"vscode:/vscode.git/clone" did not exist on "415093335b6314ca5ae45838fb547887fd7c3400"
sampler.py 20 KB
Newer Older
1
2
3
4
5
6
import math
import numpy as np
import scipy as sp
import dgl.backend as F
import dgl
import os
7
import sys
8
9
10
import pickle
import time

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
def BalancedRelationPartition(edges, n):
    """This partitions a list of edges based on relations to make sure
    each partition has roughly the same number of edges and relations.
    Algo:
    For r in relations:
      Find partition with fewest edges
      if r.size() > num_of empty_slot
         put edges of r into this partition to fill the partition,
         find next partition with fewest edges to put r in.
      else
         put edges of r into this partition.

    Parameters
    ----------
    edges : (heads, rels, tails) triple
        Edge list to partition
    n : int
        number of partitions

    Returns
    -------
    List of np.array
        Edges of each partition
    List of np.array
        Edge types of each partition
    bool
        Whether there exists some relations belongs to multiple partitions
    """
39
40
41
    heads, rels, tails = edges
    print('relation partition {} edges into {} parts'.format(len(heads), n))
    uniq, cnts = np.unique(rels, return_counts=True)
42
43
44
45
46
47
48
    idx = np.flip(np.argsort(cnts))
    cnts = cnts[idx]
    uniq = uniq[idx]
    assert cnts[0] > cnts[-1]
    edge_cnts = np.zeros(shape=(n,), dtype=np.int64)
    rel_cnts = np.zeros(shape=(n,), dtype=np.int64)
    rel_dict = {}
49
50
51
    rel_parts = []
    for _ in range(n):
        rel_parts.append([])
52
53
54

    max_edges = (len(rels) // n) + 1
    num_cross_part = 0
55
56
57
    for i in range(len(cnts)):
        cnt = cnts[i]
        r = uniq[i]
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
        r_parts = []

        while cnt > 0:
            idx = np.argmin(edge_cnts)
            if edge_cnts[idx] + cnt <= max_edges:
                r_parts.append([idx, cnt])
                rel_parts[idx].append(r)
                edge_cnts[idx] += cnt
                rel_cnts[idx] += 1
                cnt = 0
            else:
                cur_cnt = max_edges - edge_cnts[idx]
                r_parts.append([idx, cur_cnt])
                rel_parts[idx].append(r)
                edge_cnts[idx] += cur_cnt
                rel_cnts[idx] += 1
                num_cross_part += 1
                cnt -= cur_cnt
        rel_dict[r] = r_parts

78
79
    for i, edge_cnt in enumerate(edge_cnts):
        print('part {} has {} edges and {} relations'.format(i, edge_cnt, rel_cnts[i]))
80
    print('{}/{} duplicated relation across partitions'.format(num_cross_part, len(cnts)))
81

82
    parts = []
83
    for i in range(n):
84
        parts.append([])
85
        rel_parts[i] = np.array(rel_parts[i])
86

87
    for i, r in enumerate(rels):
88
89
90
        r_part = rel_dict[r][0]
        part_idx = r_part[0]
        cnt = r_part[1]
91
        parts[part_idx].append(i)
92
93
94
95
96
97
        cnt -= 1
        if cnt == 0:
            rel_dict[r].pop(0)
        else:
            rel_dict[r][0][1] = cnt

98
99
    for i, part in enumerate(parts):
        parts[i] = np.array(part, dtype=np.int64)
100
101
102
103
104
105
106
107
108
109
110
    shuffle_idx = np.concatenate(parts)
    heads[:] = heads[shuffle_idx]
    rels[:] = rels[shuffle_idx]
    tails[:] = tails[shuffle_idx]

    off = 0
    for i, part in enumerate(parts):
        parts[i] = np.arange(off, off + len(part))
        off += len(part)

    return parts, rel_parts, num_cross_part > 0
111
112

def RandomPartition(edges, n):
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    """This partitions a list of edges randomly across n partitions

    Parameters
    ----------
    edges : (heads, rels, tails) triple
        Edge list to partition
    n : int
        number of partitions

