"examples/vscode:/vscode.git/clone" did not exist on "4e3ddd5afab3a4b0b6265f210d6710933dade660"
test_sparse.py 9.25 KB
Newer Older
1
from dgl.ops import gspmm, gsddmm, edge_softmax, segment_reduce
2
from test_utils.graph_cases import get_cases
3
from utils import parametrize_dtype
4
import dgl
5
import random
6
7
8
import pytest
import networkx as nx
import backend as F
9
import numpy as np 
10

11
random.seed(42)
12
13
14
15
16
17
18
np.random.seed(42)

udf_msg = {
    'add': lambda edges: {'m': edges.src['x'] + edges.data['w']},
    'sub': lambda edges: {'m': edges.src['x'] - edges.data['w']},
    'mul': lambda edges: {'m': edges.src['x'] * edges.data['w']},
    'div': lambda edges: {'m': edges.src['x'] / edges.data['w']},
19
20
    'copy_lhs': lambda edges: {'m': edges.src['x']},
    'copy_rhs': lambda edges: {'m': edges.data['w']}
21
22
}

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
def select(target, src, edge, dst):
    if target == 'u':
        return src
    elif target == 'v':
        return dst
    elif target == 'e':
        return edge

def binary_op(msg, x, y):
    if msg == 'add':
        return x + y
    elif msg == 'sub':
        return x - y
    elif msg == 'mul':
        return x * y
    elif msg == 'div':
        return x / y
    elif msg == 'dot':
        return F.sum(x * y, -1, keepdims=True)
    elif msg == 'copy_lhs':
        return x
    elif msg == 'copy_rhs':
        return y

def edge_func(lhs_target, rhs_target, msg):
    def foo(edges):
        return {
            'm': binary_op(
                msg,
                select(lhs_target, edges.src, edges.data, edges.dst)['x'],
                select(rhs_target, edges.src, edges.data, edges.dst)['y']
            )
        }
    return foo

58
udf_apply_edges = {
59
60
61
62
    lhs_target + '_' + msg + '_' + rhs_target: edge_func(lhs_target, rhs_target, msg)
    for lhs_target in ['u', 'v', 'e']
    for rhs_target in ['u', 'v', 'e']
    for msg in ['add', 'sub', 'mul', 'div', 'dot', 'copy_lhs', 'copy_rhs']
63
64
65
66
67
68
69
70
71
}

udf_reduce = {
    'sum': lambda nodes: {'v': F.sum(nodes.mailbox['m'], 1)},
    'min': lambda nodes: {'v': F.min(nodes.mailbox['m'], 1)},
    'max': lambda nodes: {'v': F.max(nodes.mailbox['m'], 1)}
}

graphs = [
72
#    dgl.rand_graph(30, 0),
73
    dgl.rand_graph(30, 100),
74
    dgl.rand_bipartite('_U', '_E', '_V', 30, 40, 300)
75
76
77
78
79
]

spmm_shapes = [
    ((1, 2, 1, 3, 1), (4, 1, 3, 1, 1)),
    ((3, 3), (1, 3)),
80
81
    ((1,), (3,)),
    ((3,), (1,)),
82
83
    ((1,), (1,)),
    ((), ())
84
85
86
87
88
89
90
]

sddmm_shapes = [
    ((1, 2, 1, 3, 1), (4, 1, 3, 1, 1)),
    ((5, 3, 1, 7), (1, 3, 7, 7)),
    ((1, 3, 3), (4, 1, 3)),
    ((3,), (3,)),
91
    ((1,), (1,))
92
93
]

94
95
96
97
edge_softmax_shapes = [
    (1,), (1, 3), (3, 4, 5)
]

98
99
@pytest.mark.parametrize('g', graphs)
@pytest.mark.parametrize('shp', spmm_shapes)
100
@pytest.mark.parametrize('msg', ['add', 'sub', 'mul', 'div', 'copy_lhs', 'copy_rhs'])
101
@pytest.mark.parametrize('reducer', ['sum', 'min', 'max'])
102
@parametrize_dtype
103
104
def test_spmm(idtype, g, shp, msg, reducer):
    g = g.astype(idtype).to(F.ctx())
105
    print(g)
106
    print(g.idtype)
107

