test_mp_dataloader.py 26.7 KB
Newer Older
1
import multiprocessing as mp
Rhett Ying's avatar
Rhett Ying committed
2
3
import os
import tempfile
4
import time
5
import unittest
Rhett Ying's avatar
Rhett Ying committed
6

7
import backend as F
Rhett Ying's avatar
Rhett Ying committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import dgl
import numpy as np
import pytest
import torch as th
from dgl.data import CitationGraphDataset
from dgl.distributed import (
    DistDataLoader,
    DistGraph,
    DistGraphServer,
    load_partition,
    partition_graph,
)
from scipy import sparse as spsp
from utils import generate_ip_config, reset_envs

23
24

class NeighborSampler(object):
25
26
27
28
29
30
31
32
    def __init__(
        self,
        g,
        fanouts,
        sample_neighbors,
        use_graphbolt=False,
        return_eids=False,
    ):
33
34
35
        self.g = g
        self.fanouts = fanouts
        self.sample_neighbors = sample_neighbors
36
37
        self.use_graphbolt = use_graphbolt
        self.return_eids = return_eids
38
39
40

    def sample_blocks(self, seeds):
        import torch as th
Rhett Ying's avatar
Rhett Ying committed
41

42
43
44
45
46
        seeds = th.LongTensor(np.asarray(seeds))
        blocks = []
        for fanout in self.fanouts:
            # For each seed node, sample ``fanout`` neighbors.
            frontier = self.sample_neighbors(
47
                self.g, seeds, fanout, use_graphbolt=self.use_graphbolt
Rhett Ying's avatar
Rhett Ying committed
48
49
50
            )
            # Then we compact the frontier into a bipartite graph for
            # message passing.
51
52
53
            block = dgl.to_block(frontier, seeds)
            # Obtain the seed nodes for next layer.
            seeds = block.srcdata[dgl.NID]
54
55
56
            if frontier.num_edges() > 0:
                if not self.use_graphbolt or self.return_eids:
                    block.edata[dgl.EID] = frontier.edata[dgl.EID]
57
58
59
60
61

            blocks.insert(0, block)
        return blocks


Rhett Ying's avatar
Rhett Ying committed
62
63
64
65
66
67
def start_server(
    rank,
    ip_config,
    part_config,
    disable_shared_mem,
    num_clients,
68
    use_graphbolt=False,
Rhett Ying's avatar
Rhett Ying committed
69
70
71
72
73
74
75
76
77
78
):
    print("server: #clients=" + str(num_clients))
    g = DistGraphServer(
        rank,
        ip_config,
        1,
        num_clients,
        part_config,
        disable_shared_mem=disable_shared_mem,
        graph_format=["csc", "coo"],
79
        use_graphbolt=use_graphbolt,
Rhett Ying's avatar
Rhett Ying committed
80
    )
81
82
83
    g.start()


Rhett Ying's avatar
Rhett Ying committed
84
85
86
87
88
89
90
91
def start_dist_dataloader(
    rank,
    ip_config,
    part_config,
    num_server,
    drop_last,
    orig_nid,
    orig_eid,
92
93
    use_graphbolt=False,
    return_eids=False,
Rhett Ying's avatar
Rhett Ying committed
94
95
):
    dgl.distributed.initialize(ip_config)
96
    gpb = None
97
    disable_shared_mem = num_server > 1
98
    if disable_shared_mem:
Rhett Ying's avatar
Rhett Ying committed
99
        _, _, _, gpb, _, _, _ = load_partition(part_config, rank)
100
101
102
    num_nodes_to_sample = 202
    batch_size = 32
    train_nid = th.arange(num_nodes_to_sample)
103
104
105
106
107
108
    dist_graph = DistGraph(
        "test_sampling",
        gpb=gpb,
        part_config=part_config,
        use_graphbolt=use_graphbolt,
    )
109

110
    # Create sampler
Rhett Ying's avatar
Rhett Ying committed
111
    sampler = NeighborSampler(
112
113
114
115
116
        dist_graph,
        [5, 10],
        dgl.distributed.sample_neighbors,
        use_graphbolt=use_graphbolt,
        return_eids=return_eids,
Rhett Ying's avatar
Rhett Ying committed
117
    )
118

119
120
121
    # Enable santity check in distributed sampling.
    os.environ["DGL_DIST_DEBUG"] = "1"

