sampler.py 12.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import math
import numpy as np
import scipy as sp
import dgl.backend as F
import dgl
import os
import pickle
import time

# This partitions a list of edges based on relations to make sure
# each partition has roughly the same number of edges and relations.
def RelationPartition(edges, n):
    print('relation partition {} edges into {} parts'.format(len(edges), n))
    rel = np.array([r for h, r, t in edges])
    uniq, cnts = np.unique(rel, return_counts=True)
    idx = np.flip(np.argsort(cnts))
    cnts = cnts[idx]
    uniq = uniq[idx]
    assert cnts[0] > cnts[-1]
    edge_cnts = np.zeros(shape=(n,), dtype=np.int64)
    rel_cnts = np.zeros(shape=(n,), dtype=np.int64)
    rel_dict = {}
    for i in range(len(cnts)):
        cnt = cnts[i]
        r = uniq[i]
        idx = np.argmin(edge_cnts)
        rel_dict[r] = idx
        edge_cnts[idx] += cnt
        rel_cnts[idx] += 1
    for i, edge_cnt in enumerate(edge_cnts):
        print('part {} has {} edges and {} relations'.format(i, edge_cnt, rel_cnts[i]))
    parts = []
    for _ in range(n):
        parts.append([])
    for h, r, t in edges:
        idx = rel_dict[r]
        parts[idx].append((h, r, t))
    return parts

def RandomPartition(edges, n):
    print('random partition {} edges into {} parts'.format(len(edges), n))
    idx = np.random.permutation(len(edges))
    part_size = int(math.ceil(len(idx) / n))
    parts = []
    for i in range(n):
        start = part_size * i
        end = min(part_size * (i + 1), len(idx))
        parts.append([edges[i] for i in idx[start:end]])
    return parts

def ConstructGraph(edges, n_entities, i, args):
    pickle_name = 'graph_train_{}.pickle'.format(i)
    if args.pickle_graph and os.path.exists(os.path.join(args.data_path, args.dataset, pickle_name)):
        with open(os.path.join(args.data_path, args.dataset, pickle_name), 'rb') as graph_file:
            g = pickle.load(graph_file)
            print('Load pickled graph.')
    else:
        src = [t[0] for t in edges]
        etype_id = [t[1] for t in edges]
        dst = [t[2] for t in edges]
        coo = sp.sparse.coo_matrix((np.ones(len(src)), (src, dst)), shape=[n_entities, n_entities])
        g = dgl.DGLGraph(coo, readonly=True, sort_csr=True)
        g.ndata['id'] = F.arange(0, g.number_of_nodes())
        g.edata['id'] = F.tensor(etype_id, F.int64)
        if args.pickle_graph:
            with open(os.path.join(args.data_path, args.dataset, pickle_name), 'wb') as graph_file:
                pickle.dump(g, graph_file)
    return g

class TrainDataset(object):
    def __init__(self, dataset, args, weighting=False, ranks=64):
        triples = dataset.train
        print('|Train|:', len(triples))
        if ranks > 1 and args.rel_part:
            triples_list = RelationPartition(triples, ranks)
        elif ranks > 1:
            triples_list = RandomPartition(triples, ranks)
        else:
            triples_list = [triples]
        self.graphs = []
        for i, triples in enumerate(triples_list):
            g = ConstructGraph(triples, dataset.n_entities, i, args)
            if weighting:
                # TODO: weight to be added
                count = self.count_freq(triples)
                subsampling_weight = np.vectorize(
                    lambda h, r, t: np.sqrt(1 / (count[(h, r)] + count[(t, -r - 1)]))
                )
                weight = subsampling_weight(src, etype_id, dst)
                g.edata['weight'] = F.zerocopy_from_numpy(weight)
                # to be added
            self.graphs.append(g)

    def count_freq(self, triples, start=4):
        count = {}
        for head, rel, tail in triples:
            if (head, rel) not in count:
                count[(head, rel)] = start
            else:
                count[(head, rel)] += 1

            if (tail, -rel - 1) not in count:
                count[(tail, -rel - 1)] = start
            else:
                count[(tail, -rel - 1)] += 1
        return count

