sampler.py 24.3 KB
Newer Older
1
2
3
4
5
6
import math
import numpy as np
import scipy as sp
import dgl.backend as F
import dgl
import os
7
import sys
8
9
10
import pickle
import time

11
12
from dgl.base import NID, EID

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
def SoftRelationPartition(edges, n, threshold=0.05):
    """This partitions a list of edges to n partitions according to their
    relation types. For any relation with number of edges larger than the
    threshold, its edges will be evenly distributed into all partitions.
    For any relation with number of edges smaller than the threshold, its
    edges will be put into one single partition.

    Algo:
    For r in relations:
        if r.size() > threadold
            Evenly divide edges of r into n parts and put into each relation.
        else
            Find partition with fewest edges, and put edges of r into 
            this partition.

    Parameters
    ----------
    edges : (heads, rels, tails) triple
        Edge list to partition
    n : int
        Number of partitions
    threshold : float
        The threshold of whether a relation is LARGE or SMALL
        Default: 5%

    Returns
    -------
    List of np.array
        Edges of each partition
    List of np.array
        Edge types of each partition
    bool
        Whether there exists some relations belongs to multiple partitions
    """
    heads, rels, tails = edges
    print('relation partition {} edges into {} parts'.format(len(heads), n))
    uniq, cnts = np.unique(rels, return_counts=True)
    idx = np.flip(np.argsort(cnts))
    cnts = cnts[idx]
    uniq = uniq[idx]
    assert cnts[0] > cnts[-1]
    edge_cnts = np.zeros(shape=(n,), dtype=np.int64)
    rel_cnts = np.zeros(shape=(n,), dtype=np.int64)
    rel_dict = {}
    rel_parts = []
    cross_rel_part = []
    for _ in range(n):
        rel_parts.append([])

    large_threshold = int(len(rels) * threshold)
    capacity_per_partition = int(len(rels) / n)
    # ensure any relation larger than the partition capacity will be split
    large_threshold = capacity_per_partition if capacity_per_partition < large_threshold \
                      else large_threshold
    num_cross_part = 0
    for i in range(len(cnts)):
        cnt = cnts[i]
        r = uniq[i]
        r_parts = []
        if cnt > large_threshold:
            avg_part_cnt = (cnt // n) + 1
            num_cross_part += 1
            for j in range(n):
                part_cnt = avg_part_cnt if cnt > avg_part_cnt else cnt
                r_parts.append([j, part_cnt])
                rel_parts[j].append(r)
                edge_cnts[j] += part_cnt
                rel_cnts[j] += 1
                cnt -= part_cnt
            cross_rel_part.append(r)
        else:
            idx = np.argmin(edge_cnts)
            r_parts.append([idx, cnt])
            rel_parts[idx].append(r)
            edge_cnts[idx] += cnt
            rel_cnts[idx] += 1
        rel_dict[r] = r_parts

    for i, edge_cnt in enumerate(edge_cnts):
        print('part {} has {} edges and {} relations'.format(i, edge_cnt, rel_cnts[i]))
    print('{}/{} duplicated relation across partitions'.format(num_cross_part, len(cnts)))

    parts = []
    for i in range(n):
        parts.append([])
        rel_parts[i] = np.array(rel_parts[i])

    for i, r in enumerate(rels):
        r_part = rel_dict[r][0]
        part_idx = r_part[0]
        cnt = r_part[1]
        parts[part_idx].append(i)
        cnt -= 1
        if cnt == 0:
            rel_dict[r].pop(0)
        else:
            rel_dict[r][0][1] = cnt

    for i, part in enumerate(parts):
        parts[i] = np.array(part, dtype=np.int64)
    shuffle_idx = np.concatenate(parts)
    heads[:] = heads[shuffle_idx]
    rels[:] = rels[shuffle_idx]
    tails[:] = tails[shuffle_idx]

    off = 0
    for i, part in enumerate(parts):
        parts[i] = np.arange(off, off + len(part))
        off += len(part)
    cross_rel_part = np.array(cross_rel_part)

    return parts, rel_parts, num_cross_part > 0, cross_rel_part

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
def BalancedRelationPartition(edges, n):
    """This partitions a list of edges based on relations to make sure
    each partition has roughly the same number of edges and relations.
    Algo:
    For r in relations:
      Find partition with fewest edges
      if r.size() > num_of empty_slot
         put edges of r into this partition to fill the partition,
         find next partition with fewest edges to put r in.
      else
         put edges of r into this partition.