122
123
124
125
126
127
128
129
    # We need to test creating DistDataLoader multiple times.
    for i in range(2):
        # Create DataLoader for constructing blocks
        dataloader = DistDataLoader(
            dataset=train_nid.numpy(),
            batch_size=batch_size,
            collate_fn=sampler.sample_blocks,
            shuffle=False,
Rhett Ying's avatar
Rhett Ying committed
130
131
            drop_last=drop_last,
        )
132
133
134
135

        groundtruth_g = CitationGraphDataset("cora")[0]
        max_nid = []

136
        for _ in range(2):
Rhett Ying's avatar
Rhett Ying committed
137
138
139
            for idx, blocks in zip(
                range(0, num_nodes_to_sample, batch_size), dataloader
            ):
140
                block = blocks[-1]
Rhett Ying's avatar
Rhett Ying committed
141
                o_src, o_dst = block.edges()
142
143
                src_nodes_id = block.srcdata[dgl.NID][o_src]
                dst_nodes_id = block.dstdata[dgl.NID][o_dst]
144
145
146
147
                max_nid.append(np.max(F.asnumpy(dst_nodes_id)))

                src_nodes_id = orig_nid[src_nodes_id]
                dst_nodes_id = orig_nid[dst_nodes_id]
Rhett Ying's avatar
Rhett Ying committed
148
149
150
                has_edges = groundtruth_g.has_edges_between(
                    src_nodes_id, dst_nodes_id
                )
151
                assert np.all(F.asnumpy(has_edges))
152
153
154
155
156
157
158
159
160
161

                if use_graphbolt and not return_eids:
                    continue
                eids = orig_eid[block.edata[dgl.EID]]
                expected_eids = groundtruth_g.edge_ids(
                    src_nodes_id, dst_nodes_id
                )
                assert th.equal(
                    eids, expected_eids
                ), f"{eids} != {expected_eids}"
162
            if drop_last:
Rhett Ying's avatar
Rhett Ying committed
163
164
165
166
167
168
                assert (
                    np.max(max_nid)
                    == num_nodes_to_sample
                    - 1
                    - num_nodes_to_sample % batch_size
                )
169
170
            else:
                assert np.max(max_nid) == num_nodes_to_sample - 1
171
    del dataloader
Rhett Ying's avatar
Rhett Ying committed
172
173
    # this is needed since there's two test here in one process
    dgl.distributed.exit_client()
174
175


Rhett Ying's avatar
Rhett Ying committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
def test_standalone():
    reset_envs()
    with tempfile.TemporaryDirectory() as test_dir:
        ip_config = os.path.join(test_dir, "ip_config.txt")
        generate_ip_config(ip_config, 1, 1)

        g = CitationGraphDataset("cora")[0]
        print(g.idtype)
        num_parts = 1
        num_hops = 1

        orig_nid, orig_eid = partition_graph(
            g,
            "test_sampling",
            num_parts,
            test_dir,
            num_hops=num_hops,
            part_method="metis",
            return_mapping=True,
        )
        part_config = os.path.join(test_dir, "test_sampling.json")
        os.environ["DGL_DIST_MODE"] = "standalone"
        try:
            start_dist_dataloader(
                0, ip_config, part_config, 1, True, orig_nid, orig_eid
            )
        except Exception as e:
            print(e)


def start_dist_neg_dataloader(
    rank,
    ip_config,
    part_config,
    num_server,
    num_workers,
    orig_nid,
    groundtruth_g,
):
215
216
    import dgl
    import torch as th
Rhett Ying's avatar
Rhett Ying committed
217
218

    dgl.distributed.initialize(ip_config)
219
220
221
    gpb = None
    disable_shared_mem = num_server > 1
    if disable_shared_mem:
Rhett Ying's avatar
Rhett Ying committed
222
        _, _, _, gpb, _, _, _ = load_partition(part_config, rank)
223
224
    num_edges_to_sample = 202
    batch_size = 32
Rhett Ying's avatar
Rhett Ying committed
225
    dist_graph = DistGraph("test_mp", gpb=gpb, part_config=part_config)
226
227
228
229
230
231
232
233
    assert len(dist_graph.ntypes) == len(groundtruth_g.ntypes)
    assert len(dist_graph.etypes) == len(groundtruth_g.etypes)
    if len(dist_graph.etypes) == 1:
        train_eid = th.arange(num_edges_to_sample)
    else:
        train_eid = {dist_graph.etypes[0]: th.arange(num_edges_to_sample)}

