == "neg_src":
        expect_node_pairs = (
            torch.tensor([0, 1, 0, 0, 1, 1]),
            torch.tensor([1, 0, 1, 1, 0, 0]),
        )
        expect_labels = torch.tensor([1, 1, 0, 0, 0, 0]).float()
    elif mode != "edge_classification":
        expect_node_pairs = (
            torch.tensor([0, 1, 0, 0, 1, 1]),
            torch.tensor([1, 0, 1, 0, 0, 1]),
        )
        expect_labels = torch.tensor([1, 1, 0, 0, 0, 0]).float()
    else:
        expect_node_pairs = (
            torch.tensor([0, 1]),
            torch.tensor([1, 0]),
        )
        expect_labels = torch.tensor([0, 1]).long()
    assert torch.equal(node_pairs[0], expect_node_pairs[0])
    assert torch.equal(node_pairs[1], expect_node_pairs[1])
    assert torch.equal(labels, expect_labels)


537
def create_homo_minibatch():
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
    csc_formats = [
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 3, 5, 6]),
            indices=torch.tensor([0, 1, 2, 2, 1, 2]),
        ),
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 2, 3]),
            indices=torch.tensor([1, 2, 0]),
        ),
    ]
    original_column_node_ids = [
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11]),
    ]
    original_row_node_ids = [
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11, 12]),
    ]
    original_edge_ids = [
        torch.tensor([19, 20, 21, 22, 25, 30]),
        torch.tensor([10, 15, 17]),
    ]
    node_features = {"x": torch.randint(0, 10, (4,))}
    edge_features = [
        {"x": torch.randint(0, 10, (6,))},
        {"x": torch.randint(0, 10, (3,))},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
            gb.SampledSubgraphImpl(
569
                sampled_csc=csc_formats[i],
570
571
572
573
574
575
576
577
578
579
580
581
582
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    return gb.MiniBatch(
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
        input_nodes=torch.tensor([10, 11, 12, 13]),
    )


583
def create_hetero_minibatch():
584
    sampled_csc = [
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2, 3]),
                indices=torch.tensor([0, 1, 1]),
            ),
            reverse_relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 0, 0, 1, 2]),
                indices=torch.tensor([1, 0]),
            ),
        },
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2]), indices=torch.tensor([1, 0])
            )
        },
    ]
    original_column_node_ids = [
        {"B": torch.tensor([10, 11, 12]), "A": torch.tensor([5, 7, 9, 11])},
        {"B": torch.tensor([10, 11])},
    ]
    original_row_node_ids = [
        {
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        {
            "A": torch.tensor([5, 7]),
            "B": torch.tensor([10, 11]),
        },
    ]
    original_edge_ids = [
        {
            relation: torch.tensor([19, 20, 21]),
            reverse_relation: torch.tensor([23, 26]),
        },
        {relation: torch.tensor([10, 12])},
    ]
    node_features = {
        ("A", "x"): torch.randint(0, 10, (4,)),
    }
    edge_features = [
        {(relation, "x"): torch.randint(0, 10, (3,))},
        {(relation, "x"): torch.randint(0, 10, (2,))},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
            gb.SampledSubgraphImpl(
633
                sampled_csc=sampled_csc[i],
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    return gb.MiniBatch(
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
        input_nodes={
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
    )


650
def check_dgl_blocks_hetero(minibatch, blocks):
651
    etype = gb.etype_str_to_tuple(relation)
652
653
    sampled_csc = [
        subgraph.sampled_csc for subgraph in minibatch.sampled_subgraphs
654
655
656
657
658
659
660
661
662
663
664
665
    ]
    original_edge_ids = [
        subgraph.original_edge_ids for subgraph in minibatch.sampled_subgraphs
    ]
    original_row_node_ids = [
        subgraph.original_row_node_ids
        for subgraph in minibatch.sampled_subgraphs
    ]

