test_mp_dataloader.py 23.6 KB
Newer Older
1
import multiprocessing as mp
Rhett Ying's avatar
Rhett Ying committed
2
3
import os
import tempfile
4
import time
5
import unittest
Rhett Ying's avatar
Rhett Ying committed
6

7
import backend as F
Rhett Ying's avatar
Rhett Ying committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import dgl
import numpy as np
import pytest
import torch as th
from dgl.data import CitationGraphDataset
from dgl.distributed import (
    DistDataLoader,
    DistGraph,
    DistGraphServer,
    load_partition,
    partition_graph,
)
from scipy import sparse as spsp
from utils import generate_ip_config, reset_envs

23
24
25
26
27
28
29
30
31

class NeighborSampler(object):
    def __init__(self, g, fanouts, sample_neighbors):
        self.g = g
        self.fanouts = fanouts
        self.sample_neighbors = sample_neighbors

    def sample_blocks(self, seeds):
        import torch as th
Rhett Ying's avatar
Rhett Ying committed
32

33
34
35
36
37
        seeds = th.LongTensor(np.asarray(seeds))
        blocks = []
        for fanout in self.fanouts:
            # For each seed node, sample ``fanout`` neighbors.
            frontier = self.sample_neighbors(
Rhett Ying's avatar
Rhett Ying committed
38
39
40
41
                self.g, seeds, fanout, replace=True
            )
            # Then we compact the frontier into a bipartite graph for
            # message passing.
42
43
44
45
46
47
48
49
            block = dgl.to_block(frontier, seeds)
            # Obtain the seed nodes for next layer.
            seeds = block.srcdata[dgl.NID]

            blocks.insert(0, block)
        return blocks


Rhett Ying's avatar
Rhett Ying committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
def start_server(
    rank,
    ip_config,
    part_config,
    disable_shared_mem,
    num_clients,
):
    print("server: #clients=" + str(num_clients))
    g = DistGraphServer(
        rank,
        ip_config,
        1,
        num_clients,
        part_config,
        disable_shared_mem=disable_shared_mem,
        graph_format=["csc", "coo"],
    )
67
68
69
    g.start()


Rhett Ying's avatar
Rhett Ying committed
70
71
72
73
74
75
76
77
78
79
def start_dist_dataloader(
    rank,
    ip_config,
    part_config,
    num_server,
    drop_last,
    orig_nid,
    orig_eid,
    group_id=0,
):
80
81
    import dgl
    import torch as th
Rhett Ying's avatar
Rhett Ying committed
82
83
84

    os.environ["DGL_GROUP_ID"] = str(group_id)
    dgl.distributed.initialize(ip_config)
85
    gpb = None
86
    disable_shared_mem = num_server > 0
87
    if disable_shared_mem:
Rhett Ying's avatar
Rhett Ying committed
88
        _, _, _, gpb, _, _, _ = load_partition(part_config, rank)
89
90
91
    num_nodes_to_sample = 202
    batch_size = 32
    train_nid = th.arange(num_nodes_to_sample)
Rhett Ying's avatar
Rhett Ying committed
92
    dist_graph = DistGraph("test_mp", gpb=gpb, part_config=part_config)
93

94
    for i in range(num_server):
Rhett Ying's avatar
Rhett Ying committed
95
        part, _, _, _, _, _, _ = load_partition(part_config, i)
96

97
    # Create sampler
Rhett Ying's avatar
Rhett Ying committed
98
99
100
    sampler = NeighborSampler(
        dist_graph, [5, 10], dgl.distributed.sample_neighbors
    )
101

102
103
104
105
106
107
108
109
    # We need to test creating DistDataLoader multiple times.
    for i in range(2):
        # Create DataLoader for constructing blocks
        dataloader = DistDataLoader(
            dataset=train_nid.numpy(),
            batch_size=batch_size,
            collate_fn=sampler.sample_blocks,
            shuffle=False,
Rhett Ying's avatar
Rhett Ying committed
110
111
            drop_last=drop_last,
        )
112
113
114
115
116

        groundtruth_g = CitationGraphDataset("cora")[0]
        max_nid = []

