test_mp_dataloader.py 9.15 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import dgl
import unittest
import os
from dgl.data import CitationGraphDataset
from dgl.distributed import sample_neighbors
from dgl.distributed import partition_graph, load_partition, load_partition_book
import sys
import multiprocessing as mp
import numpy as np
import time
from utils import get_local_usable_addr
from pathlib import Path
from dgl.distributed import DistGraphServer, DistGraph, DistDataLoader
import pytest
import backend as F

class NeighborSampler(object):
    def __init__(self, g, fanouts, sample_neighbors):
        self.g = g
        self.fanouts = fanouts
        self.sample_neighbors = sample_neighbors

    def sample_blocks(self, seeds):
        import torch as th
        seeds = th.LongTensor(np.asarray(seeds))
        blocks = []
        for fanout in self.fanouts:
            # For each seed node, sample ``fanout`` neighbors.
            frontier = self.sample_neighbors(
                self.g, seeds, fanout, replace=True)
            # Then we compact the frontier into a bipartite graph for message passing.
            block = dgl.to_block(frontier, seeds)
            # Obtain the seed nodes for next layer.
            seeds = block.srcdata[dgl.NID]

            blocks.insert(0, block)
        return blocks


def start_server(rank, tmpdir, disable_shared_mem, num_clients):
    import dgl
    print('server: #clients=' + str(num_clients))
43
    g = DistGraphServer(rank, "mp_ip_config.txt", 1, num_clients,
44
45
46
47
                        tmpdir / 'test_sampling.json', disable_shared_mem=disable_shared_mem)
    g.start()


48
def start_dist_dataloader(rank, tmpdir, disable_shared_mem, num_workers, drop_last):
49
50
    import dgl
    import torch as th
51
    dgl.distributed.initialize("mp_ip_config.txt", 1, num_workers=num_workers)
52
53
54
55
56
57
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _ = load_partition(tmpdir / 'test_sampling.json', rank)
    num_nodes_to_sample = 202
    batch_size = 32
    train_nid = th.arange(num_nodes_to_sample)
58
    dist_graph = DistGraph("test_mp", gpb=gpb, part_config=tmpdir / 'test_sampling.json')
59
60
61
62
63

    # Create sampler
    sampler = NeighborSampler(dist_graph, [5, 10],
                              dgl.distributed.sample_neighbors)

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    # We need to test creating DistDataLoader multiple times.
    for i in range(2):
        # Create DataLoader for constructing blocks
        dataloader = DistDataLoader(
            dataset=train_nid.numpy(),
            batch_size=batch_size,
            collate_fn=sampler.sample_blocks,
            shuffle=False,
            drop_last=drop_last)

        groundtruth_g = CitationGraphDataset("cora")[0]
        max_nid = []

        for epoch in range(2):
            for idx, blocks in zip(range(0, num_nodes_to_sample, batch_size), dataloader):
                block = blocks[-1]
                o_src, o_dst =  block.edges()
                src_nodes_id = block.srcdata[dgl.NID][o_src]
                dst_nodes_id = block.dstdata[dgl.NID][o_dst]
                has_edges = groundtruth_g.has_edges_between(src_nodes_id, dst_nodes_id)
                assert np.all(F.asnumpy(has_edges))
                max_nid.append(np.max(F.asnumpy(dst_nodes_id)))
                # assert np.all(np.unique(np.sort(F.asnumpy(dst_nodes_id))) == np.arange(idx, batch_size))
            if drop_last:
                assert np.max(max_nid) == num_nodes_to_sample - 1 - num_nodes_to_sample % batch_size
            else:
                assert np.max(max_nid) == num_nodes_to_sample - 1
91
92
    del dataloader
    dgl.distributed.exit_client() # this is needed since there's two test here in one process
93
94
95
96
97
98

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
def test_standalone(tmpdir):
    ip_config = open("mp_ip_config.txt", "w")
    for _ in range(1):
99
        ip_config.write('{}\n'.format(get_local_usable_addr()))
100
101
102
103
104
105
106
107
108
109
110
    ip_config.close()

    g = CitationGraphDataset("cora")[0]
    print(g.idtype)
    num_parts = 1
    num_hops = 1

    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=False)

    os.environ['DGL_DIST_MODE'] = 'standalone'
111
112
113
114
    try:
        start_dist_dataloader(0, tmpdir, False, 2, True)
    except Exception as e:
        print(e)
115
116
117
118
119
120
    dgl.distributed.exit_client() # this is needed since there's two test here in one process


