"vscode:/vscode.git/clone" did not exist on "1524122532927dfd8ff80b0899344e696a7ab47a"
test_mp_dataloader.py 19.3 KB
Newer Older
1
2
3
import dgl
import unittest
import os
4
from scipy import sparse as spsp
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from dgl.data import CitationGraphDataset
from dgl.distributed import sample_neighbors
from dgl.distributed import partition_graph, load_partition, load_partition_book
import sys
import multiprocessing as mp
import numpy as np
import time
from utils import get_local_usable_addr
from pathlib import Path
from dgl.distributed import DistGraphServer, DistGraph, DistDataLoader
import pytest
import backend as F

class NeighborSampler(object):
    def __init__(self, g, fanouts, sample_neighbors):
        self.g = g
        self.fanouts = fanouts
        self.sample_neighbors = sample_neighbors

    def sample_blocks(self, seeds):
        import torch as th
        seeds = th.LongTensor(np.asarray(seeds))
        blocks = []
        for fanout in self.fanouts:
            # For each seed node, sample ``fanout`` neighbors.
            frontier = self.sample_neighbors(
                self.g, seeds, fanout, replace=True)
            # Then we compact the frontier into a bipartite graph for message passing.
            block = dgl.to_block(frontier, seeds)
            # Obtain the seed nodes for next layer.
            seeds = block.srcdata[dgl.NID]

            blocks.insert(0, block)
        return blocks


def start_server(rank, tmpdir, disable_shared_mem, num_clients):
    import dgl
    print('server: #clients=' + str(num_clients))
44
    g = DistGraphServer(rank, "mp_ip_config.txt", 1, num_clients,
45
46
                        tmpdir / 'test_sampling.json', disable_shared_mem=disable_shared_mem,
                        graph_format=['csc', 'coo'])
47
48
49
    g.start()


50
def start_dist_dataloader(rank, tmpdir, num_server, drop_last, orig_nid, orig_eid):
51
52
    import dgl
    import torch as th
53
    dgl.distributed.initialize("mp_ip_config.txt")
54
    gpb = None
55
    disable_shared_mem = num_server > 0
56
    if disable_shared_mem:
57
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
58
59
60
    num_nodes_to_sample = 202
    batch_size = 32
    train_nid = th.arange(num_nodes_to_sample)
61
    dist_graph = DistGraph("test_mp", gpb=gpb, part_config=tmpdir / 'test_sampling.json')
62

63
64
65
    for i in range(num_server):
        part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_sampling.json', i)

66
67
68
69
    # Create sampler
    sampler = NeighborSampler(dist_graph, [5, 10],
                              dgl.distributed.sample_neighbors)

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    # We need to test creating DistDataLoader multiple times.
    for i in range(2):
        # Create DataLoader for constructing blocks
        dataloader = DistDataLoader(
            dataset=train_nid.numpy(),
            batch_size=batch_size,
            collate_fn=sampler.sample_blocks,
            shuffle=False,
            drop_last=drop_last)

        groundtruth_g = CitationGraphDataset("cora")[0]
        max_nid = []

        for epoch in range(2):
            for idx, blocks in zip(range(0, num_nodes_to_sample, batch_size), dataloader):
                block = blocks[-1]
                o_src, o_dst =  block.edges()
                src_nodes_id = block.srcdata[dgl.NID][o_src]
                dst_nodes_id = block.dstdata[dgl.NID][o_dst]
89
90
91
92
                max_nid.append(np.max(F.asnumpy(dst_nodes_id)))

                src_nodes_id = orig_nid[src_nodes_id]
                dst_nodes_id = orig_nid[dst_nodes_id]
93
94
95
96
97
98
99
                has_edges = groundtruth_g.has_edges_between(src_nodes_id, dst_nodes_id)
                assert np.all(F.asnumpy(has_edges))
                # assert np.all(np.unique(np.sort(F.asnumpy(dst_nodes_id))) == np.arange(idx, batch_size))
            if drop_last:
                assert np.max(max_nid) == num_nodes_to_sample - 1 - num_nodes_to_sample % batch_size
            else:
                assert np.max(max_nid) == num_nodes_to_sample - 1
100
101
    del dataloader
    dgl.distributed.exit_client() # this is needed since there's two test here in one process
102
103
104
105
106
107