    Returns
    -------
    List of np.array
        Edges of each partition
    """
127
128
129
    heads, rels, tails = edges
    print('random partition {} edges into {} parts'.format(len(heads), n))
    idx = np.random.permutation(len(heads))
130
131
132
133
    heads[:] = heads[idx]
    rels[:] = rels[idx]
    tails[:] = tails[idx]

134
135
136
137
138
    part_size = int(math.ceil(len(idx) / n))
    parts = []
    for i in range(n):
        start = part_size * i
        end = min(part_size * (i + 1), len(idx))
139
140
        parts.append(idx[start:end])
        print('part {} has {} edges'.format(i, len(parts[-1])))
141
142
    return parts

143
def ConstructGraph(edges, n_entities, args):
144
145
146
147
148
149
150
151
152
153
154
    """Construct Graph for training

    Parameters
    ----------
    edges : (heads, rels, tails) triple
        Edge list
    n_entities : int
        number of entities
    args :
        Global configs.
    """
155
    pickle_name = 'graph_train.pickle'
156
157
158
159
160
    if args.pickle_graph and os.path.exists(os.path.join(args.data_path, args.dataset, pickle_name)):
        with open(os.path.join(args.data_path, args.dataset, pickle_name), 'rb') as graph_file:
            g = pickle.load(graph_file)
            print('Load pickled graph.')
    else:
161
        src, etype_id, dst = edges
162
163
        coo = sp.sparse.coo_matrix((np.ones(len(src)), (src, dst)), shape=[n_entities, n_entities])
        g = dgl.DGLGraph(coo, readonly=True, sort_csr=True)
164
        g.edata['tid'] = F.tensor(etype_id, F.int64)
165
166
167
168
169
170
        if args.pickle_graph:
            with open(os.path.join(args.data_path, args.dataset, pickle_name), 'wb') as graph_file:
                pickle.dump(g, graph_file)
    return g

class TrainDataset(object):
171
172
173
174
175
176
177
178
179
180
181
182
    """Dataset for training

    Parameters
    ----------
    dataset : KGDataset
        Original dataset.
    args :
        Global configs.
    ranks:
        Number of partitions.
    """
    def __init__(self, dataset, args, ranks=64):
183
        triples = dataset.train
184
185
        num_train = len(triples[0])
        print('|Train|:', num_train)
186

187
        if ranks > 1 and args.rel_part:
188
189
            self.edge_parts, self.rel_parts, self.cross_part = \
                BalancedRelationPartition(triples, ranks)
190
        elif ranks > 1:
191
            self.edge_parts = RandomPartition(triples, ranks)
192
            self.cross_part = True
193
        else:
194
            self.edge_parts = [np.arange(num_train)]
195
196
            self.rel_parts = [np.arange(dataset.n_relations)]
            self.cross_part = False
197

198
        self.g = ConstructGraph(triples, dataset.n_entities, args)
199

200
    def create_sampler(self, batch_size, neg_sample_size=2, neg_chunk_size=None, mode='head', num_workers=32,
201
                       shuffle=True, exclude_positive=False, rank=0):
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
        """Create sampler for training

        Parameters
        ----------
        batch_size : int
            Batch size of each mini batch.
        neg_sample_size : int
            How many negative edges sampled for each node.
        neg_chunk_size : int
            How many edges in one chunk. We split one batch into chunks.
        mode : str
            Sampling mode.
        number_workers: int
            Number of workers used in parallel for this sampler
        shuffle : bool
            If True, shuffle the seed edges.
            If False, do not shuffle the seed edges.
            Default: False
        exclude_positive : bool
            If True, exlucde true positive edges in sampled negative edges
            If False, return all sampled negative edges even there are positive edges
            Default: False
        rank : int
            Which partition to sample.

