test_sparse.py 7.63 KB
Newer Older
1
2
from dgl.backend import gspmm, gsddmm
from utils import parametrize_dtype
3
import dgl
4
import random
5
6
7
import pytest
import networkx as nx
import backend as F
8
import numpy as np
9

10
random.seed(42)
11
12
13
14
15
16
17
np.random.seed(42)

udf_msg = {
    'add': lambda edges: {'m': edges.src['x'] + edges.data['w']},
    'sub': lambda edges: {'m': edges.src['x'] - edges.data['w']},
    'mul': lambda edges: {'m': edges.src['x'] * edges.data['w']},
    'div': lambda edges: {'m': edges.src['x'] / edges.data['w']},
18
19
    'copy_lhs': lambda edges: {'m': edges.src['x']},
    'copy_rhs': lambda edges: {'m': edges.data['w']}
20
21
}

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def select(target, src, edge, dst):
    if target == 'u':
        return src
    elif target == 'v':
        return dst
    elif target == 'e':
        return edge

def binary_op(msg, x, y):
    if msg == 'add':
        return x + y
    elif msg == 'sub':
        return x - y
    elif msg == 'mul':
        return x * y
    elif msg == 'div':
        return x / y
    elif msg == 'dot':
        return F.sum(x * y, -1, keepdims=True)
    elif msg == 'copy_lhs':
        return x
    elif msg == 'copy_rhs':
        return y

def edge_func(lhs_target, rhs_target, msg):
    def foo(edges):
        return {
            'm': binary_op(
                msg,
                select(lhs_target, edges.src, edges.data, edges.dst)['x'],
                select(rhs_target, edges.src, edges.data, edges.dst)['y']
            )
        }
    return foo

57
udf_apply_edges = {
58
59
60
61
    lhs_target + '_' + msg + '_' + rhs_target: edge_func(lhs_target, rhs_target, msg)
    for lhs_target in ['u', 'v', 'e']
    for rhs_target in ['u', 'v', 'e']
    for msg in ['add', 'sub', 'mul', 'div', 'dot', 'copy_lhs', 'copy_rhs']
62
63
64
65
66
67
68
69
70
}

udf_reduce = {
    'sum': lambda nodes: {'v': F.sum(nodes.mailbox['m'], 1)},
    'min': lambda nodes: {'v': F.min(nodes.mailbox['m'], 1)},
    'max': lambda nodes: {'v': F.max(nodes.mailbox['m'], 1)}
}

graphs = [
71
#    dgl.rand_graph(30, 0),
72
73
74
75
76
77
78
79
80
81
    dgl.rand_graph(100, 30),
    dgl.rand_graph(100, 3000),
    dgl.rand_bipartite(80, 160, 3000)
]

spmm_shapes = [
    ((1, 2, 1, 3, 1), (4, 1, 3, 1, 1)),
    ((5, 3, 1, 7), (1, 3, 7, 1)),
    ((1, 3, 1), (4, 1, 3)),
    ((3, 3), (1, 3)),
82
83
84
    ((1,), (3,)),
    ((3,), (1,)),
    ((1,), (1,))
85
86
87
88
89
90
91
92
]

sddmm_shapes = [
    ((1, 2, 1, 3, 1), (4, 1, 3, 1, 1)),
    ((5, 3, 1, 7), (1, 3, 7, 7)),
    ((1, 3, 3), (4, 1, 3)),
    ((3, 3), (1, 3)),
    ((3,), (3,)),
93
    ((1,), (1,))
94
95
96
97
]

@pytest.mark.parametrize('g', graphs)
@pytest.mark.parametrize('shp', spmm_shapes)
98
@pytest.mark.parametrize('msg', ['add', 'sub', 'mul', 'div', 'copy_lhs', 'copy_rhs'])
99
@pytest.mark.parametrize('reducer', ['sum', 'min', 'max'])
100
101
102
103
104
105
106
107
@parametrize_dtype
def test_spmm(g, shp, msg, reducer, index_dtype):
    if dgl.backend.backend_name == 'tensorflow' and (reducer in ['min', 'max'] or index_dtype == 'int32'):
        pytest.skip()  # tensorflow dlpack has problem writing into int32 arrays on GPU.
    if index_dtype == 'int32':
        g = g.int()
    else:
        g = g.long()
108
    print(g)
109
    print(g.idtype)
110

111
112
113
114
115
116
    hu = F.tensor(np.random.rand(*((g.number_of_src_nodes(),) + shp[0])) + 1)
    he = F.tensor(np.random.rand(*((g.number_of_edges(),) + shp[1])) + 1)
    print('u shape: {}, e shape: {}'.format(F.shape(hu), F.shape(he)))

    g.srcdata['x'] = F.attach_grad(F.clone(hu))
    g.edata['w'] = F.attach_grad(F.clone(he))
117
    print('SpMM(message func: {}, reduce func: {})'.format(msg, reducer))
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

    u = F.attach_grad(F.clone(hu))
    e = F.attach_grad(F.clone(he))
    with F.record_grad():
        v = gspmm(g, msg, reducer, u, e)
        non_degree_indices = F.tensor(
            np.nonzero(F.asnumpy(g.in_degrees()) != 0)[0])
        v = F.gather_row(v, non_degree_indices)
        if g.number_of_edges() > 0:
            F.backward(F.reduce_sum(v))
            if msg != 'copy_rhs':
                grad_u = F.grad(u)
            if msg != 'copy_lhs':
                grad_e = F.grad(e)

    with F.record_grad():
        g.update_all(udf_msg[msg], udf_reduce[reducer])
        if g.number_of_edges() > 0:
            v1 = F.gather_row(g.dstdata['v'], non_degree_indices)
137
            assert F.allclose(v, v1)
138
139
140
141
            print('forward passed')