    Parameters
    ----------
    edges : (heads, rels, tails) triple
        Edge list to partition
    n : int
        number of partitions

    Returns
    -------
    List of np.array
        Edges of each partition
    List of np.array
        Edge types of each partition
    bool
        Whether there exists some relations belongs to multiple partitions
    """
154
155
156
    heads, rels, tails = edges
    print('relation partition {} edges into {} parts'.format(len(heads), n))
    uniq, cnts = np.unique(rels, return_counts=True)
157
158
159
160
161
162
163
    idx = np.flip(np.argsort(cnts))
    cnts = cnts[idx]
    uniq = uniq[idx]
    assert cnts[0] > cnts[-1]
    edge_cnts = np.zeros(shape=(n,), dtype=np.int64)
    rel_cnts = np.zeros(shape=(n,), dtype=np.int64)
    rel_dict = {}
164
165
166
    rel_parts = []
    for _ in range(n):
        rel_parts.append([])
167
168
169

    max_edges = (len(rels) // n) + 1
    num_cross_part = 0
170
171
172
    for i in range(len(cnts)):
        cnt = cnts[i]
        r = uniq[i]
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        r_parts = []

        while cnt > 0:
            idx = np.argmin(edge_cnts)
            if edge_cnts[idx] + cnt <= max_edges:
                r_parts.append([idx, cnt])
                rel_parts[idx].append(r)
                edge_cnts[idx] += cnt
                rel_cnts[idx] += 1
                cnt = 0
            else:
                cur_cnt = max_edges - edge_cnts[idx]
                r_parts.append([idx, cur_cnt])
                rel_parts[idx].append(r)
                edge_cnts[idx] += cur_cnt
                rel_cnts[idx] += 1
                num_cross_part += 1
                cnt -= cur_cnt
        rel_dict[r] = r_parts

193
194
    for i, edge_cnt in enumerate(edge_cnts):
        print('part {} has {} edges and {} relations'.format(i, edge_cnt, rel_cnts[i]))
195
    print('{}/{} duplicated relation across partitions'.format(num_cross_part, len(cnts)))
196

197
    parts = []
198
    for i in range(n):
199
        parts.append([])
200
        rel_parts[i] = np.array(rel_parts[i])
201

202
    for i, r in enumerate(rels):
203
204
205
        r_part = rel_dict[r][0]
        part_idx = r_part[0]
        cnt = r_part[1]
206
        parts[part_idx].append(i)
207
208
209
210
211
212
        cnt -= 1
        if cnt == 0:
            rel_dict[r].pop(0)
        else:
            rel_dict[r][0][1] = cnt

213
214
    for i, part in enumerate(parts):
        parts[i] = np.array(part, dtype=np.int64)
215
216
217
218
219
220
221
222
223
224
225
    shuffle_idx = np.concatenate(parts)
    heads[:] = heads[shuffle_idx]
    rels[:] = rels[shuffle_idx]
    tails[:] = tails[shuffle_idx]

    off = 0
    for i, part in enumerate(parts):
        parts[i] = np.arange(off, off + len(part))
        off += len(part)

    return parts, rel_parts, num_cross_part > 0
226
227

def RandomPartition(edges, n):
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    """This partitions a list of edges randomly across n partitions

    Parameters
    ----------
    edges : (heads, rels, tails) triple
        Edge list to partition
    n : int
        number of partitions

    Returns
    -------
    List of np.array
        Edges of each partition
    """
242
243
244
    heads, rels, tails = edges
    print('random partition {} edges into {} parts'.format(len(heads), n))
    idx = np.random.permutation(len(heads))
245
246
247
248
    heads[:] = heads[idx]
    rels[:] = rels[idx]
    tails[:] = tails[idx]

249
250
251
252
253
    part_size = int(math.ceil(len(idx) / n))
    parts = []
    for i in range(n):
        start = part_size * i
        end = min(part_size * (i + 1), len(idx))
254
255
        parts.append(idx[start:end])
        print('part {} has {} edges'.format(i, len(parts[-1])))
256
257
    return parts