        Returns
        -------
        dgl.contrib.sampling.EdgeSampler
            Edge sampler
        """
232
        EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler')
233
        assert batch_size % neg_sample_size == 0, 'batch_size should be divisible by B'
234
235
        return EdgeSampler(self.g,
                           seed_edges=F.tensor(self.edge_parts[rank]),
236
                           batch_size=batch_size,
237
                           neg_sample_size=int(neg_sample_size/neg_chunk_size),
238
                           chunk_size=neg_chunk_size,
239
240
241
242
243
244
                           negative_mode=mode,
                           num_workers=num_workers,
                           shuffle=shuffle,
                           exclude_positive=exclude_positive,
                           return_false_neg=False)

245

246
class ChunkNegEdgeSubgraph(dgl.subgraph.DGLSubGraph):
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    """Wrapper for negative graph

        Parameters
        ----------
        neg_g : DGLGraph
            Graph holding negative edges.
        num_chunks : int
            Number of chunks in sampled graph.
        chunk_size : int
            Info of chunk_size.
        neg_sample_size : int
            Info of neg_sample_size.
        neg_head : bool
            If True, negative_mode is 'head'
            If False, negative_mode is 'tail'
    """
263
264
    def __init__(self, subg, num_chunks, chunk_size,
                 neg_sample_size, neg_head):
265
        super(ChunkNegEdgeSubgraph, self).__init__(subg._parent, subg.sgi)
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
        self.subg = subg
        self.num_chunks = num_chunks
        self.chunk_size = chunk_size
        self.neg_sample_size = neg_sample_size
        self.neg_head = neg_head

    @property
    def head_nid(self):
        return self.subg.head_nid

    @property
    def tail_nid(self):
        return self.subg.tail_nid


281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
def create_neg_subgraph(pos_g, neg_g, chunk_size, neg_sample_size, is_chunked,
                        neg_head, num_nodes):
    """KG models need to know the number of chunks, the chunk size and negative sample size
    of a negative subgraph to perform the computation more efficiently.
    This function tries to infer all of these information of the negative subgraph
    and create a wrapper class that contains all of the information.

    Parameters
    ----------
    pos_g : DGLGraph
        Graph holding positive edges.
    neg_g : DGLGraph
        Graph holding negative edges.
    chunk_size : int
        Chunk size of negative subgrap.
    neg_sample_size : int
        Negative sample size of negative subgrap.
    is_chunked : bool
        If True, the sampled batch is chunked.
    neg_head : bool
        If True, negative_mode is 'head'
        If False, negative_mode is 'tail'
    num_nodes: int
        Total number of nodes in the whole graph.

    Returns
    -------
    ChunkNegEdgeSubgraph
        Negative graph wrapper
    """
311
312
313
314
315
316
317
    assert neg_g.number_of_edges() % pos_g.number_of_edges() == 0
    # We use all nodes to create negative edges. Regardless of the sampling algorithm,
    # we can always view the subgraph with one chunk.
    if (neg_head and len(neg_g.head_nid) == num_nodes) \
       or (not neg_head and len(neg_g.tail_nid) == num_nodes):
        num_chunks = 1
        chunk_size = pos_g.number_of_edges()
318
319
    elif is_chunked:
        if pos_g.number_of_edges() < chunk_size:
320
            return None
321
322
        else:
            # This is probably the last batch. Let's ignore it.
323
            if pos_g.number_of_edges() % chunk_size > 0:
324
                return None
325
            num_chunks = int(pos_g.number_of_edges() / chunk_size)
326
        assert num_chunks * chunk_size == pos_g.number_of_edges()
327
328
329
    else:
        num_chunks = pos_g.number_of_edges()
        chunk_size = 1
330
331
    return ChunkNegEdgeSubgraph(neg_g, num_chunks, chunk_size,
                                neg_sample_size, neg_head)
332
333

class EvalSampler(object):
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
    """Sampler for validation and testing

    Parameters
    ----------
    g : DGLGraph
        Graph containing KG graph
    edges : tensor
        Seed edges
    batch_size : int
        Batch size of each mini batch.
    neg_sample_size : int
        How many negative edges sampled for each node.
    neg_chunk_size : int
        How many edges in one chunk. We split one batch into chunks.
    mode : str
        Sampling mode.
    number_workers: int
        Number of workers used in parallel for this sampler
    filter_false_neg : bool
        If True, exlucde true positive edges in sampled negative edges
        If False, return all sampled negative edges even there are positive edges
        Default: True
    """
    def __init__(self, g, edges, batch_size, neg_sample_size, neg_chunk_size, mode, num_workers=32,
                 filter_false_neg=True):
359
360
361
362
363
        EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler')
        self.sampler = EdgeSampler(g,
                                   batch_size=batch_size,
                                   seed_edges=edges,
                                   neg_sample_size=neg_sample_size,
364
                                   chunk_size=neg_chunk_size,
365
366
367
368
                                   negative_mode=mode,
                                   num_workers=num_workers,
                                   shuffle=False,
                                   exclude_positive=False,
369
                                   relations=g.edata['tid'],
370
                                   return_false_neg=filter_false_neg)
371
372
373
374
        self.sampler_iter = iter(self.sampler)
        self.mode = mode
        self.neg_head = 'head' in mode
        self.g = g
375
        self.filter_false_neg = filter_false_neg
376
        self.neg_chunk_size = neg_chunk_size
377
        self.neg_sample_size = neg_sample_size
378
379
380
381
382