            F.backward(F.reduce_sum(v1))
            if msg != 'copy_rhs':
142
143
144
                if reducer in ['min', 'max']: # there might be some numerical errors
                    rate = F.reduce_sum(F.abs(F.grad(g.srcdata['x']) - grad_u)) /\
                           F.reduce_sum(F.abs(grad_u))
Zihao Ye's avatar
Zihao Ye committed
145
                    assert F.as_scalar(rate) < 1e-2, rate
146
147
                else:
                    assert F.allclose(F.grad(g.srcdata['x']), grad_u)
148
            if msg != 'copy_lhs':
149
150
151
                if reducer in ['min', 'max']:
                    rate = F.reduce_sum(F.abs(F.grad(g.edata['w']) - grad_e)) /\
                           F.reduce_sum(F.abs(grad_e))
Zihao Ye's avatar
Zihao Ye committed
152
                    assert F.as_scalar(rate) < 1e-2, rate
153
154
                else:
                    assert F.allclose(F.grad(g.edata['w']), grad_e)
155
            print('backward passed')
156
157
158
159
160
161
162

    g.srcdata.pop('x')
    g.edata.pop('w')
    if 'v' in g.dstdata: g.dstdata.pop('v')

@pytest.mark.parametrize('g', graphs)
@pytest.mark.parametrize('shp', sddmm_shapes)
163
164
165
166
167
@pytest.mark.parametrize('lhs_target', ['u', 'v', 'e'])
@pytest.mark.parametrize('rhs_target', ['u', 'v', 'e'])
@pytest.mark.parametrize('msg', ['add', 'sub', 'mul', 'div', 'dot', 'copy_lhs', 'copy_rhs'])
@parametrize_dtype
def test_sddmm(g, shp, lhs_target, rhs_target, msg, index_dtype):
168
169
    if dgl.backend.backend_name == 'mxnet' and g.number_of_edges() == 0:
        pytest.skip()   # mxnet do not support zero shape tensor
170
171
172
173
174
175
    if dgl.backend.backend_name == 'tensorflow' and index_dtype == 'int32':
        pytest.skip()   # tensorflow dlpack has problem with int32 ndarray.
    if index_dtype == 'int32':
        g = g.int()
    else:
        g = g.long()
176
    print(g)
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    print(g.idtype)

    len_lhs = select(
        lhs_target,
        g.number_of_src_nodes(),
        g.number_of_edges(),
        g.number_of_dst_nodes())
    lhs_shp = (len_lhs,) + shp[0]
    len_rhs = select(
        rhs_target,
        g.number_of_src_nodes(),
        g.number_of_edges(),
        g.number_of_dst_nodes())
    rhs_shp = (len_rhs,) + shp[1]
    feat_lhs = F.tensor(np.random.rand(*lhs_shp) + 1)
    feat_rhs = F.tensor(np.random.rand(*rhs_shp) + 1)
    print('lhs shape: {}, rhs shape: {}'.format(F.shape(feat_lhs), F.shape(feat_rhs)))

    lhs_frame = select(
        lhs_target,
        g.srcdata,
        g.edata,
        g.dstdata)
    rhs_frame = select(
        rhs_target,
        g.srcdata,
        g.edata,
        g.dstdata)
    lhs_frame['x'] = F.attach_grad(F.clone(feat_lhs))
    rhs_frame['y'] = F.attach_grad(F.clone(feat_rhs))
    msg_func = lhs_target + '_' + msg + '_' + rhs_target
    print('SDDMM(message func: {})'.format(msg_func))

    lhs = F.attach_grad(F.clone(feat_lhs))
    rhs = F.attach_grad(F.clone(feat_rhs))
    with F.record_grad():
        e = gsddmm(g, msg, lhs, rhs, lhs_target=lhs_target, rhs_target=rhs_target)
        F.backward(F.reduce_sum(e))
        grad_lhs = F.grad(lhs)
        grad_rhs = F.grad(rhs)

    with F.record_grad():
        g.apply_edges(udf_apply_edges[msg_func])
        if g.number_of_edges() > 0:
            e1 = g.edata['m']
222
            assert F.allclose(e, e1)
223
224
225
226
227
228
229
230
231
232
233
            print('forward passed')

            F.backward(F.reduce_sum(e1))
            if msg != 'copy_rhs':
                assert F.allclose(F.grad(lhs_frame['x']), grad_lhs)
            if msg != 'copy_lhs':
                assert F.allclose(F.grad(rhs_frame['y']), grad_rhs)
            print('backward passed')

    lhs_frame.pop('x')
    rhs_frame.pop('y')
234
235
    if 'm' in g.edata: g.edata.pop('m')

236
237
if __name__ == '__main__':
    test_spmm(graphs[0], spmm_shapes[5], 'copy_lhs', 'sum')