    for i in range(num_server):
Rhett Ying's avatar
Rhett Ying committed
234
        part, _, _, _, _, _, _ = load_partition(part_config, i)
235
236

    num_negs = 5
Rhett Ying's avatar
Rhett Ying committed
237
238
239
240
241
242
243
244
245
246
247
248
    sampler = dgl.dataloading.MultiLayerNeighborSampler([5, 10])
    negative_sampler = dgl.dataloading.negative_sampler.Uniform(num_negs)
    dataloader = dgl.dataloading.DistEdgeDataLoader(
        dist_graph,
        train_eid,
        sampler,
        batch_size=batch_size,
        negative_sampler=negative_sampler,
        shuffle=True,
        drop_last=False,
        num_workers=num_workers,
    )
249
    for _ in range(2):
Rhett Ying's avatar
Rhett Ying committed
250
251
252
        for _, (_, pos_graph, neg_graph, blocks) in zip(
            range(0, num_edges_to_sample, batch_size), dataloader
        ):
253
254
            block = blocks[-1]
            for src_type, etype, dst_type in block.canonical_etypes:
Rhett Ying's avatar
Rhett Ying committed
255
                o_src, o_dst = block.edges(etype=etype)
256
257
258
259
                src_nodes_id = block.srcnodes[src_type].data[dgl.NID][o_src]
                dst_nodes_id = block.dstnodes[dst_type].data[dgl.NID][o_dst]
                src_nodes_id = orig_nid[src_type][src_nodes_id]
                dst_nodes_id = orig_nid[dst_type][dst_nodes_id]
Rhett Ying's avatar
Rhett Ying committed
260
261
262
                has_edges = groundtruth_g.has_edges_between(
                    src_nodes_id, dst_nodes_id, etype=etype
                )
263
                assert np.all(F.asnumpy(has_edges))
Rhett Ying's avatar
Rhett Ying committed
264
265
266
267
268
269
270
271
                assert np.all(
                    F.asnumpy(block.dstnodes[dst_type].data[dgl.NID])
                    == F.asnumpy(pos_graph.nodes[dst_type].data[dgl.NID])
                )
                assert np.all(
                    F.asnumpy(block.dstnodes[dst_type].data[dgl.NID])
                    == F.asnumpy(neg_graph.nodes[dst_type].data[dgl.NID])
                )
272
273
274
                assert pos_graph.num_edges() * num_negs == neg_graph.num_edges()

    del dataloader
Rhett Ying's avatar
Rhett Ying committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    # this is needed since there's two test here in one process
    dgl.distributed.exit_client()


def check_neg_dataloader(g, num_server, num_workers):
    with tempfile.TemporaryDirectory() as test_dir:
        ip_config = "ip_config.txt"
        generate_ip_config(ip_config, num_server, num_server)

        num_parts = num_server
        num_hops = 1
        orig_nid, orig_eid = partition_graph(
            g,
            "test_sampling",
            num_parts,
            test_dir,
            num_hops=num_hops,
            part_method="metis",
            return_mapping=True,
        )
        part_config = os.path.join(test_dir, "test_sampling.json")
        if not isinstance(orig_nid, dict):
            orig_nid = {g.ntypes[0]: orig_nid}
        if not isinstance(orig_eid, dict):
            orig_eid = {g.etypes[0]: orig_eid}

        pserver_list = []
        ctx = mp.get_context("spawn")
        for i in range(num_server):
            p = ctx.Process(
                target=start_server,
                args=(
                    i,
                    ip_config,
                    part_config,
                    num_server > 1,
                    num_workers + 1,
                ),
            )
            p.start()
            time.sleep(1)
            pserver_list.append(p)
        os.environ["DGL_DIST_MODE"] = "distributed"
        os.environ["DGL_NUM_SAMPLER"] = str(num_workers)
        ptrainer_list = []

        p = ctx.Process(
            target=start_dist_neg_dataloader,
            args=(
                0,
                ip_config,
                part_config,
                num_server,
                num_workers,
                orig_nid,
                g,
            ),
        )
333
        p.start()
Rhett Ying's avatar
Rhett Ying committed
334
335
336
337
        ptrainer_list.append(p)

        for p in pserver_list:
            p.join()
338
            assert p.exitcode == 0
Rhett Ying's avatar
Rhett Ying committed
339
340
        for p in ptrainer_list:
            p.join()
341
            assert p.exitcode == 0
Rhett Ying's avatar
Rhett Ying committed
342
343