108
109
110
111
112
113
    hu = F.tensor(np.random.rand(*((g.number_of_src_nodes(),) + shp[0])) + 1)
    he = F.tensor(np.random.rand(*((g.number_of_edges(),) + shp[1])) + 1)
    print('u shape: {}, e shape: {}'.format(F.shape(hu), F.shape(he)))

    g.srcdata['x'] = F.attach_grad(F.clone(hu))
    g.edata['w'] = F.attach_grad(F.clone(he))
114
    print('SpMM(message func: {}, reduce func: {})'.format(msg, reducer))
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

    u = F.attach_grad(F.clone(hu))
    e = F.attach_grad(F.clone(he))
    with F.record_grad():
        v = gspmm(g, msg, reducer, u, e)
        if g.number_of_edges() > 0:
            F.backward(F.reduce_sum(v))
            if msg != 'copy_rhs':
                grad_u = F.grad(u)
            if msg != 'copy_lhs':
                grad_e = F.grad(e)

    with F.record_grad():
        g.update_all(udf_msg[msg], udf_reduce[reducer])
        if g.number_of_edges() > 0:
130
            v1 = g.dstdata['v']
131
            assert F.allclose(v, v1)
132
133
134
135
            print('forward passed')

            F.backward(F.reduce_sum(v1))
            if msg != 'copy_rhs':
136
137
138
                if reducer in ['min', 'max']: # there might be some numerical errors
                    rate = F.reduce_sum(F.abs(F.grad(g.srcdata['x']) - grad_u)) /\
                           F.reduce_sum(F.abs(grad_u))
Zihao Ye's avatar
Zihao Ye committed
139
                    assert F.as_scalar(rate) < 1e-2, rate
140
141
                else:
                    assert F.allclose(F.grad(g.srcdata['x']), grad_u)
142
            if msg != 'copy_lhs':
143
144
145
                if reducer in ['min', 'max']:
                    rate = F.reduce_sum(F.abs(F.grad(g.edata['w']) - grad_e)) /\
                           F.reduce_sum(F.abs(grad_e))
Zihao Ye's avatar
Zihao Ye committed
146
                    assert F.as_scalar(rate) < 1e-2, rate
147
148
                else:
                    assert F.allclose(F.grad(g.edata['w']), grad_e)
149
            print('backward passed')
150
151
152
153
154
155
156

    g.srcdata.pop('x')
    g.edata.pop('w')
    if 'v' in g.dstdata: g.dstdata.pop('v')

@pytest.mark.parametrize('g', graphs)
@pytest.mark.parametrize('shp', sddmm_shapes)
157
158
159
160
@pytest.mark.parametrize('lhs_target', ['u', 'v', 'e'])
@pytest.mark.parametrize('rhs_target', ['u', 'v', 'e'])
@pytest.mark.parametrize('msg', ['add', 'sub', 'mul', 'div', 'dot', 'copy_lhs', 'copy_rhs'])
@parametrize_dtype
161
162
163
164
def test_sddmm(g, shp, lhs_target, rhs_target, msg, idtype):
    if lhs_target == rhs_target:
        return
    g = g.astype(idtype).to(F.ctx())
165
166
167
    if dgl.backend.backend_name == 'mxnet' and g.number_of_edges() == 0:
        pytest.skip()   # mxnet do not support zero shape tensor
    print(g)
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    print(g.idtype)

    len_lhs = select(
        lhs_target,
        g.number_of_src_nodes(),
        g.number_of_edges(),
        g.number_of_dst_nodes())
    lhs_shp = (len_lhs,) + shp[0]
    len_rhs = select(
        rhs_target,
        g.number_of_src_nodes(),
        g.number_of_edges(),
        g.number_of_dst_nodes())
    rhs_shp = (len_rhs,) + shp[1]
    feat_lhs = F.tensor(np.random.rand(*lhs_shp) + 1)
    feat_rhs = F.tensor(np.random.rand(*rhs_shp) + 1)
    print('lhs shape: {}, rhs shape: {}'.format(F.shape(feat_lhs), F.shape(feat_rhs)))