@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
@pytest.mark.parametrize("num_server", [3])
121
@pytest.mark.parametrize("num_workers", [0, 4])
122
@pytest.mark.parametrize("drop_last", [True, False])
123
def test_dist_dataloader(tmpdir, num_server, num_workers, drop_last):
124
125
    ip_config = open("mp_ip_config.txt", "w")
    for _ in range(num_server):
126
        ip_config.write('{}\n'.format(get_local_usable_addr()))
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    ip_config.close()

    g = CitationGraphDataset("cora")[0]
    print(g.idtype)
    num_parts = num_server
    num_hops = 1

    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=False)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, num_workers+1))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    time.sleep(3)
147
    os.environ['DGL_DIST_MODE'] = 'distributed'
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    ptrainer = ctx.Process(target=start_dist_dataloader, args=(
        0, tmpdir, num_server > 1, num_workers, drop_last))
    ptrainer.start()
    time.sleep(1)

    for p in pserver_list:
        p.join()
    ptrainer.join()

def start_node_dataloader(rank, tmpdir, disable_shared_mem, num_workers):
    import dgl
    import torch as th
    dgl.distributed.initialize("mp_ip_config.txt", 1, num_workers=num_workers)
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _ = load_partition(tmpdir / 'test_sampling.json', rank)
    num_nodes_to_sample = 202
    batch_size = 32
    train_nid = th.arange(num_nodes_to_sample)
    dist_graph = DistGraph("test_mp", gpb=gpb, part_config=tmpdir / 'test_sampling.json')

    # Create sampler
    sampler = dgl.dataloading.MultiLayerNeighborSampler([5, 10])

    # We need to test creating DistDataLoader multiple times.
    for i in range(2):
        # Create DataLoader for constructing blocks
        dataloader = dgl.dataloading.NodeDataLoader(
            dist_graph,
            train_nid,
            sampler,
            batch_size=batch_size,
            shuffle=True,
            drop_last=False,
            num_workers=num_workers)

        groundtruth_g = CitationGraphDataset("cora")[0]
        max_nid = []

        for epoch in range(2):
            for idx, (_, _, blocks) in zip(range(0, num_nodes_to_sample, batch_size), dataloader):
                block = blocks[-1]
                o_src, o_dst =  block.edges()
                src_nodes_id = block.srcdata[dgl.NID][o_src]
                dst_nodes_id = block.dstdata[dgl.NID][o_dst]
                has_edges = groundtruth_g.has_edges_between(src_nodes_id, dst_nodes_id)
                assert np.all(F.asnumpy(has_edges))
                max_nid.append(np.max(F.asnumpy(dst_nodes_id)))
                # assert np.all(np.unique(np.sort(F.asnumpy(dst_nodes_id))) == np.arange(idx, batch_size))
    del dataloader
198
    dgl.distributed.exit_client() # this is needed since there's two test here in one process
199

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
@pytest.mark.parametrize("num_server", [3])
@pytest.mark.parametrize("num_workers", [0, 4])
@pytest.mark.parametrize("dataloader_type", ["node"])
def test_dataloader(tmpdir, num_server, num_workers, dataloader_type):
    ip_config = open("mp_ip_config.txt", "w")
    for _ in range(num_server):
        ip_config.write('{}\n'.format(get_local_usable_addr()))
    ip_config.close()

    g = CitationGraphDataset("cora")[0]
    print(g.idtype)
    num_parts = num_server
    num_hops = 1

    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=False)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, num_workers+1))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    time.sleep(3)
    os.environ['DGL_DIST_MODE'] = 'distributed'
    ptrainer_list = []
    if dataloader_type == 'node':
        p = ctx.Process(target=start_node_dataloader, args=(
            0, tmpdir, num_server > 1, num_workers))
        p.start()
        time.sleep(1)
        ptrainer_list.append(p)
    for p in pserver_list:
        p.join()
    for p in ptrainer_list:
        p.join()

243
244
245
if __name__ == "__main__":
    import tempfile
    with tempfile.TemporaryDirectory() as tmpdirname:
246
        test_dataloader(Path(tmpdirname), 3, 4, 'node')
247
248
249
        test_standalone(Path(tmpdirname))
        test_dist_dataloader(Path(tmpdirname), 3, 0, True)
        test_dist_dataloader(Path(tmpdirname), 3, 4, True)