344
@pytest.mark.parametrize("num_server", [1])
345
@pytest.mark.parametrize("num_workers", [0, 1])
346
347
348
349
350
351
@pytest.mark.parametrize("drop_last", [False, True])
@pytest.mark.parametrize("use_graphbolt", [False, True])
@pytest.mark.parametrize("return_eids", [False, True])
def test_dist_dataloader(
    num_server, num_workers, drop_last, use_graphbolt, return_eids
):
352
    reset_envs()
353
354
    os.environ["DGL_DIST_MODE"] = "distributed"
    os.environ["DGL_NUM_SAMPLER"] = str(num_workers)
Rhett Ying's avatar
Rhett Ying committed
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
    with tempfile.TemporaryDirectory() as test_dir:
        ip_config = "ip_config.txt"
        generate_ip_config(ip_config, num_server, num_server)

        g = CitationGraphDataset("cora")[0]
        num_parts = num_server
        num_hops = 1

        orig_nid, orig_eid = partition_graph(
            g,
            "test_sampling",
            num_parts,
            test_dir,
            num_hops=num_hops,
            part_method="metis",
            return_mapping=True,
371
372
            use_graphbolt=use_graphbolt,
            store_eids=return_eids,
Rhett Ying's avatar
Rhett Ying committed
373
374
375
376
377
378
379
380
381
382
383
384
385
386
        )

        part_config = os.path.join(test_dir, "test_sampling.json")
        pserver_list = []
        ctx = mp.get_context("spawn")
        for i in range(num_server):
            p = ctx.Process(
                target=start_server,
                args=(
                    i,
                    ip_config,
                    part_config,
                    num_server > 1,
                    num_workers + 1,
387
                    use_graphbolt,
Rhett Ying's avatar
Rhett Ying committed
388
389
                ),
            )
390
            p.start()
Rhett Ying's avatar
Rhett Ying committed
391
392
393
394
395
396
            time.sleep(1)
            pserver_list.append(p)

        ptrainer_list = []
        num_trainers = 1
        for trainer_id in range(num_trainers):
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
            p = ctx.Process(
                target=start_dist_dataloader,
                args=(
                    trainer_id,
                    ip_config,
                    part_config,
                    num_server,
                    drop_last,
                    orig_nid,
                    orig_eid,
                    use_graphbolt,
                    return_eids,
                ),
            )
            p.start()
            time.sleep(1)  # avoid race condition when instantiating DistGraph
            ptrainer_list.append(p)
Rhett Ying's avatar
Rhett Ying committed
414
415
416

        for p in ptrainer_list:
            p.join()
417
            assert p.exitcode == 0
418
        for p in pserver_list:
Rhett Ying's avatar
Rhett Ying committed
419
            p.join()
420
            assert p.exitcode == 0
Rhett Ying's avatar
Rhett Ying committed
421
422
423
424
425
426
427
428
429
430
431


def start_node_dataloader(
    rank,
    ip_config,
    part_config,
    num_server,
    num_workers,
    orig_nid,
    orig_eid,
    groundtruth_g,
432
433
    use_graphbolt=False,
    return_eids=False,
Rhett Ying's avatar
Rhett Ying committed
434
435
):
    dgl.distributed.initialize(ip_config)
436
    gpb = None
437
    disable_shared_mem = num_server > 1
438
    if disable_shared_mem:
Rhett Ying's avatar
Rhett Ying committed
439
        _, _, _, gpb, _, _, _ = load_partition(part_config, rank)
440
441
    num_nodes_to_sample = 202
    batch_size = 32
442
443
444
445
446
447
    dist_graph = DistGraph(
        "test_sampling",
        gpb=gpb,
        part_config=part_config,
        use_graphbolt=use_graphbolt,
    )
448
449
450
451
452
    assert len(dist_graph.ntypes) == len(groundtruth_g.ntypes)
    assert len(dist_graph.etypes) == len(groundtruth_g.etypes)
    if len(dist_graph.etypes) == 1:
        train_nid = th.arange(num_nodes_to_sample)
    else:
Rhett Ying's avatar
Rhett Ying committed
453
        train_nid = {"n3": th.arange(num_nodes_to_sample)}
454