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
def test_standalone(tmpdir):
    ip_config = open("mp_ip_config.txt", "w")
    for _ in range(1):
108
        ip_config.write('{}\n'.format(get_local_usable_addr()))
109
110
111
112
113
114
115
    ip_config.close()

    g = CitationGraphDataset("cora")[0]
    print(g.idtype)
    num_parts = 1
    num_hops = 1

116
117
118
    orig_nid, orig_eid = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                         num_hops=num_hops, part_method='metis', reshuffle=True,
                                         return_mapping=True)
119
120

    os.environ['DGL_DIST_MODE'] = 'standalone'
121
    try:
122
        start_dist_dataloader(0, tmpdir, 1, True, orig_nid, orig_eid)
123
124
    except Exception as e:
        print(e)
125
126
    dgl.distributed.exit_client() # this is needed since there's two test here in one process

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
def start_dist_neg_dataloader(rank, tmpdir, num_server, num_workers, orig_nid, groundtruth_g):
    import dgl
    import torch as th
    dgl.distributed.initialize("mp_ip_config.txt")
    gpb = None
    disable_shared_mem = num_server > 1
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
    num_edges_to_sample = 202
    batch_size = 32
    dist_graph = DistGraph("test_mp", gpb=gpb, part_config=tmpdir / 'test_sampling.json')
    assert len(dist_graph.ntypes) == len(groundtruth_g.ntypes)
    assert len(dist_graph.etypes) == len(groundtruth_g.etypes)
    if len(dist_graph.etypes) == 1:
        train_eid = th.arange(num_edges_to_sample)
    else:
        train_eid = {dist_graph.etypes[0]: th.arange(num_edges_to_sample)}

    for i in range(num_server):
        part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_sampling.json', i)

    num_negs = 5
    sampler = dgl.dataloading.MultiLayerNeighborSampler([5,10])
    negative_sampler=dgl.dataloading.negative_sampler.Uniform(num_negs)
    dataloader = dgl.dataloading.EdgeDataLoader(dist_graph,
                                                train_eid,
                                                sampler,
                                                batch_size=batch_size,
                                                negative_sampler=negative_sampler,
                                                shuffle=True,
                                                drop_last=False,
                                                num_workers=num_workers)
    for _ in range(2):
        for _, (_, pos_graph, neg_graph, blocks) in zip(range(0, num_edges_to_sample, batch_size), dataloader):
            block = blocks[-1]
            for src_type, etype, dst_type in block.canonical_etypes:
                o_src, o_dst =  block.edges(etype=etype)
                src_nodes_id = block.srcnodes[src_type].data[dgl.NID][o_src]
                dst_nodes_id = block.dstnodes[dst_type].data[dgl.NID][o_dst]
                src_nodes_id = orig_nid[src_type][src_nodes_id]
                dst_nodes_id = orig_nid[dst_type][dst_nodes_id]
                has_edges = groundtruth_g.has_edges_between(src_nodes_id, dst_nodes_id, etype=etype)
                assert np.all(F.asnumpy(has_edges))
                assert np.all(F.asnumpy(block.dstnodes[dst_type].data[dgl.NID]) == F.asnumpy(pos_graph.nodes[dst_type].data[dgl.NID]))
                assert np.all(F.asnumpy(block.dstnodes[dst_type].data[dgl.NID]) == F.asnumpy(neg_graph.nodes[dst_type].data[dgl.NID]))
                assert pos_graph.num_edges() * num_negs == neg_graph.num_edges()

    del dataloader
    dgl.distributed.exit_client() # this is needed since there's two test here in one process

def check_neg_dataloader(g, tmpdir, num_server, num_workers):
    ip_config = open("mp_ip_config.txt", "w")
    for _ in range(num_server):
        ip_config.write('{}\n'.format(get_local_usable_addr()))
    ip_config.close()

    num_parts = num_server
    num_hops = 1
    orig_nid, orig_eid = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                         num_hops=num_hops, part_method='metis',
                                         reshuffle=True, return_mapping=True)
    if not isinstance(orig_nid, dict):
        orig_nid = {g.ntypes[0]: orig_nid}
    if not isinstance(orig_eid, dict):
        orig_eid = {g.etypes[0]: orig_eid}