        for epoch in range(2):
Rhett Ying's avatar
Rhett Ying committed
117
118
119
            for idx, blocks in zip(
                range(0, num_nodes_to_sample, batch_size), dataloader
            ):
120
                block = blocks[-1]
Rhett Ying's avatar
Rhett Ying committed
121
                o_src, o_dst = block.edges()
122
123
                src_nodes_id = block.srcdata[dgl.NID][o_src]
                dst_nodes_id = block.dstdata[dgl.NID][o_dst]
124
125
126
127
                max_nid.append(np.max(F.asnumpy(dst_nodes_id)))

                src_nodes_id = orig_nid[src_nodes_id]
                dst_nodes_id = orig_nid[dst_nodes_id]
Rhett Ying's avatar
Rhett Ying committed
128
129
130
                has_edges = groundtruth_g.has_edges_between(
                    src_nodes_id, dst_nodes_id
                )
131
132
                assert np.all(F.asnumpy(has_edges))
            if drop_last:
Rhett Ying's avatar
Rhett Ying committed
133
134
135
136
137
138
                assert (
                    np.max(max_nid)
                    == num_nodes_to_sample
                    - 1
                    - num_nodes_to_sample % batch_size
                )
139
140
            else:
                assert np.max(max_nid) == num_nodes_to_sample - 1
141
    del dataloader
Rhett Ying's avatar
Rhett Ying committed
142
143
    # this is needed since there's two test here in one process
    dgl.distributed.exit_client()
144
145


Rhett Ying's avatar
Rhett Ying committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
def test_standalone():
    reset_envs()
    with tempfile.TemporaryDirectory() as test_dir:
        ip_config = os.path.join(test_dir, "ip_config.txt")
        generate_ip_config(ip_config, 1, 1)

        g = CitationGraphDataset("cora")[0]
        print(g.idtype)
        num_parts = 1
        num_hops = 1

        orig_nid, orig_eid = partition_graph(
            g,
            "test_sampling",
            num_parts,
            test_dir,
            num_hops=num_hops,
            part_method="metis",
            return_mapping=True,
        )
        part_config = os.path.join(test_dir, "test_sampling.json")
        os.environ["DGL_DIST_MODE"] = "standalone"
        try:
            start_dist_dataloader(
                0, ip_config, part_config, 1, True, orig_nid, orig_eid
            )
        except Exception as e:
            print(e)


def start_dist_neg_dataloader(
    rank,
    ip_config,
    part_config,
    num_server,
    num_workers,
    orig_nid,
    groundtruth_g,
):
185
186
    import dgl
    import torch as th
Rhett Ying's avatar
Rhett Ying committed
187
188

    dgl.distributed.initialize(ip_config)
189
190
191
    gpb = None
    disable_shared_mem = num_server > 1
    if disable_shared_mem:
Rhett Ying's avatar
Rhett Ying committed
192
        _, _, _, gpb, _, _, _ = load_partition(part_config, rank)
193
194
    num_edges_to_sample = 202
    batch_size = 32
Rhett Ying's avatar
Rhett Ying committed
195
    dist_graph = DistGraph("test_mp", gpb=gpb, part_config=part_config)
196
197
198
199
200
201
202
203
    assert len(dist_graph.ntypes) == len(groundtruth_g.ntypes)
    assert len(dist_graph.etypes) == len(groundtruth_g.etypes)
    if len(dist_graph.etypes) == 1:
        train_eid = th.arange(num_edges_to_sample)
    else:
        train_eid = {dist_graph.etypes[0]: th.arange(num_edges_to_sample)}

    for i in range(num_server):
Rhett Ying's avatar
Rhett Ying committed
204
        part, _, _, _, _, _, _ = load_partition(part_config, i)
205
206