455
    for i in range(num_server):
Rhett Ying's avatar
Rhett Ying committed
456
        part, _, _, _, _, _, _ = load_partition(part_config, i)
457

458
    # Create sampler
Rhett Ying's avatar
Rhett Ying committed
459
460
461
462
463
464
465
466
467
    sampler = dgl.dataloading.MultiLayerNeighborSampler(
        [
            # test dict for hetero
            {etype: 5 for etype in dist_graph.etypes}
            if len(dist_graph.etypes) > 1
            else 5,
            10,
        ]
    )  # test int for hetero
468

469
470
471
    # Enable santity check in distributed sampling.
    os.environ["DGL_DIST_DEBUG"] = "1"

472
473
474
    # We need to test creating DistDataLoader multiple times.
    for i in range(2):
        # Create DataLoader for constructing blocks
475
        dataloader = dgl.dataloading.DistNodeDataLoader(
476
477
478
479
480
481
            dist_graph,
            train_nid,
            sampler,
            batch_size=batch_size,
            shuffle=True,
            drop_last=False,
Rhett Ying's avatar
Rhett Ying committed
482
483
            num_workers=num_workers,
        )
484

485
        for _ in range(2):
Rhett Ying's avatar
Rhett Ying committed
486
487
488
            for idx, (_, _, blocks) in zip(
                range(0, num_nodes_to_sample, batch_size), dataloader
            ):
489
                block = blocks[-1]
490
491
492
                for c_etype in block.canonical_etypes:
                    src_type, _, dst_type = c_etype
                    o_src, o_dst = block.edges(etype=c_etype)
493
494
495
496
                    src_nodes_id = block.srcnodes[src_type].data[dgl.NID][o_src]
                    dst_nodes_id = block.dstnodes[dst_type].data[dgl.NID][o_dst]
                    src_nodes_id = orig_nid[src_type][src_nodes_id]
                    dst_nodes_id = orig_nid[dst_type][dst_nodes_id]
Rhett Ying's avatar
Rhett Ying committed
497
                    has_edges = groundtruth_g.has_edges_between(
498
                        src_nodes_id, dst_nodes_id, etype=c_etype
Rhett Ying's avatar
Rhett Ying committed
499
                    )
500
                    assert np.all(F.asnumpy(has_edges))
501
502
503

                    if use_graphbolt and not return_eids:
                        continue
504
                    eids = orig_eid[c_etype][block.edges[c_etype].data[dgl.EID]]
505
                    expected_eids = groundtruth_g.edge_ids(
506
                        src_nodes_id, dst_nodes_id, etype=c_etype
507
508
509
510
                    )
                    assert th.equal(
                        eids, expected_eids
                    ), f"{eids} != {expected_eids}"
511
    del dataloader
Rhett Ying's avatar
Rhett Ying committed
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
    # this is needed since there's two test here in one process
    dgl.distributed.exit_client()


def start_edge_dataloader(
    rank,
    ip_config,
    part_config,
    num_server,
    num_workers,
    orig_nid,
    orig_eid,
    groundtruth_g,
):
    dgl.distributed.initialize(ip_config)
527
528
529
    gpb = None
    disable_shared_mem = num_server > 1
    if disable_shared_mem:
Rhett Ying's avatar
Rhett Ying committed
530
        _, _, _, gpb, _, _, _ = load_partition(part_config, rank)
531
532
    num_edges_to_sample = 202
    batch_size = 32
533
    dist_graph = DistGraph("test_sampling", gpb=gpb, part_config=part_config)
534
535
536
537
538
539
540
541
    assert len(dist_graph.ntypes) == len(groundtruth_g.ntypes)
    assert len(dist_graph.etypes) == len(groundtruth_g.etypes)
    if len(dist_graph.etypes) == 1:
        train_eid = th.arange(num_edges_to_sample)
    else:
        train_eid = {dist_graph.etypes[0]: th.arange(num_edges_to_sample)}

    for i in range(num_server):
Rhett Ying's avatar
Rhett Ying committed
542
        part, _, _, _, _, _, _ = load_partition(part_config, i)
543
544
545

