sampler.py 12.6 KB
Newer Older
1
2
3
4
5
6
import math
import numpy as np
import scipy as sp
import dgl.backend as F
import dgl
import os
7
import sys
8
9
10
11
12
13
import pickle
import time

# This partitions a list of edges based on relations to make sure
# each partition has roughly the same number of edges and relations.
def RelationPartition(edges, n):
14
15
16
    heads, rels, tails = edges
    print('relation partition {} edges into {} parts'.format(len(heads), n))
    uniq, cnts = np.unique(rels, return_counts=True)
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
    idx = np.flip(np.argsort(cnts))
    cnts = cnts[idx]
    uniq = uniq[idx]
    assert cnts[0] > cnts[-1]
    edge_cnts = np.zeros(shape=(n,), dtype=np.int64)
    rel_cnts = np.zeros(shape=(n,), dtype=np.int64)
    rel_dict = {}
    for i in range(len(cnts)):
        cnt = cnts[i]
        r = uniq[i]
        idx = np.argmin(edge_cnts)
        rel_dict[r] = idx
        edge_cnts[idx] += cnt
        rel_cnts[idx] += 1
    for i, edge_cnt in enumerate(edge_cnts):
        print('part {} has {} edges and {} relations'.format(i, edge_cnt, rel_cnts[i]))
33

34
35
36
    parts = []
    for _ in range(n):
        parts.append([])
37
38
39
40
41
42
    # let's store the edge index to each partition first.
    for i, r in enumerate(rels):
        part_idx = rel_dict[r]
        parts[part_idx].append(i)
    for i, part in enumerate(parts):
        parts[i] = np.array(part, dtype=np.int64)
43
44
45
    return parts

def RandomPartition(edges, n):
46
47
48
    heads, rels, tails = edges
    print('random partition {} edges into {} parts'.format(len(heads), n))
    idx = np.random.permutation(len(heads))
49
50
51
52
53
    part_size = int(math.ceil(len(idx) / n))
    parts = []
    for i in range(n):
        start = part_size * i
        end = min(part_size * (i + 1), len(idx))
54
55
        parts.append(idx[start:end])
        print('part {} has {} edges'.format(i, len(parts[-1])))
56
57
    return parts

58
59
def ConstructGraph(edges, n_entities, args):
    pickle_name = 'graph_train.pickle'
60
61
62
63
64
    if args.pickle_graph and os.path.exists(os.path.join(args.data_path, args.dataset, pickle_name)):
        with open(os.path.join(args.data_path, args.dataset, pickle_name), 'rb') as graph_file:
            g = pickle.load(graph_file)
            print('Load pickled graph.')
    else:
65
        src, etype_id, dst = edges
66
67
68
69
70
71
72
73
74
75
76
77
        coo = sp.sparse.coo_matrix((np.ones(len(src)), (src, dst)), shape=[n_entities, n_entities])
        g = dgl.DGLGraph(coo, readonly=True, sort_csr=True)
        g.ndata['id'] = F.arange(0, g.number_of_nodes())
        g.edata['id'] = F.tensor(etype_id, F.int64)
        if args.pickle_graph:
            with open(os.path.join(args.data_path, args.dataset, pickle_name), 'wb') as graph_file:
                pickle.dump(g, graph_file)
    return g

class TrainDataset(object):
    def __init__(self, dataset, args, weighting=False, ranks=64):
        triples = dataset.train
78
79
80
        self.g = ConstructGraph(triples, dataset.n_entities, args)
        num_train = len(triples[0])
        print('|Train|:', num_train)
81
        if ranks > 1 and args.rel_part:
82
            self.edge_parts = RelationPartition(triples, ranks)
83
        elif ranks > 1:
84
            self.edge_parts = RandomPartition(triples, ranks)
85
        else:
86
87
88
89
90
91
92
93
94
            self.edge_parts = [np.arange(num_train)]
        if weighting:
            # TODO: weight to be added
            count = self.count_freq(triples)
            subsampling_weight = np.vectorize(
                lambda h, r, t: np.sqrt(1 / (count[(h, r)] + count[(t, -r - 1)]))
            )
            weight = subsampling_weight(src, etype_id, dst)
            self.g.edata['weight'] = F.zerocopy_from_numpy(weight)
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

    def count_freq(self, triples, start=4):
        count = {}
        for head, rel, tail in triples:
            if (head, rel) not in count:
                count[(head, rel)] = start
            else:
                count[(head, rel)] += 1

            if (tail, -rel - 1) not in count:
                count[(tail, -rel - 1)] = start
            else:
                count[(tail, -rel - 1)] += 1
        return count

    def create_sampler(self, batch_size, neg_sample_size=2, mode='head', num_workers=5,
                       shuffle=True, exclude_positive=False, rank=0):
        EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler')
113
114
        return EdgeSampler(self.g,
                           seed_edges=F.tensor(self.edge_parts[rank]),
115
116
117
118
119
120
121
122
                           batch_size=batch_size,
                           neg_sample_size=neg_sample_size,
                           negative_mode=mode,
                           num_workers=num_workers,
                           shuffle=shuffle,
                           exclude_positive=exclude_positive,
                           return_false_neg=False)

