train_full.py 5.59 KB
Newer Older
hbsun2113's avatar
hbsun2113 committed
1
2
3
4
5
6
7
8
9
"""
Inductive Representation Learning on Large Graphs
Paper: http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
Code: https://github.com/williamleif/graphsage-simple
Simple reference implementation of GraphSAGE.
"""
import argparse
import time
import numpy as np
10
import networkx as nx
hbsun2113's avatar
hbsun2113 committed
11
12
13
14
15
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
16
from dgl.nn.pytorch.conv import SAGEConv
hbsun2113's avatar
hbsun2113 committed
17
18
19
20
21
22
23
24
25
26
27
28
29


class GraphSAGE(nn.Module):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout,
                 aggregator_type):
        super(GraphSAGE, self).__init__()
        self.layers = nn.ModuleList()
30
31
        self.dropout = nn.Dropout(dropout)
        self.activation = activation
hbsun2113's avatar
hbsun2113 committed
32
33

        # input layer
34
        self.layers.append(SAGEConv(in_feats, n_hidden, aggregator_type))
hbsun2113's avatar
hbsun2113 committed
35
36
        # hidden layers
        for i in range(n_layers - 1):
37
            self.layers.append(SAGEConv(n_hidden, n_hidden, aggregator_type))
hbsun2113's avatar
hbsun2113 committed
38
        # output layer
39
40
41
42
43
44
45
46
47
        self.layers.append(SAGEConv(n_hidden, n_classes, aggregator_type)) # activation None

    def forward(self, graph, inputs):
        h = self.dropout(inputs)
        for l, layer in enumerate(self.layers):
            h = layer(graph, h)
            if l != len(self.layers) - 1:
                h = self.activation(h)
                h = self.dropout(h)
hbsun2113's avatar
hbsun2113 committed
48
49
50
        return h


51
def evaluate(model, graph, features, labels, mask):
hbsun2113's avatar
hbsun2113 committed
52
53
    model.eval()
    with torch.no_grad():
54
        logits = model(graph, features)
hbsun2113's avatar
hbsun2113 committed
55
56
57
58
59
60
61
62
63
64
65
        logits = logits[mask]
        labels = labels[mask]
        _, indices = torch.max(logits, dim=1)
        correct = torch.sum(indices == labels)
        return correct.item() * 1.0 / len(labels)

def main(args):
    # load and preprocess dataset
    data = load_data(args)
    features = torch.FloatTensor(data.features)
    labels = torch.LongTensor(data.labels)
66
67
68
69
70
71
72
73
    if hasattr(torch, 'BoolTensor'):
        train_mask = torch.BoolTensor(data.train_mask)
        val_mask = torch.BoolTensor(data.val_mask)
        test_mask = torch.BoolTensor(data.test_mask)
    else:
        train_mask = torch.ByteTensor(data.train_mask)
        val_mask = torch.ByteTensor(data.val_mask)
        test_mask = torch.ByteTensor(data.test_mask)
hbsun2113's avatar
hbsun2113 committed
74
75
76
77
78
79
80
81
82
83
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes,
Zihao Ye's avatar
Zihao Ye committed
84
85
86
           train_mask.int().sum().item(),
           val_mask.int().sum().item(),
           test_mask.int().sum().item()))
hbsun2113's avatar
hbsun2113 committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100

    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        torch.cuda.set_device(args.gpu)
        features = features.cuda()
        labels = labels.cuda()
        train_mask = train_mask.cuda()
        val_mask = val_mask.cuda()
        test_mask = test_mask.cuda()
        print("use cuda:", args.gpu)

    # graph preprocess and calculate normalization factor
101
    g = data.graph
102
    g.remove_edges_from(nx.selfloop_edges(g))
103
    g = DGLGraph(g)
hbsun2113's avatar
hbsun2113 committed
104
105
106
    n_edges = g.number_of_edges()

    # create GraphSAGE model
107
    model = GraphSAGE(in_feats,
hbsun2113's avatar
hbsun2113 committed
108
109
110
111
112
                      args.n_hidden,
                      n_classes,
                      args.n_layers,
                      F.relu,
                      args.dropout,
113
                      args.aggregator_type)
hbsun2113's avatar
hbsun2113 committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127

    if cuda:
        model.cuda()

    # use optimizer
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        model.train()
        if epoch >= 3:
            t0 = time.time()
        # forward
128
129
        logits = model(g, features)
        loss = F.cross_entropy(logits[train_mask], labels[train_mask])
hbsun2113's avatar
hbsun2113 committed
130
131
132
133
134
135
136
137

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch >= 3:
            dur.append(time.time() - t0)

138
        acc = evaluate(model, g, features, labels, val_mask)
hbsun2113's avatar
hbsun2113 committed
139
140
141
142
143
        print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
              "ETputs(KTEPS) {:.2f}".format(epoch, np.mean(dur), loss.item(),
                                            acc, n_edges / np.mean(dur) / 1000))

    print()
144
    acc = evaluate(model, g, features, labels, test_mask)
hbsun2113's avatar
hbsun2113 committed
145
146
147
148
    print("Test Accuracy {:.4f}".format(acc))


if __name__ == '__main__':
149
    parser = argparse.ArgumentParser(description='GraphSAGE')
hbsun2113's avatar
hbsun2113 committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    register_data_args(parser)
    parser.add_argument("--dropout", type=float, default=0.5,
                        help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
                        help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
                        help="learning rate")
    parser.add_argument("--n-epochs", type=int, default=200,
                        help="number of training epochs")
    parser.add_argument("--n-hidden", type=int, default=16,
                        help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
                        help="number of hidden gcn layers")
    parser.add_argument("--weight-decay", type=float, default=5e-4,
                        help="Weight for L2 loss")
165
166
    parser.add_argument("--aggregator-type", type=str, default="gcn",
                        help="Aggregator type: mean/gcn/pool/lstm")
hbsun2113's avatar
hbsun2113 committed
167
168
169
170
    args = parser.parse_args()
    print(args)

    main(args)