    num_negs = 5
Rhett Ying's avatar
Rhett Ying committed
207
208
209
210
211
212
213
214
215
216
217
218
    sampler = dgl.dataloading.MultiLayerNeighborSampler([5, 10])
    negative_sampler = dgl.dataloading.negative_sampler.Uniform(num_negs)
    dataloader = dgl.dataloading.DistEdgeDataLoader(
        dist_graph,
        train_eid,
        sampler,
        batch_size=batch_size,
        negative_sampler=negative_sampler,
        shuffle=True,
        drop_last=False,
        num_workers=num_workers,
    )
219
    for _ in range(2):
Rhett Ying's avatar
Rhett Ying committed
220
221
222
        for _, (_, pos_graph, neg_graph, blocks) in zip(
            range(0, num_edges_to_sample, batch_size), dataloader
        ):
223
224
            block = blocks[-1]
            for src_type, etype, dst_type in block.canonical_etypes:
Rhett Ying's avatar
Rhett Ying committed
225
                o_src, o_dst = block.edges(etype=etype)
226
227
228
229
                src_nodes_id = block.srcnodes[src_type].data[dgl.NID][o_src]
                dst_nodes_id = block.dstnodes[dst_type].data[dgl.NID][o_dst]
                src_nodes_id = orig_nid[src_type][src_nodes_id]
                dst_nodes_id = orig_nid[dst_type][dst_nodes_id]
Rhett Ying's avatar
Rhett Ying committed
230
231
232
                has_edges = groundtruth_g.has_edges_between(
                    src_nodes_id, dst_nodes_id, etype=etype
                )
233
                assert np.all(F.asnumpy(has_edges))
Rhett Ying's avatar
Rhett Ying committed
234
235
236
237
238
239
240
241
                assert np.all(
                    F.asnumpy(block.dstnodes[dst_type].data[dgl.NID])
                    == F.asnumpy(pos_graph.nodes[dst_type].data[dgl.NID])
                )
                assert np.all(
                    F.asnumpy(block.dstnodes[dst_type].data[dgl.NID])
                    == F.asnumpy(neg_graph.nodes[dst_type].data[dgl.NID])
                )
242
243
244
                assert pos_graph.num_edges() * num_negs == neg_graph.num_edges()

    del dataloader
Rhett Ying's avatar
Rhett Ying committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    # this is needed since there's two test here in one process
    dgl.distributed.exit_client()


def check_neg_dataloader(g, num_server, num_workers):
    with tempfile.TemporaryDirectory() as test_dir:
        ip_config = "ip_config.txt"
        generate_ip_config(ip_config, num_server, num_server)

        num_parts = num_server
        num_hops = 1
        orig_nid, orig_eid = partition_graph(
            g,
            "test_sampling",
            num_parts,
            test_dir,
            num_hops=num_hops,
            part_method="metis",
            return_mapping=True,
        )
        part_config = os.path.join(test_dir, "test_sampling.json")
        if not isinstance(orig_nid, dict):
            orig_nid = {g.ntypes[0]: orig_nid}
        if not isinstance(orig_eid, dict):
            orig_eid = {g.etypes[0]: orig_eid}

        pserver_list = []
        ctx = mp.get_context("spawn")
        for i in range(num_server):
            p = ctx.Process(
                target=start_server,
                args=(
                    i,
                    ip_config,
                    part_config,
                    num_server > 1,
                    num_workers + 1,
                ),
            )
            p.start()
            time.sleep(1)
            pserver_list.append(p)
        os.environ["DGL_DIST_MODE"] = "distributed"
        os.environ["DGL_NUM_SAMPLER"] = str(num_workers)
        ptrainer_list = []

        p = ctx.Process(
            target=start_dist_neg_dataloader,
            args=(
                0,
                ip_config,
                part_config,
                num_server,
                num_workers,
                orig_nid,
                g,
            ),
        )
303
        p.start()
Rhett Ying's avatar
Rhett Ying committed
304
305
306
307
        ptrainer_list.append(p)

        for p in pserver_list:
            p.join()
308
            assert p.exitcode == 0
Rhett Ying's avatar
Rhett Ying committed
309
310
        for p in ptrainer_list:
            p.join()
311
            assert p.exitcode == 0
Rhett Ying's avatar
Rhett Ying committed
312
313


