test_sparse.py 12.6 KB
Newer Older
1
from dgl.ops import gspmm, gsddmm, edge_softmax, segment_reduce
2
from test_utils.graph_cases import get_cases
nv-dlasalle's avatar
nv-dlasalle committed
3
from test_utils import parametrize_idtype
4
import dgl
5
import random
6
import pytest, unittest
7
8
import networkx as nx
import backend as F
9
import numpy as np 
10

11
random.seed(42)
12
13
14
15
16
17
18
np.random.seed(42)

udf_msg = {
    'add': lambda edges: {'m': edges.src['x'] + edges.data['w']},
    'sub': lambda edges: {'m': edges.src['x'] - edges.data['w']},
    'mul': lambda edges: {'m': edges.src['x'] * edges.data['w']},
    'div': lambda edges: {'m': edges.src['x'] / edges.data['w']},
19
20
    'copy_lhs': lambda edges: {'m': edges.src['x']},
    'copy_rhs': lambda edges: {'m': edges.data['w']}
21
22
}

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
def select(target, src, edge, dst):
    if target == 'u':
        return src
    elif target == 'v':
        return dst
    elif target == 'e':
        return edge

def binary_op(msg, x, y):
    if msg == 'add':
        return x + y
    elif msg == 'sub':
        return x - y
    elif msg == 'mul':
        return x * y
    elif msg == 'div':
        return x / y
    elif msg == 'dot':
        return F.sum(x * y, -1, keepdims=True)
    elif msg == 'copy_lhs':
        return x
    elif msg == 'copy_rhs':
        return y

def edge_func(lhs_target, rhs_target, msg):
    def foo(edges):
        return {
            'm': binary_op(
                msg,
                select(lhs_target, edges.src, edges.data, edges.dst)['x'],
                select(rhs_target, edges.src, edges.data, edges.dst)['y']
            )
        }
    return foo

58
udf_apply_edges = {
59
60
61
62
    lhs_target + '_' + msg + '_' + rhs_target: edge_func(lhs_target, rhs_target, msg)
    for lhs_target in ['u', 'v', 'e']
    for rhs_target in ['u', 'v', 'e']
    for msg in ['add', 'sub', 'mul', 'div', 'dot', 'copy_lhs', 'copy_rhs']
63
64
65
66
67
68
69
70
71
}

udf_reduce = {
    'sum': lambda nodes: {'v': F.sum(nodes.mailbox['m'], 1)},
    'min': lambda nodes: {'v': F.min(nodes.mailbox['m'], 1)},
    'max': lambda nodes: {'v': F.max(nodes.mailbox['m'], 1)}
}

graphs = [
72
#    dgl.rand_graph(30, 0),
73
    dgl.rand_graph(30, 100),
74
    dgl.rand_bipartite('_U', '_E', '_V', 30, 40, 300)
75
76
77
78
79
]

spmm_shapes = [
    ((1, 2, 1, 3, 1), (4, 1, 3, 1, 1)),
    ((3, 3), (1, 3)),
80
81
    ((1,), (3,)),
    ((3,), (1,)),
82
83
    ((1,), (1,)),
    ((), ())
84
85
86
87
88
89
90
]

sddmm_shapes = [
    ((1, 2, 1, 3, 1), (4, 1, 3, 1, 1)),
    ((5, 3, 1, 7), (1, 3, 7, 7)),
    ((1, 3, 3), (4, 1, 3)),
    ((3,), (3,)),
91
    ((1,), (1,))
92
93
]

94
95
96
97
edge_softmax_shapes = [
    (1,), (1, 3), (3, 4, 5)
]

98
99
@pytest.mark.parametrize('g', graphs)
@pytest.mark.parametrize('shp', spmm_shapes)
100
@pytest.mark.parametrize('msg', ['add', 'sub', 'mul', 'div', 'copy_lhs', 'copy_rhs'])
101
@pytest.mark.parametrize('reducer', ['sum', 'min', 'max'])
nv-dlasalle's avatar
nv-dlasalle committed
102
@parametrize_idtype
103
104
def test_spmm(idtype, g, shp, msg, reducer):
    g = g.astype(idtype).to(F.ctx())
105
    print(g)
106
    print(g.idtype)
107