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, num_workers+1))
        p.start()
        time.sleep(1)
        pserver_list.append(p)
    time.sleep(3)
    os.environ['DGL_DIST_MODE'] = 'distributed'
    os.environ['DGL_NUM_SAMPLER'] = str(num_workers)
    ptrainer_list = []

    p = ctx.Process(target=start_dist_neg_dataloader, args=(
            0, tmpdir, num_server, num_workers, orig_nid, g))
    p.start()
    time.sleep(1)
    ptrainer_list.append(p)

    for p in pserver_list:
        p.join()
    for p in ptrainer_list:
        p.join()
216
217
218
219

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
@pytest.mark.parametrize("num_server", [3])
220
@pytest.mark.parametrize("num_workers", [0, 4])
221
@pytest.mark.parametrize("drop_last", [True, False])
222
223
@pytest.mark.parametrize("reshuffle", [True, False])
def test_dist_dataloader(tmpdir, num_server, num_workers, drop_last, reshuffle):
224
225
    ip_config = open("mp_ip_config.txt", "w")
    for _ in range(num_server):
226
        ip_config.write('{}\n'.format(get_local_usable_addr()))
227
228
229
230
231
232
233
    ip_config.close()

    g = CitationGraphDataset("cora")[0]
    print(g.idtype)
    num_parts = num_server
    num_hops = 1

234
235
236
    orig_nid, orig_eid = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                         num_hops=num_hops, part_method='metis',
                                         reshuffle=reshuffle, return_mapping=True)
237
238
239
240
241
242
243
244
245
246
247

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, num_workers+1))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    time.sleep(3)
248
    os.environ['DGL_DIST_MODE'] = 'distributed'
249
    os.environ['DGL_NUM_SAMPLER'] = str(num_workers)
250
    ptrainer = ctx.Process(target=start_dist_dataloader, args=(
251
        0, tmpdir, num_server, drop_last, orig_nid, orig_eid))
252
253
254
255
256
257
258
    ptrainer.start()
    time.sleep(1)

    for p in pserver_list:
        p.join()
    ptrainer.join()

259
def start_node_dataloader(rank, tmpdir, num_server, num_workers, orig_nid, orig_eid, groundtruth_g):
260
261
    import dgl
    import torch as th
262
    dgl.distributed.initialize("mp_ip_config.txt")
263
    gpb = None
264
    disable_shared_mem = num_server > 1
265
    if disable_shared_mem:
266
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
267
268
269
    num_nodes_to_sample = 202
    batch_size = 32
    dist_graph = DistGraph("test_mp", gpb=gpb, part_config=tmpdir / 'test_sampling.json')
270
271
272
273
274
275
    assert len(dist_graph.ntypes) == len(groundtruth_g.ntypes)
    assert len(dist_graph.etypes) == len(groundtruth_g.etypes)
    if len(dist_graph.etypes) == 1:
        train_nid = th.arange(num_nodes_to_sample)
    else:
        train_nid = {'n3': th.arange(num_nodes_to_sample)}
276

277
278
279
    for i in range(num_server):
        part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_sampling.json', i)

280
    # Create sampler
281
282
283
284
    sampler = dgl.dataloading.MultiLayerNeighborSampler([
        # test dict for hetero
        {etype: 5 for etype in dist_graph.etypes} if len(dist_graph.etypes) > 1 else 5,
        10])        # test int for hetero
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