314
@unittest.skip(reason="Skip due to glitch in CI")
315
@pytest.mark.parametrize("num_server", [3])
316
@pytest.mark.parametrize("num_workers", [0, 4])
317
@pytest.mark.parametrize("drop_last", [True, False])
318
@pytest.mark.parametrize("num_groups", [1])
319
def test_dist_dataloader(num_server, num_workers, drop_last, num_groups):
320
    reset_envs()
321
322
323
324
    # No multiple partitions on single machine for
    # multiple client groups in case of race condition.
    if num_groups > 1:
        num_server = 1
Rhett Ying's avatar
Rhett Ying committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    with tempfile.TemporaryDirectory() as test_dir:
        ip_config = "ip_config.txt"
        generate_ip_config(ip_config, num_server, num_server)

        g = CitationGraphDataset("cora")[0]
        print(g.idtype)
        num_parts = num_server
        num_hops = 1

        orig_nid, orig_eid = partition_graph(
            g,
            "test_sampling",
            num_parts,
            test_dir,
            num_hops=num_hops,
            part_method="metis",
            return_mapping=True,
        )

        part_config = os.path.join(test_dir, "test_sampling.json")
        pserver_list = []
        ctx = mp.get_context("spawn")
        for i in range(num_server):
            p = ctx.Process(
                target=start_server,
                args=(
                    i,
                    ip_config,
                    part_config,
                    num_server > 1,
                    num_workers + 1,
                ),
            )
358
            p.start()
Rhett Ying's avatar
Rhett Ying committed
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
            time.sleep(1)
            pserver_list.append(p)

        os.environ["DGL_DIST_MODE"] = "distributed"
        os.environ["DGL_NUM_SAMPLER"] = str(num_workers)
        ptrainer_list = []
        num_trainers = 1
        for trainer_id in range(num_trainers):
            for group_id in range(num_groups):
                p = ctx.Process(
                    target=start_dist_dataloader,
                    args=(
                        trainer_id,
                        ip_config,
                        part_config,
                        num_server,
                        drop_last,
                        orig_nid,
                        orig_eid,
                        group_id,
                    ),
                )
                p.start()
                time.sleep(
                    1
                )  # avoid race condition when instantiating DistGraph
                ptrainer_list.append(p)

        for p in ptrainer_list:
            p.join()
389
            assert p.exitcode == 0
390
        for p in pserver_list:
Rhett Ying's avatar
Rhett Ying committed
391
            p.join()
392
            assert p.exitcode == 0
Rhett Ying's avatar
Rhett Ying committed
393
394
395
396
397
398
399
400
401
402
403
404
405


def start_node_dataloader(
    rank,
    ip_config,
    part_config,
    num_server,
    num_workers,
    orig_nid,
    orig_eid,
    groundtruth_g,
):
    dgl.distributed.initialize(ip_config)
406
    gpb = None
407
    disable_shared_mem = num_server > 1
408
    if disable_shared_mem:
Rhett Ying's avatar
Rhett Ying committed
409
        _, _, _, gpb, _, _, _ = load_partition(part_config, rank)
410
411
    num_nodes_to_sample = 202
    batch_size = 32
Rhett Ying's avatar
Rhett Ying committed
412
    dist_graph = DistGraph("test_mp", gpb=gpb, part_config=part_config)
413
414
415
416
417
    assert len(dist_graph.ntypes) == len(groundtruth_g.ntypes)
    assert len(dist_graph.etypes) == len(groundtruth_g.etypes)
    if len(dist_graph.etypes) == 1:
        train_nid = th.arange(num_nodes_to_sample)
    else:
Rhett Ying's avatar
Rhett Ying committed
418
        train_nid = {"n3": th.arange(num_nodes_to_sample)}
419

420
    for i in range(num_server):
Rhett Ying's avatar
Rhett Ying committed
421
        part, _, _, _, _, _, _ = load_partition(part_config, i)
422

423
    # Create sampler
Rhett Ying's avatar
Rhett Ying committed
424
425
426
427
428
429
430
431
432
    sampler = dgl.dataloading.MultiLayerNeighborSampler(
        [
            # test dict for hetero
            {etype: 5 for etype in dist_graph.etypes}
            if len(dist_graph.etypes) > 1
            else 5,
            10,
        ]
    )  # test int for hetero
433
434
435
436