108
109
110
111
112
113
    hu = F.tensor(np.random.rand(*((g.number_of_src_nodes(),) + shp[0])) + 1)
    he = F.tensor(np.random.rand(*((g.number_of_edges(),) + shp[1])) + 1)
    print('u shape: {}, e shape: {}'.format(F.shape(hu), F.shape(he)))

    g.srcdata['x'] = F.attach_grad(F.clone(hu))
    g.edata['w'] = F.attach_grad(F.clone(he))
114
    print('SpMM(message func: {}, reduce func: {})'.format(msg, reducer))
115
116
117
118
119

    u = F.attach_grad(F.clone(hu))
    e = F.attach_grad(F.clone(he))
    with F.record_grad():
        v = gspmm(g, msg, reducer, u, e)
120
121
        if reducer in ['max', 'min']:
            v = F.replace_inf_with_zero(v)
122
123
124
125
126
127
128
129
130
131
        if g.number_of_edges() > 0:
            F.backward(F.reduce_sum(v))
            if msg != 'copy_rhs':
                grad_u = F.grad(u)
            if msg != 'copy_lhs':
                grad_e = F.grad(e)

    with F.record_grad():
        g.update_all(udf_msg[msg], udf_reduce[reducer])
        if g.number_of_edges() > 0:
132
            v1 = g.dstdata['v']
133
            assert F.allclose(v, v1)
134
135
136
137
            print('forward passed')

            F.backward(F.reduce_sum(v1))
            if msg != 'copy_rhs':
138
139
140
                if reducer in ['min', 'max']: # there might be some numerical errors
                    rate = F.reduce_sum(F.abs(F.grad(g.srcdata['x']) - grad_u)) /\
                           F.reduce_sum(F.abs(grad_u))
Zihao Ye's avatar
Zihao Ye committed
141
                    assert F.as_scalar(rate) < 1e-2, rate
142
143
                else:
                    assert F.allclose(F.grad(g.srcdata['x']), grad_u)
144
            if msg != 'copy_lhs':
145
146
147
                if reducer in ['min', 'max']:
                    rate = F.reduce_sum(F.abs(F.grad(g.edata['w']) - grad_e)) /\
                           F.reduce_sum(F.abs(grad_e))
Zihao Ye's avatar
Zihao Ye committed
148
                    assert F.as_scalar(rate) < 1e-2, rate
149
150
                else:
                    assert F.allclose(F.grad(g.edata['w']), grad_e)
151
            print('backward passed')
152
153
154
155
156
157
158

    g.srcdata.pop('x')
    g.edata.pop('w')
    if 'v' in g.dstdata: g.dstdata.pop('v')

@pytest.mark.parametrize('g', graphs)
@pytest.mark.parametrize('shp', sddmm_shapes)
159
160
161
@pytest.mark.parametrize('lhs_target', ['u', 'v', 'e'])
@pytest.mark.parametrize('rhs_target', ['u', 'v', 'e'])
@pytest.mark.parametrize('msg', ['add', 'sub', 'mul', 'div', 'dot', 'copy_lhs', 'copy_rhs'])
nv-dlasalle's avatar
nv-dlasalle committed
162
@parametrize_idtype
163
164
165
166
def test_sddmm(g, shp, lhs_target, rhs_target, msg, idtype):
    if lhs_target == rhs_target:
        return
    g = g.astype(idtype).to(F.ctx())
167
168
169
    if dgl.backend.backend_name == 'mxnet' and g.number_of_edges() == 0:
        pytest.skip()   # mxnet do not support zero shape tensor
    print(g)
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    print(g.idtype)

    len_lhs = select(
        lhs_target,
        g.number_of_src_nodes(),
        g.number_of_edges(),
        g.number_of_dst_nodes())
    lhs_shp = (len_lhs,) + shp[0]
    len_rhs = select(
        rhs_target,
        g.number_of_src_nodes(),
        g.number_of_edges(),
        g.number_of_dst_nodes())
    rhs_shp = (len_rhs,) + shp[1]
    feat_lhs = F.tensor(np.random.rand(*lhs_shp) + 1)
    feat_rhs = F.tensor(np.random.rand(*rhs_shp) + 1)
    print('lhs shape: {}, rhs shape: {}'.format(F.shape(feat_lhs), F.shape(feat_rhs)))

    lhs_frame = select(
        lhs_target,
        g.srcdata,
        g.edata,
        g.dstdata)
    rhs_frame = select(
        rhs_target,
        g.srcdata,
        g.edata,
        g.dstdata)
    lhs_frame['x'] = F.attach_grad(F.clone(feat_lhs))
    rhs_frame['y'] = F.attach_grad(F.clone(feat_rhs))
    msg_func = lhs_target + '_' + msg + '_' + rhs_target
    print('SDDMM(message func: {})'.format(msg_func))