    def __iter__(self):
        return self

    def __next__(self):
383
384
385
386
387
388
389
390
391
        """Get next batch

        Returns
        -------
        DGLGraph
            Sampled positive graph
        ChunkNegEdgeSubgraph
            Negative graph wrapper
        """
392
393
        while True:
            pos_g, neg_g = next(self.sampler_iter)
394
395
            if self.filter_false_neg:
                neg_positive = neg_g.edata['false_neg']
396
397
398
399
400
401
            neg_g = create_neg_subgraph(pos_g, neg_g, 
                                        self.neg_chunk_size, 
                                        self.neg_sample_size, 
                                        'chunk' in self.mode, 
                                        self.neg_head, 
                                        self.g.number_of_nodes())
402
403
404
            if neg_g is not None:
                break

405
406
407
        pos_g.ndata['id'] = pos_g.parent_nid
        neg_g.ndata['id'] = neg_g.parent_nid
        pos_g.edata['id'] = pos_g._parent.edata['tid'][pos_g.parent_eid]
408
409
        if self.filter_false_neg:
            neg_g.edata['bias'] = F.astype(-neg_positive, F.float32)
410
411
412
        return pos_g, neg_g

    def reset(self):
413
414
        """Reset the sampler
        """
415
416
417
418
        self.sampler_iter = iter(self.sampler)
        return self

class EvalDataset(object):
419
420
421
422
423
424
425
426
427
    """Dataset for validation or testing

    Parameters
    ----------
    dataset : KGDataset
        Original dataset.
    args :
        Global configs.
    """
428
429
430
431
432
433
434
    def __init__(self, dataset, args):
        pickle_name = 'graph_all.pickle'
        if args.pickle_graph and os.path.exists(os.path.join(args.data_path, args.dataset, pickle_name)):
            with open(os.path.join(args.data_path, args.dataset, pickle_name), 'rb') as graph_file:
                g = pickle.load(graph_file)
                print('Load pickled graph.')
        else:
435
436
437
438
439
            src = np.concatenate((dataset.train[0], dataset.valid[0], dataset.test[0]))
            etype_id = np.concatenate((dataset.train[1], dataset.valid[1], dataset.test[1]))
            dst = np.concatenate((dataset.train[2], dataset.valid[2], dataset.test[2]))
            coo = sp.sparse.coo_matrix((np.ones(len(src)), (src, dst)),
                                       shape=[dataset.n_entities, dataset.n_entities])
440
            g = dgl.DGLGraph(coo, readonly=True, sort_csr=True)
441
            g.edata['tid'] = F.tensor(etype_id, F.int64)
442
443
444
445
            if args.pickle_graph:
                with open(os.path.join(args.data_path, args.dataset, pickle_name), 'wb') as graph_file:
                    pickle.dump(g, graph_file)
        self.g = g
446
447
448
        self.num_train = len(dataset.train[0])
        self.num_valid = len(dataset.valid[0])
        self.num_test = len(dataset.test[0])
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465

        if args.eval_percent < 1:
            self.valid = np.random.randint(0, self.num_valid,
                    size=(int(self.num_valid * args.eval_percent),)) + self.num_train
        else:
            self.valid = np.arange(self.num_train, self.num_train + self.num_valid)
        print('|valid|:', len(self.valid))

        if args.eval_percent < 1:
            self.test = np.random.randint(0, self.num_test,
                    size=(int(self.num_test * args.eval_percent,)))
            self.test += self.num_train + self.num_valid
        else:
            self.test = np.arange(self.num_train + self.num_valid, self.g.number_of_edges())
        print('|test|:', len(self.test))

    def get_edges(self, eval_type):
466
467
468
469
470
471
472
473
474
475
476
477
        """ Get all edges in this dataset