    # We need to test creating DistDataLoader multiple times.
    for i in range(2):
        # Create DataLoader for constructing blocks
437
        dataloader = dgl.dataloading.DistNodeDataLoader(
438
439
440
441
442
443
            dist_graph,
            train_nid,
            sampler,
            batch_size=batch_size,
            shuffle=True,
            drop_last=False,
Rhett Ying's avatar
Rhett Ying committed
444
445
            num_workers=num_workers,
        )
446
447

        for epoch in range(2):
Rhett Ying's avatar
Rhett Ying committed
448
449
450
            for idx, (_, _, blocks) in zip(
                range(0, num_nodes_to_sample, batch_size), dataloader
            ):
451
                block = blocks[-1]
452
                for src_type, etype, dst_type in block.canonical_etypes:
Rhett Ying's avatar
Rhett Ying committed
453
                    o_src, o_dst = block.edges(etype=etype)
454
455
456
457
                    src_nodes_id = block.srcnodes[src_type].data[dgl.NID][o_src]
                    dst_nodes_id = block.dstnodes[dst_type].data[dgl.NID][o_dst]
                    src_nodes_id = orig_nid[src_type][src_nodes_id]
                    dst_nodes_id = orig_nid[dst_type][dst_nodes_id]
Rhett Ying's avatar
Rhett Ying committed
458
459
460
                    has_edges = groundtruth_g.has_edges_between(
                        src_nodes_id, dst_nodes_id, etype=etype
                    )
461
                    assert np.all(F.asnumpy(has_edges))
462
    del dataloader
Rhett Ying's avatar
Rhett Ying committed
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
    # this is needed since there's two test here in one process
    dgl.distributed.exit_client()


def start_edge_dataloader(
    rank,
    ip_config,
    part_config,
    num_server,
    num_workers,
    orig_nid,
    orig_eid,
    groundtruth_g,
):
    dgl.distributed.initialize(ip_config)
478
479
480
    gpb = None
    disable_shared_mem = num_server > 1
    if disable_shared_mem:
Rhett Ying's avatar
Rhett Ying committed
481
        _, _, _, gpb, _, _, _ = load_partition(part_config, rank)
482
483
    num_edges_to_sample = 202
    batch_size = 32
Rhett Ying's avatar
Rhett Ying committed
484
    dist_graph = DistGraph("test_mp", gpb=gpb, part_config=part_config)
485
486
487
488
489
490
491
492
    assert len(dist_graph.ntypes) == len(groundtruth_g.ntypes)
    assert len(dist_graph.etypes) == len(groundtruth_g.etypes)
    if len(dist_graph.etypes) == 1:
        train_eid = th.arange(num_edges_to_sample)
    else:
        train_eid = {dist_graph.etypes[0]: th.arange(num_edges_to_sample)}

    for i in range(num_server):
Rhett Ying's avatar
Rhett Ying committed
493
        part, _, _, _, _, _, _ = load_partition(part_config, i)
494
495
496

    # Create sampler
    sampler = dgl.dataloading.MultiLayerNeighborSampler([5, 10])
497

498
499
500
    # We need to test creating DistDataLoader multiple times.
    for i in range(2):
        # Create DataLoader for constructing blocks
501
        dataloader = dgl.dataloading.DistEdgeDataLoader(
502
503
504
505
506
507
            dist_graph,
            train_eid,
            sampler,
            batch_size=batch_size,
            shuffle=True,
            drop_last=False,
Rhett Ying's avatar
Rhett Ying committed
508
509
            num_workers=num_workers,
        )
510
511

        for epoch in range(2):
Rhett Ying's avatar
Rhett Ying committed
512
513
514
            for idx, (input_nodes, pos_pair_graph, blocks) in zip(
                range(0, num_edges_to_sample, batch_size), dataloader
            ):
515
516
                block = blocks[-1]
                for src_type, etype, dst_type in block.canonical_etypes:
Rhett Ying's avatar
Rhett Ying committed
517
                    o_src, o_dst = block.edges(etype=etype)
518
519
520
521
                    src_nodes_id = block.srcnodes[src_type].data[dgl.NID][o_src]
                    dst_nodes_id = block.dstnodes[dst_type].data[dgl.NID][o_dst]
                    src_nodes_id = orig_nid[src_type][src_nodes_id]
                    dst_nodes_id = orig_nid[dst_type][dst_nodes_id]
Rhett Ying's avatar
Rhett Ying committed
522
523
524
                    has_edges = groundtruth_g.has_edges_between(
                        src_nodes_id, dst_nodes_id, etype=etype
                    )
525
                    assert np.all(F.asnumpy(has_edges))
Rhett Ying's avatar
Rhett Ying committed
526
527
528
529
530
531
                    assert np.all(
                        F.asnumpy(block.dstnodes[dst_type].data[dgl.NID])
                        == F.asnumpy(
                            pos_pair_graph.nodes[dst_type].data[dgl.NID]
                        )
                    )
532
    del dataloader
Rhett Ying's avatar
Rhett Ying committed
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
    dgl.distributed.exit_client()