    # We need to test creating DistDataLoader multiple times.
    for i in range(2):
        # Create DataLoader for constructing blocks
        dataloader = dgl.dataloading.NodeDataLoader(
            dist_graph,
            train_nid,
            sampler,
            batch_size=batch_size,
            shuffle=True,
            drop_last=False,
            num_workers=num_workers)

        for epoch in range(2):
            for idx, (_, _, blocks) in zip(range(0, num_nodes_to_sample, batch_size), dataloader):
                block = blocks[-1]
301
302
303
304
305
306
307
308
                for src_type, etype, dst_type in block.canonical_etypes:
                    o_src, o_dst =  block.edges(etype=etype)
                    src_nodes_id = block.srcnodes[src_type].data[dgl.NID][o_src]
                    dst_nodes_id = block.dstnodes[dst_type].data[dgl.NID][o_dst]
                    src_nodes_id = orig_nid[src_type][src_nodes_id]
                    dst_nodes_id = orig_nid[dst_type][dst_nodes_id]
                    has_edges = groundtruth_g.has_edges_between(src_nodes_id, dst_nodes_id, etype=etype)
                    assert np.all(F.asnumpy(has_edges))
309
310
                # assert np.all(np.unique(np.sort(F.asnumpy(dst_nodes_id))) == np.arange(idx, batch_size))
    del dataloader
311
    dgl.distributed.exit_client() # this is needed since there's two test here in one process
312

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
def start_edge_dataloader(rank, tmpdir, num_server, num_workers, orig_nid, orig_eid, groundtruth_g):
    import dgl
    import torch as th
    dgl.distributed.initialize("mp_ip_config.txt")
    gpb = None
    disable_shared_mem = num_server > 1
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
    num_edges_to_sample = 202
    batch_size = 32
    dist_graph = DistGraph("test_mp", gpb=gpb, part_config=tmpdir / 'test_sampling.json')
    assert len(dist_graph.ntypes) == len(groundtruth_g.ntypes)
    assert len(dist_graph.etypes) == len(groundtruth_g.etypes)
    if len(dist_graph.etypes) == 1:
        train_eid = th.arange(num_edges_to_sample)
    else:
        train_eid = {dist_graph.etypes[0]: th.arange(num_edges_to_sample)}

    for i in range(num_server):
        part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_sampling.json', i)

    # Create sampler
    sampler = dgl.dataloading.MultiLayerNeighborSampler([5, 10])
336

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
    # We need to test creating DistDataLoader multiple times.
    for i in range(2):
        # Create DataLoader for constructing blocks
        dataloader = dgl.dataloading.EdgeDataLoader(
            dist_graph,
            train_eid,
            sampler,
            batch_size=batch_size,
            shuffle=True,
            drop_last=False,
            num_workers=num_workers)

        for epoch in range(2):
            for idx, (input_nodes, pos_pair_graph, blocks) in zip(range(0, num_edges_to_sample, batch_size), dataloader):
                block = blocks[-1]
                for src_type, etype, dst_type in block.canonical_etypes:
                    o_src, o_dst =  block.edges(etype=etype)
                    src_nodes_id = block.srcnodes[src_type].data[dgl.NID][o_src]
                    dst_nodes_id = block.dstnodes[dst_type].data[dgl.NID][o_dst]
                    src_nodes_id = orig_nid[src_type][src_nodes_id]
                    dst_nodes_id = orig_nid[dst_type][dst_nodes_id]
                    has_edges = groundtruth_g.has_edges_between(src_nodes_id, dst_nodes_id, etype=etype)
                    assert np.all(F.asnumpy(has_edges))
                    assert np.all(F.asnumpy(block.dstnodes[dst_type].data[dgl.NID]) == F.asnumpy(pos_pair_graph.nodes[dst_type].data[dgl.NID]))
                # assert np.all(np.unique(np.sort(F.asnumpy(dst_nodes_id))) == np.arange(idx, batch_size))
    del dataloader
    dgl.distributed.exit_client() # this is needed since there's two test here in one process

def check_dataloader(g, tmpdir, num_server, num_workers, dataloader_type):
366
367
368
369
370
371
372
    ip_config = open("mp_ip_config.txt", "w")
    for _ in range(num_server):
        ip_config.write('{}\n'.format(get_local_usable_addr()))
    ip_config.close()

    num_parts = num_server
    num_hops = 1
373
374
375
    orig_nid, orig_eid = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                         num_hops=num_hops, part_method='metis',
                                         reshuffle=True, return_mapping=True)
376
377
378
379
    if not isinstance(orig_nid, dict):
        orig_nid = {g.ntypes[0]: orig_nid}
    if not isinstance(orig_eid, dict):
        orig_eid = {g.etypes[0]: orig_eid}
380
381
382
383
384
385
386
387
388
389
390
391