258
def ConstructGraph(edges, n_entities, args):
259
260
261
262
263
264
265
266
267
268
269
    """Construct Graph for training

    Parameters
    ----------
    edges : (heads, rels, tails) triple
        Edge list
    n_entities : int
        number of entities
    args :
        Global configs.
    """
270
    pickle_name = 'graph_train.pickle'
271
272
273
274
275
    if args.pickle_graph and os.path.exists(os.path.join(args.data_path, args.dataset, pickle_name)):
        with open(os.path.join(args.data_path, args.dataset, pickle_name), 'rb') as graph_file:
            g = pickle.load(graph_file)
            print('Load pickled graph.')
    else:
276
        src, etype_id, dst = edges
277
278
        coo = sp.sparse.coo_matrix((np.ones(len(src)), (src, dst)), shape=[n_entities, n_entities])
        g = dgl.DGLGraph(coo, readonly=True, sort_csr=True)
279
        g.edata['tid'] = F.tensor(etype_id, F.int64)
280
281
282
283
284
285
        if args.pickle_graph:
            with open(os.path.join(args.data_path, args.dataset, pickle_name), 'wb') as graph_file:
                pickle.dump(g, graph_file)
    return g

class TrainDataset(object):
286
287
288
289
290
291
292
293
294
295
296
297
    """Dataset for training

    Parameters
    ----------
    dataset : KGDataset
        Original dataset.
    args :
        Global configs.
    ranks:
        Number of partitions.
    """
    def __init__(self, dataset, args, ranks=64):
298
        triples = dataset.train
299
300
        num_train = len(triples[0])
        print('|Train|:', num_train)
301

302
303
304
305
        if ranks > 1 and args.soft_rel_part:
            self.edge_parts, self.rel_parts, self.cross_part, self.cross_rels = \
            SoftRelationPartition(triples, ranks)
        elif ranks > 1 and args.rel_part:
306
307
            self.edge_parts, self.rel_parts, self.cross_part = \
                BalancedRelationPartition(triples, ranks)
308
        elif ranks > 1:
309
            self.edge_parts = RandomPartition(triples, ranks)
310
            self.cross_part = True
311
        else:
312
            self.edge_parts = [np.arange(num_train)]
313
314
            self.rel_parts = [np.arange(dataset.n_relations)]
            self.cross_part = False
315

316
        self.g = ConstructGraph(triples, dataset.n_entities, args)
317

318
    def create_sampler(self, batch_size, neg_sample_size=2, neg_chunk_size=None, mode='head', num_workers=32,
319
                       shuffle=True, exclude_positive=False, rank=0):
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
        """Create sampler for training

        Parameters
        ----------
        batch_size : int
            Batch size of each mini batch.
        neg_sample_size : int
            How many negative edges sampled for each node.
        neg_chunk_size : int
            How many edges in one chunk. We split one batch into chunks.
        mode : str
            Sampling mode.
        number_workers: int
            Number of workers used in parallel for this sampler
        shuffle : bool
            If True, shuffle the seed edges.
            If False, do not shuffle the seed edges.
            Default: False
        exclude_positive : bool
            If True, exlucde true positive edges in sampled negative edges
            If False, return all sampled negative edges even there are positive edges
            Default: False
        rank : int
            Which partition to sample.

        Returns
        -------
        dgl.contrib.sampling.EdgeSampler
            Edge sampler
        """
350
        EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler')
351
        assert batch_size % neg_sample_size == 0, 'batch_size should be divisible by B'
352
353
        return EdgeSampler(self.g,
                           seed_edges=F.tensor(self.edge_parts[rank]),
354
                           batch_size=batch_size,
355
                           neg_sample_size=int(neg_sample_size/neg_chunk_size),
356
                           chunk_size=neg_chunk_size,
357
358
359
360
361
362
                           negative_mode=mode,
                           num_workers=num_workers,
                           shuffle=shuffle,
                           exclude_positive=exclude_positive,
                           return_false_neg=False)

363

364
class ChunkNegEdgeSubgraph(dgl.DGLGraph):
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
    """Wrapper for negative graph