def check_dataloader(g, num_server, num_workers, dataloader_type):
    with tempfile.TemporaryDirectory() as test_dir:
        ip_config = "ip_config.txt"
        generate_ip_config(ip_config, num_server, num_server)

        num_parts = num_server
        num_hops = 1
        orig_nid, orig_eid = partition_graph(
            g,
            "test_sampling",
            num_parts,
            test_dir,
            num_hops=num_hops,
            part_method="metis",
            return_mapping=True,
        )
        part_config = os.path.join(test_dir, "test_sampling.json")
        if not isinstance(orig_nid, dict):
            orig_nid = {g.ntypes[0]: orig_nid}
        if not isinstance(orig_eid, dict):
            orig_eid = {g.etypes[0]: orig_eid}

        pserver_list = []
        ctx = mp.get_context("spawn")
        for i in range(num_server):
            p = ctx.Process(
                target=start_server,
                args=(
                    i,
                    ip_config,
                    part_config,
                    num_server > 1,
                    num_workers + 1,
                ),
            )
            p.start()
            time.sleep(1)
            pserver_list.append(p)

        os.environ["DGL_DIST_MODE"] = "distributed"
        os.environ["DGL_NUM_SAMPLER"] = str(num_workers)
        ptrainer_list = []
        if dataloader_type == "node":
            p = ctx.Process(
                target=start_node_dataloader,
                args=(
                    0,
                    ip_config,
                    part_config,
                    num_server,
                    num_workers,
                    orig_nid,
                    orig_eid,
                    g,
                ),
            )
            p.start()
            ptrainer_list.append(p)
        elif dataloader_type == "edge":
            p = ctx.Process(
                target=start_edge_dataloader,
                args=(
                    0,
                    ip_config,
                    part_config,
                    num_server,
                    num_workers,
                    orig_nid,
                    orig_eid,
                    g,
                ),
            )
            p.start()
            ptrainer_list.append(p)
        for p in pserver_list:
            p.join()
612
            assert p.exitcode == 0
Rhett Ying's avatar
Rhett Ying committed
613
614
        for p in ptrainer_list:
            p.join()
615
            assert p.exitcode == 0
Rhett Ying's avatar
Rhett Ying committed
616

617

618
def create_random_hetero():
Rhett Ying's avatar
Rhett Ying committed
619
620
    num_nodes = {"n1": 10000, "n2": 10010, "n3": 10020}
    etypes = [("n1", "r1", "n2"), ("n1", "r2", "n3"), ("n2", "r3", "n3")]
621
622
623
    edges = {}
    for etype in etypes:
        src_ntype, _, dst_ntype = etype
Rhett Ying's avatar
Rhett Ying committed
624
625
626
627
628
629
630
        arr = spsp.random(
            num_nodes[src_ntype],
            num_nodes[dst_ntype],
            density=0.001,
            format="coo",
            random_state=100,
        )
631
632
        edges[etype] = (arr.row, arr.col)
    g = dgl.heterograph(edges, num_nodes)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
633
634
    g.nodes["n1"].data["feat"] = F.unsqueeze(F.arange(0, g.num_nodes("n1")), 1)
    g.edges["r1"].data["feat"] = F.unsqueeze(F.arange(0, g.num_edges("r1")), 1)
635
636
    return g

Rhett Ying's avatar
Rhett Ying committed
637

638
@unittest.skip(reason="Skip due to glitch in CI")
639
640
641
@pytest.mark.parametrize("num_server", [3])
@pytest.mark.parametrize("num_workers", [0, 4])
@pytest.mark.parametrize("dataloader_type", ["node", "edge"])
Rhett Ying's avatar
Rhett Ying committed
642
def test_dataloader(num_server, num_workers, dataloader_type):
643
    reset_envs()
644
    g = CitationGraphDataset("cora")[0]
Rhett Ying's avatar
Rhett Ying committed
645
    check_dataloader(g, num_server, num_workers, dataloader_type)
646
    g = create_random_hetero()
Rhett Ying's avatar
Rhett Ying committed
647
648
    check_dataloader(g, num_server, num_workers, dataloader_type)