    # Create sampler
    sampler = dgl.dataloading.MultiLayerNeighborSampler([5, 10])
546

547
548
549
    # We need to test creating DistDataLoader multiple times.
    for i in range(2):
        # Create DataLoader for constructing blocks
550
        dataloader = dgl.dataloading.DistEdgeDataLoader(
551
552
553
554
555
556
            dist_graph,
            train_eid,
            sampler,
            batch_size=batch_size,
            shuffle=True,
            drop_last=False,
Rhett Ying's avatar
Rhett Ying committed
557
558
            num_workers=num_workers,
        )
559
560

        for epoch in range(2):
Rhett Ying's avatar
Rhett Ying committed
561
562
563
            for idx, (input_nodes, pos_pair_graph, blocks) in zip(
                range(0, num_edges_to_sample, batch_size), dataloader
            ):
564
565
                block = blocks[-1]
                for src_type, etype, dst_type in block.canonical_etypes:
Rhett Ying's avatar
Rhett Ying committed
566
                    o_src, o_dst = block.edges(etype=etype)
567
568
569
570
                    src_nodes_id = block.srcnodes[src_type].data[dgl.NID][o_src]
                    dst_nodes_id = block.dstnodes[dst_type].data[dgl.NID][o_dst]
                    src_nodes_id = orig_nid[src_type][src_nodes_id]
                    dst_nodes_id = orig_nid[dst_type][dst_nodes_id]
Rhett Ying's avatar
Rhett Ying committed
571
572
573
                    has_edges = groundtruth_g.has_edges_between(
                        src_nodes_id, dst_nodes_id, etype=etype
                    )
574
                    assert np.all(F.asnumpy(has_edges))
Rhett Ying's avatar
Rhett Ying committed
575
576
577
578
579
580
                    assert np.all(
                        F.asnumpy(block.dstnodes[dst_type].data[dgl.NID])
                        == F.asnumpy(
                            pos_pair_graph.nodes[dst_type].data[dgl.NID]
                        )
                    )
581
    del dataloader
Rhett Ying's avatar
Rhett Ying committed
582
583
584
    dgl.distributed.exit_client()


585
586
587
588
589
590
591
592
def check_dataloader(
    g,
    num_server,
    num_workers,
    dataloader_type,
    use_graphbolt=False,
    return_eids=False,
):
Rhett Ying's avatar
Rhett Ying committed
593
594
595
596
597
598
599
600
601
602
603
604
605
606
    with tempfile.TemporaryDirectory() as test_dir:
        ip_config = "ip_config.txt"
        generate_ip_config(ip_config, num_server, num_server)

        num_parts = num_server
        num_hops = 1
        orig_nid, orig_eid = partition_graph(
            g,
            "test_sampling",
            num_parts,
            test_dir,
            num_hops=num_hops,
            part_method="metis",
            return_mapping=True,
607
608
            use_graphbolt=use_graphbolt,
            store_eids=return_eids,
Rhett Ying's avatar
Rhett Ying committed
609
610
611
612
613
        )
        part_config = os.path.join(test_dir, "test_sampling.json")
        if not isinstance(orig_nid, dict):
            orig_nid = {g.ntypes[0]: orig_nid}
        if not isinstance(orig_eid, dict):
614
            orig_eid = {g.canonical_etypes[0]: orig_eid}
Rhett Ying's avatar
Rhett Ying committed
615
616
617
618
619
620
621
622
623
624
625
626

        pserver_list = []
        ctx = mp.get_context("spawn")
        for i in range(num_server):
            p = ctx.Process(
                target=start_server,
                args=(
                    i,
                    ip_config,
                    part_config,
                    num_server > 1,
                    num_workers + 1,
627
                    use_graphbolt,
Rhett Ying's avatar
Rhett Ying committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
                ),
            )
            p.start()
            time.sleep(1)
            pserver_list.append(p)

        os.environ["DGL_DIST_MODE"] = "distributed"
        os.environ["DGL_NUM_SAMPLER"] = str(num_workers)
        ptrainer_list = []
        if dataloader_type == "node":
            p = ctx.Process(
                target=start_node_dataloader,
                args=(
                    0,
                    ip_config,
                    part_config,
                    num_server,
                    num_workers,
                    orig_nid,
                    orig_eid,
                    g,
649
650
                    use_graphbolt,
                    return_eids,
Rhett Ying's avatar
Rhett Ying committed
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
                ),
            )
            p.start()
            ptrainer_list.append(p)
        elif dataloader_type == "edge":
            p = ctx.Process(
                target=start_edge_dataloader,
                args=(
                    0,
                    ip_config,
                    part_config,
                    num_server,
                    num_workers,
                    orig_nid,
                    orig_eid,
                    g,
                ),
            )
            p.start()
            ptrainer_list.append(p)
        for p in pserver_list:
            p.join()
673
            assert p.exitcode == 0
Rhett Ying's avatar
Rhett Ying committed
674
675
        for p in ptrainer_list:
            p.join()
676
            assert p.exitcode == 0
Rhett Ying's avatar
Rhett Ying committed
677

