test_sparse.py 7.11 KB
Newer Older
1
2
from dgl.backend import gspmm, gsddmm
from utils import parametrize_dtype
3
4
5
6
import dgl
import pytest
import networkx as nx
import backend as F
7
import numpy as np
8
9
10
11
12
13
14
15
16

np.random.seed(42)
dgl.random.seed(42)

udf_msg = {
    'add': lambda edges: {'m': edges.src['x'] + edges.data['w']},
    'sub': lambda edges: {'m': edges.src['x'] - edges.data['w']},
    'mul': lambda edges: {'m': edges.src['x'] * edges.data['w']},
    'div': lambda edges: {'m': edges.src['x'] / edges.data['w']},
17
18
    'copy_lhs': lambda edges: {'m': edges.src['x']},
    'copy_rhs': lambda edges: {'m': edges.data['w']}
19
20
}

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def select(target, src, edge, dst):
    if target == 'u':
        return src
    elif target == 'v':
        return dst
    elif target == 'e':
        return edge

def binary_op(msg, x, y):
    if msg == 'add':
        return x + y
    elif msg == 'sub':
        return x - y
    elif msg == 'mul':
        return x * y
    elif msg == 'div':
        return x / y
    elif msg == 'dot':
        return F.sum(x * y, -1, keepdims=True)
    elif msg == 'copy_lhs':
        return x
    elif msg == 'copy_rhs':
        return y

def edge_func(lhs_target, rhs_target, msg):
    def foo(edges):
        return {
            'm': binary_op(
                msg,
                select(lhs_target, edges.src, edges.data, edges.dst)['x'],
                select(rhs_target, edges.src, edges.data, edges.dst)['y']
            )
        }
    return foo

56
udf_apply_edges = {
57
58
59
60
    lhs_target + '_' + msg + '_' + rhs_target: edge_func(lhs_target, rhs_target, msg)
    for lhs_target in ['u', 'v', 'e']
    for rhs_target in ['u', 'v', 'e']
    for msg in ['add', 'sub', 'mul', 'div', 'dot', 'copy_lhs', 'copy_rhs']
61
62
63
64
65
66
67
68
69
}

udf_reduce = {
    'sum': lambda nodes: {'v': F.sum(nodes.mailbox['m'], 1)},
    'min': lambda nodes: {'v': F.min(nodes.mailbox['m'], 1)},
    'max': lambda nodes: {'v': F.max(nodes.mailbox['m'], 1)}
}

graphs = [
70
#    dgl.rand_graph(30, 0),
71
72
73
74
75
76
77
78
79
80
    dgl.rand_graph(100, 30),
    dgl.rand_graph(100, 3000),
    dgl.rand_bipartite(80, 160, 3000)
]

spmm_shapes = [
    ((1, 2, 1, 3, 1), (4, 1, 3, 1, 1)),
    ((5, 3, 1, 7), (1, 3, 7, 1)),
    ((1, 3, 1), (4, 1, 3)),
    ((3, 3), (1, 3)),
81
82
83
    ((1,), (3,)),
    ((3,), (1,)),
    ((1,), (1,))
84
85
86
87
88
89
90
91
]

sddmm_shapes = [
    ((1, 2, 1, 3, 1), (4, 1, 3, 1, 1)),
    ((5, 3, 1, 7), (1, 3, 7, 7)),
    ((1, 3, 3), (4, 1, 3)),
    ((3, 3), (1, 3)),
    ((3,), (3,)),
92
    ((1,), (1,))
93
94
95
96
]

@pytest.mark.parametrize('g', graphs)
@pytest.mark.parametrize('shp', spmm_shapes)
97
@pytest.mark.parametrize('msg', ['add', 'sub', 'mul', 'div', 'copy_lhs', 'copy_rhs'])
98
@pytest.mark.parametrize('reducer', ['sum', 'min', 'max'])
99
100
101
102
103
104
105
106
@parametrize_dtype
def test_spmm(g, shp, msg, reducer, index_dtype):
    if dgl.backend.backend_name == 'tensorflow' and (reducer in ['min', 'max'] or index_dtype == 'int32'):
        pytest.skip()  # tensorflow dlpack has problem writing into int32 arrays on GPU.
    if index_dtype == 'int32':
        g = g.int()
    else:
        g = g.long()
107
    print(g)
108
    print(g.idtype)
109