649

650
@unittest.skip(reason="Skip due to glitch in CI")
651
652
@pytest.mark.parametrize("num_server", [3])
@pytest.mark.parametrize("num_workers", [0, 4])
Rhett Ying's avatar
Rhett Ying committed
653
def test_neg_dataloader(num_server, num_workers):
654
    reset_envs()
655
    g = CitationGraphDataset("cora")[0]
Rhett Ying's avatar
Rhett Ying committed
656
    check_neg_dataloader(g, num_server, num_workers)
657
    g = create_random_hetero()
Rhett Ying's avatar
Rhett Ying committed
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
    check_neg_dataloader(g, num_server, num_workers)


def start_multiple_dataloaders(
    ip_config, part_config, graph_name, orig_g, num_dataloaders, dataloader_type
):
    dgl.distributed.initialize(ip_config)
    dist_g = dgl.distributed.DistGraph(graph_name, part_config=part_config)
    if dataloader_type == "node":
        train_ids = th.arange(orig_g.num_nodes())
        batch_size = orig_g.num_nodes() // 100
    else:
        train_ids = th.arange(orig_g.num_edges())
        batch_size = orig_g.num_edges() // 100
    sampler = dgl.dataloading.NeighborSampler([-1])
    dataloaders = []
    dl_iters = []
    for _ in range(num_dataloaders):
        if dataloader_type == "node":
            dataloader = dgl.dataloading.DistNodeDataLoader(
                dist_g, train_ids, sampler, batch_size=batch_size
            )
        else:
            dataloader = dgl.dataloading.DistEdgeDataLoader(
                dist_g, train_ids, sampler, batch_size=batch_size
            )
        dataloaders.append(dataloader)
        dl_iters.append(iter(dataloader))

    # iterate on multiple dataloaders randomly
    while len(dl_iters) > 0:
        next_dl = np.random.choice(len(dl_iters), 1)[0]
        try:
            _ = next(dl_iters[next_dl])
        except StopIteration:
            dl_iters.pop(next_dl)
            del dataloaders[next_dl]

    dgl.distributed.exit_client()


699
@unittest.skip(reason="Skip due to glitch in CI")
Rhett Ying's avatar
Rhett Ying committed
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
@pytest.mark.parametrize("num_dataloaders", [1, 4])
@pytest.mark.parametrize("num_workers", [0, 1, 4])
@pytest.mark.parametrize("dataloader_type", ["node", "edge"])
def test_multiple_dist_dataloaders(
    num_dataloaders, num_workers, dataloader_type
):
    reset_envs()
    os.environ["DGL_DIST_MODE"] = "distributed"
    os.environ["DGL_NUM_SAMPLER"] = str(num_workers)
    num_parts = 1
    num_servers = 1
    with tempfile.TemporaryDirectory() as test_dir:
        ip_config = os.path.join(test_dir, "ip_config.txt")
        generate_ip_config(ip_config, num_parts, num_servers)

        orig_g = dgl.rand_graph(1000, 10000)
        graph_name = "test"
        partition_graph(orig_g, graph_name, num_parts, test_dir)
        part_config = os.path.join(test_dir, f"{graph_name}.json")

        p_servers = []
        ctx = mp.get_context("spawn")
        for i in range(num_servers):
            p = ctx.Process(
                target=start_server,
                args=(
                    i,
                    ip_config,
                    part_config,
                    num_servers > 1,
                    num_workers + 1,
                ),
            )
            p.start()
            time.sleep(1)
            p_servers.append(p)

        p_client = ctx.Process(
            target=start_multiple_dataloaders,
            args=(
                ip_config,
                part_config,
                graph_name,
                orig_g,
                num_dataloaders,
                dataloader_type,
            ),
        )
        p_client.start()

        p_client.join()
751
        assert p_client.exitcode == 0
Rhett Ying's avatar
Rhett Ying committed
752
753
        for p in p_servers:
            p.join()
754
            assert p.exitcode == 0
Rhett Ying's avatar
Rhett Ying committed
755
    reset_envs()