    lhs = F.attach_grad(F.clone(feat_lhs))
    rhs = F.attach_grad(F.clone(feat_rhs))
    with F.record_grad():
        e = gsddmm(g, msg, lhs, rhs, lhs_target=lhs_target, rhs_target=rhs_target)
        F.backward(F.reduce_sum(e))
        grad_lhs = F.grad(lhs)
        grad_rhs = F.grad(rhs)

    with F.record_grad():
        g.apply_edges(udf_apply_edges[msg_func])
        if g.number_of_edges() > 0:
            e1 = g.edata['m']
215
            assert F.allclose(e, e1)
216
217
218
219
220
221
222
223
224
225
226
            print('forward passed')

            F.backward(F.reduce_sum(e1))
            if msg != 'copy_rhs':
                assert F.allclose(F.grad(lhs_frame['x']), grad_lhs)
            if msg != 'copy_lhs':
                assert F.allclose(F.grad(rhs_frame['y']), grad_rhs)
            print('backward passed')

    lhs_frame.pop('x')
    rhs_frame.pop('y')
227
228
    if 'm' in g.edata: g.edata.pop('m')

229
230
231
@pytest.mark.parametrize('g', get_cases(['clique']))
@pytest.mark.parametrize('norm_by', ['src', 'dst'])
@pytest.mark.parametrize('shp', edge_softmax_shapes)
nv-dlasalle's avatar
nv-dlasalle committed
232
@parametrize_idtype
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
def test_edge_softmax(g, norm_by, shp, idtype):
    g = g.astype(idtype).to(F.ctx())
    edata = F.tensor(np.random.rand(g.number_of_edges(), *shp))
    e1 = F.attach_grad(F.clone(edata))

    with F.record_grad():
        score1 = edge_softmax(g, e1, norm_by=norm_by)
        F.backward(F.reduce_sum(score1))
        grad_edata = F.grad(e1)

    with F.record_grad():
        e2 = F.attach_grad(F.clone(edata))
        e2_2d = F.reshape(
            e2, (g.number_of_src_nodes(), g.number_of_dst_nodes(), *e2.shape[1:]))
        if norm_by == 'src':
            score2 = F.softmax(e2_2d, 1)
            score2 = F.reshape(score2, (-1, *e2.shape[1:]))
        if norm_by == 'dst':
            score2 = F.softmax(e2_2d, 0)
            score2 = F.reshape(score2, (-1, *e2.shape[1:]))
        assert F.allclose(score1, score2)
        print('forward passed')

        F.backward(F.reduce_sum(score2))
        assert F.allclose(F.grad(e2), grad_edata)
        print('backward passed')

260
261
262
263
264
265
@pytest.mark.parametrize('reducer', ['sum', 'max', 'min', 'mean'])
def test_segment_reduce(reducer):
    ctx = F.ctx()
    value = F.tensor(np.random.rand(10, 5))
    v1 = F.attach_grad(F.clone(value))
    v2 = F.attach_grad(F.clone(value))
266
    seglen = F.tensor([2, 3, 0, 4, 1, 0, 0])
267
268
269
270
271
272
273
274
    u = F.copy_to(F.arange(0, F.shape(value)[0], F.int32), ctx)
    v = F.repeat(F.copy_to(F.arange(0, len(seglen), F.int32), ctx),
                 seglen, dim=0)

    num_nodes = {'_U': len(u), '_V': len(seglen)}
    g = dgl.convert.heterograph({('_U', '_E', '_V'): (u, v)}, num_nodes_dict=num_nodes)
    with F.record_grad():
        rst1 = gspmm(g, 'copy_lhs', reducer, v1, None)
275
276
        if reducer in ['max', 'min']:
            rst1 = F.replace_inf_with_zero(rst1)
277
278
279
280
281
282
283
284
285
286
287
288
289
        F.backward(F.reduce_sum(rst1))
        grad1 = F.grad(v1)

    with F.record_grad():
        rst2 = segment_reduce(seglen, v2, reducer=reducer)
        F.backward(F.reduce_sum(rst2))
        assert F.allclose(rst1, rst2)
        print('forward passed')

        grad2 = F.grad(v2)
        assert F.allclose(grad1, grad2)
        print('backward passed')