    def create_sampler(self, batch_size, neg_sample_size=2, mode='head', num_workers=5,
                       shuffle=True, exclude_positive=False, rank=0):
        EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler')
        return EdgeSampler(self.graphs[rank],
                           batch_size=batch_size,
                           neg_sample_size=neg_sample_size,
                           negative_mode=mode,
                           num_workers=num_workers,
                           shuffle=shuffle,
                           exclude_positive=exclude_positive,
                           return_false_neg=False)

class PBGNegEdgeSubgraph(dgl.subgraph.DGLSubGraph):
    def __init__(self, subg, num_chunks, chunk_size,
                 neg_sample_size, neg_head):
        super(PBGNegEdgeSubgraph, self).__init__(subg._parent, subg.sgi)
        self.subg = subg
        self.num_chunks = num_chunks
        self.chunk_size = chunk_size
        self.neg_sample_size = neg_sample_size
        self.neg_head = neg_head

    @property
    def head_nid(self):
        return self.subg.head_nid

    @property
    def tail_nid(self):
        return self.subg.tail_nid


def create_neg_subgraph(pos_g, neg_g, is_pbg, neg_head, num_nodes):
    assert neg_g.number_of_edges() % pos_g.number_of_edges() == 0
    neg_sample_size = int(neg_g.number_of_edges() / pos_g.number_of_edges())
    # We use all nodes to create negative edges. Regardless of the sampling algorithm,
    # we can always view the subgraph with one chunk.
    if (neg_head and len(neg_g.head_nid) == num_nodes) \
       or (not neg_head and len(neg_g.tail_nid) == num_nodes):
        num_chunks = 1
        chunk_size = pos_g.number_of_edges()
    elif is_pbg:
        if pos_g.number_of_edges() < neg_sample_size:
            num_chunks = 1
            chunk_size = pos_g.number_of_edges()
        else:
            # This is probably the last batch. Let's ignore it.
            if pos_g.number_of_edges() % neg_sample_size > 0:
                return None
            num_chunks = int(pos_g.number_of_edges()/ neg_sample_size)
            chunk_size = neg_sample_size
    else:
        num_chunks = pos_g.number_of_edges()
        chunk_size = 1
    return PBGNegEdgeSubgraph(neg_g, num_chunks, chunk_size,
                              neg_sample_size, neg_head)

class EvalSampler(object):
    def __init__(self, g, edges, batch_size, neg_sample_size, mode, num_workers):
        EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler')
        self.sampler = EdgeSampler(g,
                                   batch_size=batch_size,
                                   seed_edges=edges,
                                   neg_sample_size=neg_sample_size,
                                   negative_mode=mode,
                                   num_workers=num_workers,
                                   shuffle=False,
                                   exclude_positive=False,
                                   relations=g.edata['id'],
                                   return_false_neg=True)
        self.sampler_iter = iter(self.sampler)
        self.mode = mode
        self.neg_head = 'head' in mode
        self.g = g

    def __iter__(self):
        return self

    def __next__(self):
        while True:
            pos_g, neg_g = next(self.sampler_iter)
            neg_positive = neg_g.edata['false_neg']
            neg_g = create_neg_subgraph(pos_g, neg_g, 'PBG' in self.mode,
                                        self.neg_head, self.g.number_of_nodes())
            if neg_g is not None:
                break

        pos_g.copy_from_parent()
        neg_g.copy_from_parent()
        neg_g.edata['bias'] = F.astype(-neg_positive, F.float32)
        return pos_g, neg_g

    def reset(self):
        self.sampler_iter = iter(self.sampler)
        return self