        Parameters
        ----------
        neg_g : DGLGraph
            Graph holding negative edges.
        num_chunks : int
            Number of chunks in sampled graph.
        chunk_size : int
            Info of chunk_size.
        neg_sample_size : int
            Info of neg_sample_size.
        neg_head : bool
            If True, negative_mode is 'head'
            If False, negative_mode is 'tail'
    """
381
382
    def __init__(self, subg, num_chunks, chunk_size,
                 neg_sample_size, neg_head):
383
384
385
386
387
        super(ChunkNegEdgeSubgraph, self).__init__(graph_data=subg.sgi.graph,
                                                   readonly=True,
                                                   parent=subg._parent)
        self.ndata[NID] = subg.sgi.induced_nodes.tousertensor()
        self.edata[EID] = subg.sgi.induced_edges.tousertensor()
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
        self.subg = subg
        self.num_chunks = num_chunks
        self.chunk_size = chunk_size
        self.neg_sample_size = neg_sample_size
        self.neg_head = neg_head

    @property
    def head_nid(self):
        return self.subg.head_nid

    @property
    def tail_nid(self):
        return self.subg.tail_nid


403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
def create_neg_subgraph(pos_g, neg_g, chunk_size, neg_sample_size, is_chunked,
                        neg_head, num_nodes):
    """KG models need to know the number of chunks, the chunk size and negative sample size
    of a negative subgraph to perform the computation more efficiently.
    This function tries to infer all of these information of the negative subgraph
    and create a wrapper class that contains all of the information.

    Parameters
    ----------
    pos_g : DGLGraph
        Graph holding positive edges.
    neg_g : DGLGraph
        Graph holding negative edges.
    chunk_size : int
        Chunk size of negative subgrap.
    neg_sample_size : int
        Negative sample size of negative subgrap.
    is_chunked : bool
        If True, the sampled batch is chunked.
    neg_head : bool
        If True, negative_mode is 'head'
        If False, negative_mode is 'tail'
    num_nodes: int
        Total number of nodes in the whole graph.

    Returns
    -------
    ChunkNegEdgeSubgraph
        Negative graph wrapper
    """
433
434
435
436
    assert neg_g.number_of_edges() % pos_g.number_of_edges() == 0
    # We use all nodes to create negative edges. Regardless of the sampling algorithm,
    # we can always view the subgraph with one chunk.
    if (neg_head and len(neg_g.head_nid) == num_nodes) \
Da Zheng's avatar
Da Zheng committed
437
            or (not neg_head and len(neg_g.tail_nid) == num_nodes):
438
439
        num_chunks = 1
        chunk_size = pos_g.number_of_edges()
440
    elif is_chunked:
Da Zheng's avatar
Da Zheng committed
441
442
443
444
445
446
447
        # This is probably for evaluation.
        if pos_g.number_of_edges() < chunk_size \
                and neg_g.number_of_edges() % neg_sample_size == 0:
            num_chunks = 1
            chunk_size = pos_g.number_of_edges()
        # This is probably the last batch in the training. Let's ignore it.
        elif pos_g.number_of_edges() % chunk_size > 0:
448
            return None
Da Zheng's avatar
Da Zheng committed
449
450
        else:
            num_chunks = int(pos_g.number_of_edges() / chunk_size)
451
        assert num_chunks * chunk_size == pos_g.number_of_edges()
452
453
454
    else:
        num_chunks = pos_g.number_of_edges()
        chunk_size = 1
455
456
    return ChunkNegEdgeSubgraph(neg_g, num_chunks, chunk_size,
                                neg_sample_size, neg_head)
457
458

class EvalSampler(object):
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
    """Sampler for validation and testing