    for i, block in enumerate(blocks):
        edges = block.edges(etype=etype)
        dst_ndoes = torch.arange(
666
            0, len(sampled_csc[i][relation].indptr) - 1
667
        ).repeat_interleave(
668
669
            sampled_csc[i][relation].indptr[1:]
            - sampled_csc[i][relation].indptr[:-1]
670
        )
671
        assert torch.equal(edges[0], sampled_csc[i][relation].indices)
672
673
674
675
676
677
        assert torch.equal(edges[1], dst_ndoes)
        assert torch.equal(
            block.edges[etype].data[dgl.EID], original_edge_ids[i][relation]
        )
    edges = blocks[0].edges(etype=gb.etype_str_to_tuple(reverse_relation))
    dst_ndoes = torch.arange(
678
        0, len(sampled_csc[0][reverse_relation].indptr) - 1
679
    ).repeat_interleave(
680
681
        sampled_csc[0][reverse_relation].indptr[1:]
        - sampled_csc[0][reverse_relation].indptr[:-1]
682
    )
683
    assert torch.equal(edges[0], sampled_csc[0][reverse_relation].indices)
684
685
686
687
688
689
690
691
692
    assert torch.equal(edges[1], dst_ndoes)
    assert torch.equal(
        blocks[0].srcdata[dgl.NID]["A"], original_row_node_ids[0]["A"]
    )
    assert torch.equal(
        blocks[0].srcdata[dgl.NID]["B"], original_row_node_ids[0]["B"]
    )


693
def check_dgl_blocks_homo(minibatch, blocks):
694
695
    sampled_csc = [
        subgraph.sampled_csc for subgraph in minibatch.sampled_subgraphs
696
697
698
699
700
701
702
703
704
705
    ]
    original_edge_ids = [
        subgraph.original_edge_ids for subgraph in minibatch.sampled_subgraphs
    ]
    original_row_node_ids = [
        subgraph.original_row_node_ids
        for subgraph in minibatch.sampled_subgraphs
    ]
    for i, block in enumerate(blocks):
        dst_ndoes = torch.arange(
706
            0, len(sampled_csc[i].indptr) - 1
707
        ).repeat_interleave(
708
            sampled_csc[i].indptr[1:] - sampled_csc[i].indptr[:-1]
709
        )
710
        assert torch.equal(block.edges()[0], sampled_csc[i].indices), print(
711
712
713
714
715
716
717
718
719
720
721
            block.edges()
        )
        assert torch.equal(block.edges()[1], dst_ndoes), print(block.edges())
        assert torch.equal(block.edata[dgl.EID], original_edge_ids[i]), print(
            block.edata[dgl.EID]
        )
    assert torch.equal(
        blocks[0].srcdata[dgl.NID], original_row_node_ids[0]
    ), print(blocks[0].srcdata[dgl.NID])


722
def test_dgl_node_classification_without_feature():
723
    # Arrange
724
    minibatch = create_homo_minibatch()
725
726
727
728
    minibatch.node_features = None
    minibatch.labels = None
    minibatch.seed_nodes = torch.tensor([10, 15])
    # Act
729
    dgl_blocks = minibatch.blocks
730
731

    # Assert
732
733
734
    assert len(dgl_blocks) == 2
    assert minibatch.node_features is None
    assert minibatch.labels is None
735
    check_dgl_blocks_homo(minibatch, dgl_blocks)
736
737


738
def test_dgl_node_classification_homo():
739
    # Arrange
740
    minibatch = create_homo_minibatch()
741
742
743
    minibatch.seed_nodes = torch.tensor([10, 15])
    minibatch.labels = torch.tensor([2, 5])
    # Act
744
    dgl_blocks = minibatch.blocks
745
746

    # Assert
747
    assert len(dgl_blocks) == 2
748
    check_dgl_blocks_homo(minibatch, dgl_blocks)
749
750


751
752
def test_dgl_node_classification_hetero():
    minibatch = create_hetero_minibatch()
753
754
    minibatch.labels = {"B": torch.tensor([2, 5])}
    minibatch.seed_nodes = {"B": torch.tensor([10, 15])}
755
756
    # Act
    dgl_blocks = minibatch.blocks
757
758