123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
class PBGNegEdgeSubgraph(dgl.subgraph.DGLSubGraph):
    def __init__(self, subg, num_chunks, chunk_size,
                 neg_sample_size, neg_head):
        super(PBGNegEdgeSubgraph, self).__init__(subg._parent, subg.sgi)
        self.subg = subg
        self.num_chunks = num_chunks
        self.chunk_size = chunk_size
        self.neg_sample_size = neg_sample_size
        self.neg_head = neg_head

    @property
    def head_nid(self):
        return self.subg.head_nid

    @property
    def tail_nid(self):
        return self.subg.tail_nid


def create_neg_subgraph(pos_g, neg_g, is_pbg, neg_head, num_nodes):
    assert neg_g.number_of_edges() % pos_g.number_of_edges() == 0
    neg_sample_size = int(neg_g.number_of_edges() / pos_g.number_of_edges())
    # We use all nodes to create negative edges. Regardless of the sampling algorithm,
    # we can always view the subgraph with one chunk.
    if (neg_head and len(neg_g.head_nid) == num_nodes) \
       or (not neg_head and len(neg_g.tail_nid) == num_nodes):
        num_chunks = 1
        chunk_size = pos_g.number_of_edges()
    elif is_pbg:
        if pos_g.number_of_edges() < neg_sample_size:
            num_chunks = 1
            chunk_size = pos_g.number_of_edges()
        else:
            # This is probably the last batch. Let's ignore it.
            if pos_g.number_of_edges() % neg_sample_size > 0:
                return None
            num_chunks = int(pos_g.number_of_edges()/ neg_sample_size)
            chunk_size = neg_sample_size
    else:
        num_chunks = pos_g.number_of_edges()
        chunk_size = 1
    return PBGNegEdgeSubgraph(neg_g, num_chunks, chunk_size,
                              neg_sample_size, neg_head)

class EvalSampler(object):
169
170
    def __init__(self, g, edges, batch_size, neg_sample_size, mode, num_workers,
                 filter_false_neg):
171
172
173
174
175
176
177
178
179
180
        EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler')
        self.sampler = EdgeSampler(g,
                                   batch_size=batch_size,
                                   seed_edges=edges,
                                   neg_sample_size=neg_sample_size,
                                   negative_mode=mode,
                                   num_workers=num_workers,
                                   shuffle=False,
                                   exclude_positive=False,
                                   relations=g.edata['id'],
181
                                   return_false_neg=filter_false_neg)
182
183
184
185
        self.sampler_iter = iter(self.sampler)
        self.mode = mode
        self.neg_head = 'head' in mode
        self.g = g
186
        self.filter_false_neg = filter_false_neg
187
188
189
190
191
192
193

    def __iter__(self):
        return self

    def __next__(self):
        while True:
            pos_g, neg_g = next(self.sampler_iter)
194
195
            if self.filter_false_neg:
                neg_positive = neg_g.edata['false_neg']
196
197
198
199
200
201
202
            neg_g = create_neg_subgraph(pos_g, neg_g, 'PBG' in self.mode,
                                        self.neg_head, self.g.number_of_nodes())
            if neg_g is not None:
                break

        pos_g.copy_from_parent()
        neg_g.copy_from_parent()
203
204
        if self.filter_false_neg:
            neg_g.edata['bias'] = F.astype(-neg_positive, F.float32)
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        return pos_g, neg_g

    def reset(self):
        self.sampler_iter = iter(self.sampler)
        return self