290
@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
nv-dlasalle's avatar
nv-dlasalle committed
291
@parametrize_idtype
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
@pytest.mark.parametrize('feat_size', [1, 8, 16, 64, 256])
def test_segment_mm(idtype, feat_size):
    import torch
    dev = F.ctx()
    # input
    a = torch.tensor(np.random.rand(100, feat_size)).to(dev)
    a.requires_grad_()
    b = torch.tensor(np.random.rand(10, feat_size, feat_size + 1)).to(dev)
    b.requires_grad_()
    seglen_a = torch.tensor([10, 15, 8, 0, 1, 9, 18, 24, 15, 0])
    dc = torch.tensor(np.random.rand(100, feat_size + 1)).to(dev)
    # compute
    c = dgl.ops.segment_mm(a, b, seglen_a)
    c.backward(dc)
    da = a.grad.clone()
    db = b.grad.clone()
    # ground truth
    c_t = []
    off = 0
    for i, l in enumerate(seglen_a):
        c_t.append(a[off:off+l] @ b[i])
        off += l
    c_t = torch.cat(c_t)
    a.grad.zero_()
    b.grad.zero_()
    c_t.backward(dc)
    da_t = a.grad
    db_t = b.grad

    assert torch.allclose(c, c_t, atol=1e-4, rtol=1e-4)
    assert torch.allclose(da, da_t, atol=1e-4, rtol=1e-4)
    assert torch.allclose(db, db_t, atol=1e-4, rtol=1e-4)

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
nv-dlasalle's avatar
nv-dlasalle committed
326
@parametrize_idtype
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
@pytest.mark.parametrize('feat_size', [1, 8, 16, 64, 256])
def test_gather_mm_idx_b(idtype, feat_size):
    import torch
    dev = F.ctx()
    # input
    a = torch.tensor(np.random.rand(100, feat_size)).to(dev)
    a.requires_grad_()
    b = torch.tensor(np.random.rand(10, feat_size, feat_size + 1)).to(dev)
    b.requires_grad_()
    idx = torch.tensor(np.random.randint(0, 10, 100)).to(dev).long()
    dc = torch.tensor(np.random.rand(100, feat_size + 1)).to(dev)
    # compute
    c = dgl.ops.gather_mm(a, b, idx_b=idx)
    c.backward(dc)
    da = a.grad.clone()
    db = b.grad.clone()
    # ground truth
    c_t = torch.bmm(a.unsqueeze(1), b[idx]).squeeze(1)
    a.grad.zero_()
    b.grad.zero_()
    c_t.backward(dc)
    da_t = a.grad
    db_t = b.grad

    assert torch.allclose(c, c_t, atol=1e-4, rtol=1e-4)
    assert torch.allclose(da, da_t, atol=1e-4, rtol=1e-4)
    assert torch.allclose(db, db_t, atol=1e-4, rtol=1e-4)

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
nv-dlasalle's avatar
nv-dlasalle committed
356
@parametrize_idtype
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
@pytest.mark.parametrize('feat_size', [1, 8, 16, 64, 256])
def _test_gather_mm_idx_a(idtype, feat_size):
    # TODO(minjie): currently disabled due to bugs in the CUDA kernel. Need to fix it later.
    import torch
    dev = F.ctx()
    # input
    a = torch.tensor(np.random.rand(10, feat_size)).to(dev)
    a.requires_grad_()
    b = torch.tensor(np.random.rand(100, feat_size, feat_size + 1)).to(dev)
    b.requires_grad_()
    idx = torch.tensor(np.random.randint(0, 10, 100)).to(dev)
    dc = torch.tensor(np.random.rand(100, feat_size + 1)).to(dev)
    # compute
    c = dgl.ops.gather_mm(a, b, idx_a=idx)
    c.backward(dc)
    da = a.grad.clone()
    db = b.grad.clone()
    # ground truth
    c_t = torch.bmm(a[idx].unsqueeze(1), b).squeeze(1)
    a.grad.zero_()
    b.grad.zero_()
    c_t.backward(dc)
    da_t = a.grad
    db_t = b.grad

    assert torch.allclose(c, c_t, atol=1e-4, rtol=1e-4)
    assert torch.allclose(da, da_t, atol=1e-4, rtol=1e-4)
    assert torch.allclose(db, db_t, atol=1e-4, rtol=1e-4)