678

679
def create_random_hetero():
Rhett Ying's avatar
Rhett Ying committed
680
681
    num_nodes = {"n1": 10000, "n2": 10010, "n3": 10020}
    etypes = [("n1", "r1", "n2"), ("n1", "r2", "n3"), ("n2", "r3", "n3")]
682
683
684
    edges = {}
    for etype in etypes:
        src_ntype, _, dst_ntype = etype
Rhett Ying's avatar
Rhett Ying committed
685
686
687
688
689
690
691
        arr = spsp.random(
            num_nodes[src_ntype],
            num_nodes[dst_ntype],
            density=0.001,
            format="coo",
            random_state=100,
        )
692
693
        edges[etype] = (arr.row, arr.col)
    g = dgl.heterograph(edges, num_nodes)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
694
695
    g.nodes["n1"].data["feat"] = F.unsqueeze(F.arange(0, g.num_nodes("n1")), 1)
    g.edges["r1"].data["feat"] = F.unsqueeze(F.arange(0, g.num_edges("r1")), 1)
696
697
    return g

Rhett Ying's avatar
Rhett Ying committed
698

699
700
@pytest.mark.parametrize("num_server", [1])
@pytest.mark.parametrize("num_workers", [0, 1])
701
@pytest.mark.parametrize("dataloader_type", ["node", "edge"])
702
703
704
705
706
707
708
709
@pytest.mark.parametrize("use_graphbolt", [False, True])
@pytest.mark.parametrize("return_eids", [False, True])
def test_dataloader_homograph(
    num_server, num_workers, dataloader_type, use_graphbolt, return_eids
):
    if dataloader_type == "edge" and use_graphbolt:
        # GraphBolt does not support edge dataloader.
        return
710
    reset_envs()
711
    g = CitationGraphDataset("cora")[0]
712
713
714
715
716
717
718
719
720
721
722
723
724
    check_dataloader(
        g,
        num_server,
        num_workers,
        dataloader_type,
        use_graphbolt=use_graphbolt,
        return_eids=return_eids,
    )


@pytest.mark.parametrize("num_server", [1])
@pytest.mark.parametrize("num_workers", [0, 1])
@pytest.mark.parametrize("dataloader_type", ["node", "edge"])
725
726
727
728
729
730
731
732
@pytest.mark.parametrize("use_graphbolt", [False, True])
@pytest.mark.parametrize("return_eids", [False, True])
def test_dataloader_heterograph(
    num_server, num_workers, dataloader_type, use_graphbolt, return_eids
):
    if dataloader_type == "edge" and use_graphbolt:
        # GraphBolt does not support edge dataloader.
        return
733
    reset_envs()
734
    g = create_random_hetero()
735
736
737
738
739
740
741
742
    check_dataloader(
        g,
        num_server,
        num_workers,
        dataloader_type,
        use_graphbolt=use_graphbolt,
        return_eids=return_eids,
    )
Rhett Ying's avatar
Rhett Ying committed
743

744

745
@unittest.skip(reason="Skip due to glitch in CI")
746
747
@pytest.mark.parametrize("num_server", [3])
@pytest.mark.parametrize("num_workers", [0, 4])
Rhett Ying's avatar
Rhett Ying committed
748
def test_neg_dataloader(num_server, num_workers):
749
    reset_envs()
750
    g = CitationGraphDataset("cora")[0]
Rhett Ying's avatar
Rhett Ying committed
751
    check_neg_dataloader(g, num_server, num_workers)
752
    g = create_random_hetero()
Rhett Ying's avatar
Rhett Ying committed
753
754
755
756
    check_neg_dataloader(g, num_server, num_workers)