    Parameters
    ----------
    g : DGLGraph
        Graph containing KG graph
    edges : tensor
        Seed edges
    batch_size : int
        Batch size of each mini batch.
    neg_sample_size : int
        How many negative edges sampled for each node.
    neg_chunk_size : int
        How many edges in one chunk. We split one batch into chunks.
    mode : str
        Sampling mode.
    number_workers: int
        Number of workers used in parallel for this sampler
    filter_false_neg : bool
        If True, exlucde true positive edges in sampled negative edges
        If False, return all sampled negative edges even there are positive edges
        Default: True
    """
    def __init__(self, g, edges, batch_size, neg_sample_size, neg_chunk_size, mode, num_workers=32,
                 filter_false_neg=True):
484
485
486
487
488
        EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler')
        self.sampler = EdgeSampler(g,
                                   batch_size=batch_size,
                                   seed_edges=edges,
                                   neg_sample_size=neg_sample_size,
489
                                   chunk_size=neg_chunk_size,
490
491
492
493
                                   negative_mode=mode,
                                   num_workers=num_workers,
                                   shuffle=False,
                                   exclude_positive=False,
494
                                   relations=g.edata['tid'],
495
                                   return_false_neg=filter_false_neg)
496
497
498
499
        self.sampler_iter = iter(self.sampler)
        self.mode = mode
        self.neg_head = 'head' in mode
        self.g = g
500
        self.filter_false_neg = filter_false_neg
501
        self.neg_chunk_size = neg_chunk_size
502
        self.neg_sample_size = neg_sample_size
503
504
505
506
507

    def __iter__(self):
        return self

    def __next__(self):
508
509
510
511
512
513
514
515
516
        """Get next batch

        Returns
        -------
        DGLGraph
            Sampled positive graph
        ChunkNegEdgeSubgraph
            Negative graph wrapper
        """
517
518
        while True:
            pos_g, neg_g = next(self.sampler_iter)
519
520
            if self.filter_false_neg:
                neg_positive = neg_g.edata['false_neg']
521
522
523
524
525
526
            neg_g = create_neg_subgraph(pos_g, neg_g, 
                                        self.neg_chunk_size, 
                                        self.neg_sample_size, 
                                        'chunk' in self.mode, 
                                        self.neg_head, 
                                        self.g.number_of_nodes())
527
528
529
            if neg_g is not None:
                break

530
531
532
        pos_g.ndata['id'] = pos_g.parent_nid
        neg_g.ndata['id'] = neg_g.parent_nid
        pos_g.edata['id'] = pos_g._parent.edata['tid'][pos_g.parent_eid]
533
534
        if self.filter_false_neg:
            neg_g.edata['bias'] = F.astype(-neg_positive, F.float32)
535
536
537
        return pos_g, neg_g

    def reset(self):
538
539
        """Reset the sampler
        """
540
541
542
543
        self.sampler_iter = iter(self.sampler)
        return self

class EvalDataset(object):
544
545
546
547
548
549
550
551
552
    """Dataset for validation or testing

    Parameters
    ----------
    dataset : KGDataset
        Original dataset.
    args :
        Global configs.
    """
553
554
555
556
557
558
559
    def __init__(self, dataset, args):
        pickle_name = 'graph_all.pickle'
        if args.pickle_graph and os.path.exists(os.path.join(args.data_path, args.dataset, pickle_name)):
            with open(os.path.join(args.data_path, args.dataset, pickle_name), 'rb') as graph_file:
                g = pickle.load(graph_file)
                print('Load pickled graph.')
        else:
560
561
562
563
564
            src = np.concatenate((dataset.train[0], dataset.valid[0], dataset.test[0]))
            etype_id = np.concatenate((dataset.train[1], dataset.valid[1], dataset.test[1]))
            dst = np.concatenate((dataset.train[2], dataset.valid[2], dataset.test[2]))
            coo = sp.sparse.coo_matrix((np.ones(len(src)), (src, dst)),
                                       shape=[dataset.n_entities, dataset.n_entities])
565
            g = dgl.DGLGraph(coo, readonly=True, sort_csr=True)
566
            g.edata['tid'] = F.tensor(etype_id, F.int64)
567
568
569
570
            if args.pickle_graph:
                with open(os.path.join(args.data_path, args.dataset, pickle_name), 'wb') as graph_file:
                    pickle.dump(g, graph_file)
        self.g = g
571
572
573
        self.num_train = len(dataset.train[0])
        self.num_valid = len(dataset.valid[0])
        self.num_test = len(dataset.test[0])
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590

        if args.eval_percent < 1:
            self.valid = np.random.randint(0, self.num_valid,
                    size=(int(self.num_valid * args.eval_percent),)) + self.num_train
        else:
            self.valid = np.arange(self.num_train, self.num_train + self.num_valid)
        print('|valid|:', len(self.valid))

        if args.eval_percent < 1:
            self.test = np.random.randint(0, self.num_test,
                    size=(int(self.num_test * args.eval_percent,)))
            self.test += self.num_train + self.num_valid
        else:
            self.test = np.arange(self.num_train + self.num_valid, self.g.number_of_edges())
        print('|test|:', len(self.test))

    def get_edges(self, eval_type):
591
592
593
594
595
596
597
598
599
600
601
602
        """ Get all edges in this dataset