class EvalDataset(object):
    def __init__(self, dataset, args):
        triples = dataset.train + dataset.valid + dataset.test
        pickle_name = 'graph_all.pickle'
        if args.pickle_graph and os.path.exists(os.path.join(args.data_path, args.dataset, pickle_name)):
            with open(os.path.join(args.data_path, args.dataset, pickle_name), 'rb') as graph_file:
                g = pickle.load(graph_file)
                print('Load pickled graph.')
        else:
            src = [t[0] for t in triples]
            etype_id = [t[1] for t in triples]
            dst = [t[2] for t in triples]
            coo = sp.sparse.coo_matrix((np.ones(len(src)), (src, dst)), shape=[dataset.n_entities, dataset.n_entities])
            g = dgl.DGLGraph(coo, readonly=True, sort_csr=True)
            g.ndata['id'] = F.arange(0, g.number_of_nodes())
            g.edata['id'] = F.tensor(etype_id, F.int64)
            if args.pickle_graph:
                with open(os.path.join(args.data_path, args.dataset, pickle_name), 'wb') as graph_file:
                    pickle.dump(g, graph_file)
        self.g = g

        self.num_train = len(dataset.train)
        self.num_valid = len(dataset.valid)
        self.num_test = len(dataset.test)

        if args.eval_percent < 1:
            self.valid = np.random.randint(0, self.num_valid,
                    size=(int(self.num_valid * args.eval_percent),)) + self.num_train
        else:
            self.valid = np.arange(self.num_train, self.num_train + self.num_valid)
        print('|valid|:', len(self.valid))

        if args.eval_percent < 1:
            self.test = np.random.randint(0, self.num_test,
                    size=(int(self.num_test * args.eval_percent,)))
            self.test += self.num_train + self.num_valid
        else:
            self.test = np.arange(self.num_train + self.num_valid, self.g.number_of_edges())
        print('|test|:', len(self.test))

        self.num_valid = len(self.valid)
        self.num_test = len(self.test)

    def get_edges(self, eval_type):
        if eval_type == 'valid':
            return self.valid
        elif eval_type == 'test':
            return self.test
        else:
            raise Exception('get invalid type: ' + eval_type)

    def check(self, eval_type):
        edges = self.get_edges(eval_type)
        subg = self.g.edge_subgraph(edges)
        if eval_type == 'valid':
            data = self.valid
        elif eval_type == 'test':
            data = self.test

        subg.copy_from_parent()
        src, dst, eid = subg.all_edges('all', order='eid')
        src_id = subg.ndata['id'][src]
        dst_id = subg.ndata['id'][dst]
        etype = subg.edata['id'][eid]

        orig_src = np.array([t[0] for t in data])
        orig_etype = np.array([t[1] for t in data])
        orig_dst = np.array([t[2] for t in data])
        np.testing.assert_equal(F.asnumpy(src_id), orig_src)
        np.testing.assert_equal(F.asnumpy(dst_id), orig_dst)
        np.testing.assert_equal(F.asnumpy(etype), orig_etype)

    def create_sampler(self, eval_type, batch_size, neg_sample_size, mode='head',
                       num_workers=5, rank=0, ranks=1):
        edges = self.get_edges(eval_type)
        beg = edges.shape[0] * rank // ranks
        end = min(edges.shape[0] * (rank + 1) // ranks, edges.shape[0])
        edges = edges[beg: end]
        print("eval on {} edges".format(len(edges)))
        return EvalSampler(self.g, edges, batch_size, neg_sample_size, mode, num_workers)

class NewBidirectionalOneShotIterator:
    def __init__(self, dataloader_head, dataloader_tail, is_pbg, num_nodes):
        self.sampler_head = dataloader_head
        self.sampler_tail = dataloader_tail
        self.iterator_head = self.one_shot_iterator(dataloader_head, is_pbg,
                                                    True, num_nodes)
        self.iterator_tail = self.one_shot_iterator(dataloader_tail, is_pbg,
                                                    False, num_nodes)
        self.step = 0

    def __next__(self):
        self.step += 1
        if self.step % 2 == 0:
            pos_g, neg_g = next(self.iterator_head)
        else:
            pos_g, neg_g = next(self.iterator_tail)
        return pos_g, neg_g

    @staticmethod
    def one_shot_iterator(dataloader, is_pbg, neg_head, num_nodes):
        while True:
            for pos_g, neg_g in dataloader:
                neg_g = create_neg_subgraph(pos_g, neg_g, is_pbg, neg_head, num_nodes)
                if neg_g is None:
                    continue

                pos_g.copy_from_parent()
                neg_g.copy_from_parent()
                yield pos_g, neg_g