class EvalDataset(object):
    def __init__(self, dataset, args):
        pickle_name = 'graph_all.pickle'
        if args.pickle_graph and os.path.exists(os.path.join(args.data_path, args.dataset, pickle_name)):
            with open(os.path.join(args.data_path, args.dataset, pickle_name), 'rb') as graph_file:
                g = pickle.load(graph_file)
                print('Load pickled graph.')
        else:
219
220
221
222
223
            src = np.concatenate((dataset.train[0], dataset.valid[0], dataset.test[0]))
            etype_id = np.concatenate((dataset.train[1], dataset.valid[1], dataset.test[1]))
            dst = np.concatenate((dataset.train[2], dataset.valid[2], dataset.test[2]))
            coo = sp.sparse.coo_matrix((np.ones(len(src)), (src, dst)),
                                       shape=[dataset.n_entities, dataset.n_entities])
224
225
226
227
228
229
230
231
            g = dgl.DGLGraph(coo, readonly=True, sort_csr=True)
            g.ndata['id'] = F.arange(0, g.number_of_nodes())
            g.edata['id'] = F.tensor(etype_id, F.int64)
            if args.pickle_graph:
                with open(os.path.join(args.data_path, args.dataset, pickle_name), 'wb') as graph_file:
                    pickle.dump(g, graph_file)
        self.g = g

232
233
234
        self.num_train = len(dataset.train[0])
        self.num_valid = len(dataset.valid[0])
        self.num_test = len(dataset.test[0])
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

        if args.eval_percent < 1:
            self.valid = np.random.randint(0, self.num_valid,
                    size=(int(self.num_valid * args.eval_percent),)) + self.num_train
        else:
            self.valid = np.arange(self.num_train, self.num_train + self.num_valid)
        print('|valid|:', len(self.valid))

        if args.eval_percent < 1:
            self.test = np.random.randint(0, self.num_test,
                    size=(int(self.num_test * args.eval_percent,)))
            self.test += self.num_train + self.num_valid
        else:
            self.test = np.arange(self.num_train + self.num_valid, self.g.number_of_edges())
        print('|test|:', len(self.test))

        self.num_valid = len(self.valid)
        self.num_test = len(self.test)

    def get_edges(self, eval_type):
        if eval_type == 'valid':
            return self.valid
        elif eval_type == 'test':
            return self.test
        else:
            raise Exception('get invalid type: ' + eval_type)

    def check(self, eval_type):
        edges = self.get_edges(eval_type)
        subg = self.g.edge_subgraph(edges)
        if eval_type == 'valid':
            data = self.valid
        elif eval_type == 'test':
            data = self.test

        subg.copy_from_parent()
        src, dst, eid = subg.all_edges('all', order='eid')
        src_id = subg.ndata['id'][src]
        dst_id = subg.ndata['id'][dst]
        etype = subg.edata['id'][eid]

        orig_src = np.array([t[0] for t in data])
        orig_etype = np.array([t[1] for t in data])
        orig_dst = np.array([t[2] for t in data])
        np.testing.assert_equal(F.asnumpy(src_id), orig_src)
        np.testing.assert_equal(F.asnumpy(dst_id), orig_dst)
        np.testing.assert_equal(F.asnumpy(etype), orig_etype)

283
284
    def create_sampler(self, eval_type, batch_size, neg_sample_size,
                       filter_false_neg, mode='head', num_workers=5, rank=0, ranks=1):
285
286
287
288
        edges = self.get_edges(eval_type)
        beg = edges.shape[0] * rank // ranks
        end = min(edges.shape[0] * (rank + 1) // ranks, edges.shape[0])
        edges = edges[beg: end]
289
290
        return EvalSampler(self.g, edges, batch_size, neg_sample_size,
                           mode, num_workers, filter_false_neg)
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

class NewBidirectionalOneShotIterator:
    def __init__(self, dataloader_head, dataloader_tail, is_pbg, num_nodes):
        self.sampler_head = dataloader_head
        self.sampler_tail = dataloader_tail
        self.iterator_head = self.one_shot_iterator(dataloader_head, is_pbg,
                                                    True, num_nodes)
        self.iterator_tail = self.one_shot_iterator(dataloader_tail, is_pbg,
                                                    False, num_nodes)
        self.step = 0

    def __next__(self):
        self.step += 1
        if self.step % 2 == 0:
            pos_g, neg_g = next(self.iterator_head)
        else:
            pos_g, neg_g = next(self.iterator_tail)
        return pos_g, neg_g

    @staticmethod
    def one_shot_iterator(dataloader, is_pbg, neg_head, num_nodes):
        while True:
            for pos_g, neg_g in dataloader:
                neg_g = create_neg_subgraph(pos_g, neg_g, is_pbg, neg_head, num_nodes)
                if neg_g is None:
                    continue

                pos_g.copy_from_parent()
                neg_g.copy_from_parent()
                yield pos_g, neg_g