        Parameters
        ----------
        eval_type : str
            Sampling type, 'valid' for validation and 'test' for testing

        Returns
        -------
        np.array
            Edges
        """
603
604
605
606
607
608
609
        if eval_type == 'valid':
            return self.valid
        elif eval_type == 'test':
            return self.test
        else:
            raise Exception('get invalid type: ' + eval_type)

610
    def create_sampler(self, eval_type, batch_size, neg_sample_size, neg_chunk_size,
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
                       filter_false_neg, mode='head', num_workers=32, rank=0, ranks=1):
        """Create sampler for validation or testing

        Parameters
        ----------
        eval_type : str
            Sampling type, 'valid' for validation and 'test' for testing
        batch_size : int
            Batch size of each mini batch.
        neg_sample_size : int
            How many negative edges sampled for each node.
        neg_chunk_size : int
            How many edges in one chunk. We split one batch into chunks.
        filter_false_neg : bool
            If True, exlucde true positive edges in sampled negative edges
            If False, return all sampled negative edges even there are positive edges
        mode : str
            Sampling mode.
        number_workers: int
            Number of workers used in parallel for this sampler
        rank : int
            Which partition to sample.
        ranks : int
            Total number of partitions.

        Returns
        -------
        dgl.contrib.sampling.EdgeSampler
            Edge sampler
        """
641
642
643
644
        edges = self.get_edges(eval_type)
        beg = edges.shape[0] * rank // ranks
        end = min(edges.shape[0] * (rank + 1) // ranks, edges.shape[0])
        edges = edges[beg: end]
645
        return EvalSampler(self.g, edges, batch_size, neg_sample_size, neg_chunk_size,
646
                           mode, num_workers, filter_false_neg)
647
648

class NewBidirectionalOneShotIterator:
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
    """Grouped samper iterator

    Parameters
    ----------
    dataloader_head : dgl.contrib.sampling.EdgeSampler
        EdgeSampler in head mode
    dataloader_tail : dgl.contrib.sampling.EdgeSampler
        EdgeSampler in tail mode
    neg_chunk_size : int
        How many edges in one chunk. We split one batch into chunks.
    neg_sample_size : int
        How many negative edges sampled for each node.
    is_chunked : bool
        If True, the sampled batch is chunked.
    num_nodes : int
        Total number of nodes in the whole graph.
    """
    def __init__(self, dataloader_head, dataloader_tail, neg_chunk_size, neg_sample_size,
                 is_chunked, num_nodes):
668
669
        self.sampler_head = dataloader_head
        self.sampler_tail = dataloader_tail
670
671
        self.iterator_head = self.one_shot_iterator(dataloader_head, neg_chunk_size,
                                                    neg_sample_size, is_chunked,
672
                                                    True, num_nodes)
673
674
        self.iterator_tail = self.one_shot_iterator(dataloader_tail, neg_chunk_size,
                                                    neg_sample_size, is_chunked,
675
676
677
678
679
680
681
682
683
684
685
686
                                                    False, num_nodes)
        self.step = 0

    def __next__(self):
        self.step += 1
        if self.step % 2 == 0:
            pos_g, neg_g = next(self.iterator_head)
        else:
            pos_g, neg_g = next(self.iterator_tail)
        return pos_g, neg_g

    @staticmethod
687
688
    def one_shot_iterator(dataloader, neg_chunk_size, neg_sample_size, is_chunked,
                          neg_head, num_nodes):
689
690
        while True:
            for pos_g, neg_g in dataloader:
691
692
                neg_g = create_neg_subgraph(pos_g, neg_g, neg_chunk_size, neg_sample_size,
                                            is_chunked, neg_head, num_nodes)
693
694
695
                if neg_g is None:
                    continue

696
697
698
                pos_g.ndata['id'] = pos_g.parent_nid
                neg_g.ndata['id'] = neg_g.parent_nid
                pos_g.edata['id'] = pos_g._parent.edata['tid'][pos_g.parent_eid]
699
                yield pos_g, neg_g