        Parameters
        ----------
        eval_type : str
            Sampling type, 'valid' for validation and 'test' for testing

        Returns
        -------
        np.array
            Edges
        """
478
479
480
481
482
483
484
        if eval_type == 'valid':
            return self.valid
        elif eval_type == 'test':
            return self.test
        else:
            raise Exception('get invalid type: ' + eval_type)

485
    def create_sampler(self, eval_type, batch_size, neg_sample_size, neg_chunk_size,
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
                       filter_false_neg, mode='head', num_workers=32, rank=0, ranks=1):
        """Create sampler for validation or testing

        Parameters
        ----------
        eval_type : str
            Sampling type, 'valid' for validation and 'test' for testing
        batch_size : int
            Batch size of each mini batch.
        neg_sample_size : int
            How many negative edges sampled for each node.
        neg_chunk_size : int
            How many edges in one chunk. We split one batch into chunks.
        filter_false_neg : bool
            If True, exlucde true positive edges in sampled negative edges
            If False, return all sampled negative edges even there are positive edges
        mode : str
            Sampling mode.
        number_workers: int
            Number of workers used in parallel for this sampler
        rank : int
            Which partition to sample.
        ranks : int
            Total number of partitions.

        Returns
        -------
        dgl.contrib.sampling.EdgeSampler
            Edge sampler
        """
516
517
518
519
        edges = self.get_edges(eval_type)
        beg = edges.shape[0] * rank // ranks
        end = min(edges.shape[0] * (rank + 1) // ranks, edges.shape[0])
        edges = edges[beg: end]
520
        return EvalSampler(self.g, edges, batch_size, neg_sample_size, neg_chunk_size,
521
                           mode, num_workers, filter_false_neg)
522
523

class NewBidirectionalOneShotIterator:
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
    """Grouped samper iterator

    Parameters
    ----------
    dataloader_head : dgl.contrib.sampling.EdgeSampler
        EdgeSampler in head mode
    dataloader_tail : dgl.contrib.sampling.EdgeSampler
        EdgeSampler in tail mode
    neg_chunk_size : int
        How many edges in one chunk. We split one batch into chunks.
    neg_sample_size : int
        How many negative edges sampled for each node.
    is_chunked : bool
        If True, the sampled batch is chunked.
    num_nodes : int
        Total number of nodes in the whole graph.
    """
    def __init__(self, dataloader_head, dataloader_tail, neg_chunk_size, neg_sample_size,
                 is_chunked, num_nodes):
543
544
        self.sampler_head = dataloader_head
        self.sampler_tail = dataloader_tail
545
546
        self.iterator_head = self.one_shot_iterator(dataloader_head, neg_chunk_size,
                                                    neg_sample_size, is_chunked,
547
                                                    True, num_nodes)
548
549
        self.iterator_tail = self.one_shot_iterator(dataloader_tail, neg_chunk_size,
                                                    neg_sample_size, is_chunked,
550
551
552
553
554
555
556
557
558
559
560
561
                                                    False, num_nodes)
        self.step = 0

    def __next__(self):
        self.step += 1
        if self.step % 2 == 0:
            pos_g, neg_g = next(self.iterator_head)
        else:
            pos_g, neg_g = next(self.iterator_tail)
        return pos_g, neg_g

    @staticmethod
562
563
    def one_shot_iterator(dataloader, neg_chunk_size, neg_sample_size, is_chunked,
                          neg_head, num_nodes):
564
565
        while True:
            for pos_g, neg_g in dataloader:
566
567
                neg_g = create_neg_subgraph(pos_g, neg_g, neg_chunk_size, neg_sample_size,
                                            is_chunked, neg_head, num_nodes)
568
569
570
                if neg_g is None:
                    continue

571
572
573
                pos_g.ndata['id'] = pos_g.parent_nid
                neg_g.ndata['id'] = neg_g.parent_nid
                pos_g.edata['id'] = pos_g._parent.edata['tid'][pos_g.parent_eid]
574
                yield pos_g, neg_g