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, num_workers+1))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    time.sleep(3)
    os.environ['DGL_DIST_MODE'] = 'distributed'
392
    os.environ['DGL_NUM_SAMPLER'] = str(num_workers)
393
394
395
    ptrainer_list = []
    if dataloader_type == 'node':
        p = ctx.Process(target=start_node_dataloader, args=(
396
397
398
399
400
401
402
            0, tmpdir, num_server, num_workers, orig_nid, orig_eid, g))
        p.start()
        time.sleep(1)
        ptrainer_list.append(p)
    elif dataloader_type == 'edge':
        p = ctx.Process(target=start_edge_dataloader, args=(
            0, tmpdir, num_server, num_workers, orig_nid, orig_eid, g))
403
404
405
406
407
408
409
410
        p.start()
        time.sleep(1)
        ptrainer_list.append(p)
    for p in pserver_list:
        p.join()
    for p in ptrainer_list:
        p.join()

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
def create_random_hetero():
    num_nodes = {'n1': 10000, 'n2': 10010, 'n3': 10020}
    etypes = [('n1', 'r1', 'n2'),
              ('n1', 'r2', 'n3'),
              ('n2', 'r3', 'n3')]
    edges = {}
    for etype in etypes:
        src_ntype, _, dst_ntype = etype
        arr = spsp.random(num_nodes[src_ntype], num_nodes[dst_ntype], density=0.001, format='coo',
                          random_state=100)
        edges[etype] = (arr.row, arr.col)
    g = dgl.heterograph(edges, num_nodes)
    g.nodes['n1'].data['feat'] = F.unsqueeze(F.arange(0, g.number_of_nodes('n1')), 1)
    g.edges['r1'].data['feat'] = F.unsqueeze(F.arange(0, g.number_of_edges('r1')), 1)
    return g

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
@pytest.mark.parametrize("num_server", [3])
@pytest.mark.parametrize("num_workers", [0, 4])
@pytest.mark.parametrize("dataloader_type", ["node", "edge"])
def test_dataloader(tmpdir, num_server, num_workers, dataloader_type):
    g = CitationGraphDataset("cora")[0]
    check_dataloader(g, tmpdir, num_server, num_workers, dataloader_type)
    g = create_random_hetero()
    check_dataloader(g, tmpdir, num_server, num_workers, dataloader_type)

438
439
440
441
442
443
444
445
446
447
448
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
@pytest.mark.parametrize("num_server", [3])
@pytest.mark.parametrize("num_workers", [0, 4])
def test_neg_dataloader(tmpdir, num_server, num_workers):
    g = CitationGraphDataset("cora")[0]
    check_neg_dataloader(g, tmpdir, num_server, num_workers)
    g = create_random_hetero()
    check_neg_dataloader(g, tmpdir, num_server, num_workers)

449
450
451
if __name__ == "__main__":
    import tempfile
    with tempfile.TemporaryDirectory() as tmpdirname:
452
        test_standalone(Path(tmpdirname))
453
454
        test_dataloader(Path(tmpdirname), 3, 4, 'node')
        test_dataloader(Path(tmpdirname), 3, 4, 'edge')
455
        test_neg_dataloader(Path(tmpdirname), 3, 4)
456
457
458
459
        test_dist_dataloader(Path(tmpdirname), 3, 0, True, True)
        test_dist_dataloader(Path(tmpdirname), 3, 4, True, True)
        test_dist_dataloader(Path(tmpdirname), 3, 0, True, False)
        test_dist_dataloader(Path(tmpdirname), 3, 4, True, False)