def start_multiple_dataloaders(
757
758
759
760
761
762
763
    ip_config,
    part_config,
    graph_name,
    orig_g,
    num_dataloaders,
    dataloader_type,
    use_graphbolt,
Rhett Ying's avatar
Rhett Ying committed
764
765
):
    dgl.distributed.initialize(ip_config)
766
767
768
    dist_g = dgl.distributed.DistGraph(
        graph_name, part_config=part_config, use_graphbolt=use_graphbolt
    )
Rhett Ying's avatar
Rhett Ying committed
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
    if dataloader_type == "node":
        train_ids = th.arange(orig_g.num_nodes())
        batch_size = orig_g.num_nodes() // 100
    else:
        train_ids = th.arange(orig_g.num_edges())
        batch_size = orig_g.num_edges() // 100
    sampler = dgl.dataloading.NeighborSampler([-1])
    dataloaders = []
    dl_iters = []
    for _ in range(num_dataloaders):
        if dataloader_type == "node":
            dataloader = dgl.dataloading.DistNodeDataLoader(
                dist_g, train_ids, sampler, batch_size=batch_size
            )
        else:
            dataloader = dgl.dataloading.DistEdgeDataLoader(
                dist_g, train_ids, sampler, batch_size=batch_size
            )
        dataloaders.append(dataloader)
        dl_iters.append(iter(dataloader))

    # iterate on multiple dataloaders randomly
    while len(dl_iters) > 0:
        next_dl = np.random.choice(len(dl_iters), 1)[0]
        try:
            _ = next(dl_iters[next_dl])
        except StopIteration:
            dl_iters.pop(next_dl)
            del dataloaders[next_dl]

    dgl.distributed.exit_client()


@pytest.mark.parametrize("num_dataloaders", [1, 4])
803
@pytest.mark.parametrize("num_workers", [0, 1])
Rhett Ying's avatar
Rhett Ying committed
804
@pytest.mark.parametrize("dataloader_type", ["node", "edge"])
805
806
@pytest.mark.parametrize("use_graphbolt", [False, True])
@pytest.mark.parametrize("return_eids", [False, True])
Rhett Ying's avatar
Rhett Ying committed
807
def test_multiple_dist_dataloaders(
808
    num_dataloaders, num_workers, dataloader_type, use_graphbolt, return_eids
Rhett Ying's avatar
Rhett Ying committed
809
):
810
811
812
    if dataloader_type == "edge" and use_graphbolt:
        # GraphBolt does not support edge dataloader.
        return
Rhett Ying's avatar
Rhett Ying committed
813
814
815
816
817
818
819
820
821
822
    reset_envs()
    os.environ["DGL_DIST_MODE"] = "distributed"
    os.environ["DGL_NUM_SAMPLER"] = str(num_workers)
    num_parts = 1
    num_servers = 1
    with tempfile.TemporaryDirectory() as test_dir:
        ip_config = os.path.join(test_dir, "ip_config.txt")
        generate_ip_config(ip_config, num_parts, num_servers)

        orig_g = dgl.rand_graph(1000, 10000)
823
824
825
826
827
828
829
830
831
        graph_name = "test_multiple_dataloaders"
        partition_graph(
            orig_g,
            graph_name,
            num_parts,
            test_dir,
            use_graphbolt=use_graphbolt,
            store_eids=return_eids,
        )
Rhett Ying's avatar
Rhett Ying committed
832
833
834
835
836
837
838
839
840
841
842
843
844
        part_config = os.path.join(test_dir, f"{graph_name}.json")

        p_servers = []
        ctx = mp.get_context("spawn")
        for i in range(num_servers):
            p = ctx.Process(
                target=start_server,
                args=(
                    i,
                    ip_config,
                    part_config,
                    num_servers > 1,
                    num_workers + 1,
845
                    use_graphbolt,
Rhett Ying's avatar
Rhett Ying committed
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
                ),
            )
            p.start()
            time.sleep(1)
            p_servers.append(p)

        p_client = ctx.Process(
            target=start_multiple_dataloaders,
            args=(
                ip_config,
                part_config,
                graph_name,
                orig_g,
                num_dataloaders,
                dataloader_type,
861
                use_graphbolt,
Rhett Ying's avatar
Rhett Ying committed
862
863
864
865
866
            ),
        )
        p_client.start()

        p_client.join()
867
        assert p_client.exitcode == 0
Rhett Ying's avatar
Rhett Ying committed
868
869
        for p in p_servers:
            p.join()
870
            assert p.exitcode == 0
Rhett Ying's avatar
Rhett Ying committed
871
    reset_envs()