    # Assert
759
    assert len(dgl_blocks) == 2
760
    check_dgl_blocks_hetero(minibatch, dgl_blocks)
761
762
763


@pytest.mark.parametrize("mode", ["neg_graph", "neg_src", "neg_dst"])
764
def test_dgl_link_predication_homo(mode):
765
    # Arrange
766
    minibatch = create_homo_minibatch()
767
768
769
770
771
772
773
774
775
    minibatch.compacted_node_pairs = (
        torch.tensor([0, 1]),
        torch.tensor([1, 0]),
    )
    if mode == "neg_graph" or mode == "neg_src":
        minibatch.compacted_negative_srcs = torch.tensor([[0, 0], [1, 1]])
    if mode == "neg_graph" or mode == "neg_dst":
        minibatch.compacted_negative_dsts = torch.tensor([[1, 0], [0, 1]])
    # Act
776
    dgl_blocks = minibatch.blocks
777
778

    # Assert
779
    assert len(dgl_blocks) == 2
780
    check_dgl_blocks_homo(minibatch, dgl_blocks)
781
782
    if mode == "neg_graph" or mode == "neg_src":
        assert torch.equal(
783
            minibatch.negative_node_pairs[0],
784
785
786
787
            minibatch.compacted_negative_srcs.view(-1),
        )
    if mode == "neg_graph" or mode == "neg_dst":
        assert torch.equal(
788
            minibatch.negative_node_pairs[1],
789
790
            minibatch.compacted_negative_dsts.view(-1),
        )
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
    (
        node_pairs,
        labels,
    ) = minibatch.node_pairs_with_labels
    if mode == "neg_src":
        expect_node_pairs = (
            torch.tensor([0, 1, 0, 0, 1, 1]),
            torch.tensor([1, 0, 1, 1, 0, 0]),
        )
    else:
        expect_node_pairs = (
            torch.tensor([0, 1, 0, 0, 1, 1]),
            torch.tensor([1, 0, 1, 0, 0, 1]),
        )
    expect_labels = torch.tensor([1, 1, 0, 0, 0, 0]).float()
    assert torch.equal(node_pairs[0], expect_node_pairs[0])
    assert torch.equal(node_pairs[1], expect_node_pairs[1])
    assert torch.equal(labels, expect_labels)
809
810
811


@pytest.mark.parametrize("mode", ["neg_graph", "neg_src", "neg_dst"])
812
def test_dgl_link_predication_hetero(mode):
813
    # Arrange
814
    minibatch = create_hetero_minibatch()
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
    minibatch.compacted_node_pairs = {
        relation: (
            torch.tensor([1, 1]),
            torch.tensor([1, 0]),
        ),
        reverse_relation: (
            torch.tensor([0, 1]),
            torch.tensor([1, 0]),
        ),
    }
    if mode == "neg_graph" or mode == "neg_src":
        minibatch.compacted_negative_srcs = {
            relation: torch.tensor([[2, 0], [1, 2]]),
            reverse_relation: torch.tensor([[1, 2], [0, 2]]),
        }
    if mode == "neg_graph" or mode == "neg_dst":
        minibatch.compacted_negative_dsts = {
            relation: torch.tensor([[1, 3], [2, 1]]),
            reverse_relation: torch.tensor([[2, 1], [3, 1]]),
        }
    # Act
836
    dgl_blocks = minibatch.blocks
837
838

    # Assert
839
    assert len(dgl_blocks) == 2
840
    check_dgl_blocks_hetero(minibatch, dgl_blocks)
841
842
843
    if mode == "neg_graph" or mode == "neg_src":
        for etype, src in minibatch.compacted_negative_srcs.items():
            assert torch.equal(
844
                minibatch.negative_node_pairs[etype][0],
845
846
847
848
849
                src.view(-1),
            )
    if mode == "neg_graph" or mode == "neg_dst":
        for etype, dst in minibatch.compacted_negative_dsts.items():
            assert torch.equal(
850
                minibatch.negative_node_pairs[etype][1],
851
852
                minibatch.compacted_negative_dsts[etype].view(-1),
            )