110
111
112
113
114
115
    hu = F.tensor(np.random.rand(*((g.number_of_src_nodes(),) + shp[0])) + 1)
    he = F.tensor(np.random.rand(*((g.number_of_edges(),) + shp[1])) + 1)
    print('u shape: {}, e shape: {}'.format(F.shape(hu), F.shape(he)))

    g.srcdata['x'] = F.attach_grad(F.clone(hu))
    g.edata['w'] = F.attach_grad(F.clone(he))
116
    print('SpMM(message func: {}, reduce func: {})'.format(msg, reducer))
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

    u = F.attach_grad(F.clone(hu))
    e = F.attach_grad(F.clone(he))
    with F.record_grad():
        v = gspmm(g, msg, reducer, u, e)
        non_degree_indices = F.tensor(
            np.nonzero(F.asnumpy(g.in_degrees()) != 0)[0])
        v = F.gather_row(v, non_degree_indices)
        if g.number_of_edges() > 0:
            F.backward(F.reduce_sum(v))
            if msg != 'copy_rhs':
                grad_u = F.grad(u)
            if msg != 'copy_lhs':
                grad_e = F.grad(e)

    with F.record_grad():
        g.update_all(udf_msg[msg], udf_reduce[reducer])
        if g.number_of_edges() > 0:
            v1 = F.gather_row(g.dstdata['v'], non_degree_indices)
            assert F.allclose(v, v1, rtol=1e-3, atol=1e-3)
            print('forward passed')

            F.backward(F.reduce_sum(v1))
            if msg != 'copy_rhs':
                assert F.allclose(F.grad(g.srcdata['x']), grad_u)
            if msg != 'copy_lhs':
                assert F.allclose(F.grad(g.edata['w']), grad_e)
            print('backward passed')
145
146
147
148
149
150
151

    g.srcdata.pop('x')
    g.edata.pop('w')
    if 'v' in g.dstdata: g.dstdata.pop('v')

@pytest.mark.parametrize('g', graphs)
@pytest.mark.parametrize('shp', sddmm_shapes)
152
153
154
155
156
@pytest.mark.parametrize('lhs_target', ['u', 'v', 'e'])
@pytest.mark.parametrize('rhs_target', ['u', 'v', 'e'])
@pytest.mark.parametrize('msg', ['add', 'sub', 'mul', 'div', 'dot', 'copy_lhs', 'copy_rhs'])
@parametrize_dtype
def test_sddmm(g, shp, lhs_target, rhs_target, msg, index_dtype):
157
158
    if dgl.backend.backend_name == 'mxnet' and g.number_of_edges() == 0:
        pytest.skip()   # mxnet do not support zero shape tensor
159
160
161
162
163
164
    if dgl.backend.backend_name == 'tensorflow' and index_dtype == 'int32':
        pytest.skip()   # tensorflow dlpack has problem with int32 ndarray.
    if index_dtype == 'int32':
        g = g.int()
    else:
        g = g.long()
165
    print(g)
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    print(g.idtype)

    len_lhs = select(
        lhs_target,
        g.number_of_src_nodes(),
        g.number_of_edges(),
        g.number_of_dst_nodes())
    lhs_shp = (len_lhs,) + shp[0]
    len_rhs = select(
        rhs_target,
        g.number_of_src_nodes(),
        g.number_of_edges(),
        g.number_of_dst_nodes())
    rhs_shp = (len_rhs,) + shp[1]
    feat_lhs = F.tensor(np.random.rand(*lhs_shp) + 1)
    feat_rhs = F.tensor(np.random.rand(*rhs_shp) + 1)
    print('lhs shape: {}, rhs shape: {}'.format(F.shape(feat_lhs), F.shape(feat_rhs)))

    lhs_frame = select(
        lhs_target,
        g.srcdata,
        g.edata,
        g.dstdata)
    rhs_frame = select(
        rhs_target,
        g.srcdata,
        g.edata,
        g.dstdata)
    lhs_frame['x'] = F.attach_grad(F.clone(feat_lhs))
    rhs_frame['y'] = F.attach_grad(F.clone(feat_rhs))
    msg_func = lhs_target + '_' + msg + '_' + rhs_target
    print('SDDMM(message func: {})'.format(msg_func))

    lhs = F.attach_grad(F.clone(feat_lhs))
    rhs = F.attach_grad(F.clone(feat_rhs))
    with F.record_grad():
        e = gsddmm(g, msg, lhs, rhs, lhs_target=lhs_target, rhs_target=rhs_target)
        F.backward(F.reduce_sum(e))
        grad_lhs = F.grad(lhs)
        grad_rhs = F.grad(rhs)

    with F.record_grad():
        g.apply_edges(udf_apply_edges[msg_func])
        if g.number_of_edges() > 0:
            e1 = g.edata['m']
            assert F.allclose(e, e1, rtol=1e-3, atol=1e-3)
            print('forward passed')

            F.backward(F.reduce_sum(e1))
            if msg != 'copy_rhs':
                assert F.allclose(F.grad(lhs_frame['x']), grad_lhs)
            if msg != 'copy_lhs':
                assert F.allclose(F.grad(rhs_frame['y']), grad_rhs)
            print('backward passed')

    lhs_frame.pop('x')
    rhs_frame.pop('y')
223
224
    if 'm' in g.edata: g.edata.pop('m')

225
226
if __name__ == '__main__':
    test_spmm(graphs[0], spmm_shapes[5], 'copy_lhs', 'sum')