    lhs_frame = select(
        lhs_target,
        g.srcdata,
        g.edata,
        g.dstdata)
    rhs_frame = select(
        rhs_target,
        g.srcdata,
        g.edata,
        g.dstdata)
    lhs_frame['x'] = F.attach_grad(F.clone(feat_lhs))
    rhs_frame['y'] = F.attach_grad(F.clone(feat_rhs))
    msg_func = lhs_target + '_' + msg + '_' + rhs_target
    print('SDDMM(message func: {})'.format(msg_func))

    lhs = F.attach_grad(F.clone(feat_lhs))
    rhs = F.attach_grad(F.clone(feat_rhs))
    with F.record_grad():
        e = gsddmm(g, msg, lhs, rhs, lhs_target=lhs_target, rhs_target=rhs_target)
        F.backward(F.reduce_sum(e))
        grad_lhs = F.grad(lhs)
        grad_rhs = F.grad(rhs)

    with F.record_grad():
        g.apply_edges(udf_apply_edges[msg_func])
        if g.number_of_edges() > 0:
            e1 = g.edata['m']
213
            assert F.allclose(e, e1)
214
215
216
217
218
219
220
221
222
223
224
            print('forward passed')

            F.backward(F.reduce_sum(e1))
            if msg != 'copy_rhs':
                assert F.allclose(F.grad(lhs_frame['x']), grad_lhs)
            if msg != 'copy_lhs':
                assert F.allclose(F.grad(rhs_frame['y']), grad_rhs)
            print('backward passed')

    lhs_frame.pop('x')
    rhs_frame.pop('y')
225
226
    if 'm' in g.edata: g.edata.pop('m')

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
@pytest.mark.parametrize('g', get_cases(['clique']))
@pytest.mark.parametrize('norm_by', ['src', 'dst'])
@pytest.mark.parametrize('shp', edge_softmax_shapes)
@parametrize_dtype
def test_edge_softmax(g, norm_by, shp, idtype):
    g = g.astype(idtype).to(F.ctx())
    edata = F.tensor(np.random.rand(g.number_of_edges(), *shp))
    e1 = F.attach_grad(F.clone(edata))

    with F.record_grad():
        score1 = edge_softmax(g, e1, norm_by=norm_by)
        F.backward(F.reduce_sum(score1))
        grad_edata = F.grad(e1)

    with F.record_grad():
        e2 = F.attach_grad(F.clone(edata))
        e2_2d = F.reshape(
            e2, (g.number_of_src_nodes(), g.number_of_dst_nodes(), *e2.shape[1:]))
        if norm_by == 'src':
            score2 = F.softmax(e2_2d, 1)
            score2 = F.reshape(score2, (-1, *e2.shape[1:]))
        if norm_by == 'dst':
            score2 = F.softmax(e2_2d, 0)
            score2 = F.reshape(score2, (-1, *e2.shape[1:]))
        assert F.allclose(score1, score2)
        print('forward passed')

        F.backward(F.reduce_sum(score2))
        assert F.allclose(F.grad(e2), grad_edata)
        print('backward passed')

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
@pytest.mark.parametrize('reducer', ['sum', 'max', 'min', 'mean'])
def test_segment_reduce(reducer):
    ctx = F.ctx()
    value = F.tensor(np.random.rand(10, 5))
    v1 = F.attach_grad(F.clone(value))
    v2 = F.attach_grad(F.clone(value))
    seglen = F.tensor([2, 3, 0, 4, 1])
    u = F.copy_to(F.arange(0, F.shape(value)[0], F.int32), ctx)
    v = F.repeat(F.copy_to(F.arange(0, len(seglen), F.int32), ctx),
                 seglen, dim=0)

    num_nodes = {'_U': len(u), '_V': len(seglen)}
    g = dgl.convert.heterograph({('_U', '_E', '_V'): (u, v)}, num_nodes_dict=num_nodes)
    with F.record_grad():
        rst1 = gspmm(g, 'copy_lhs', reducer, v1, None)
        F.backward(F.reduce_sum(rst1))
        grad1 = F.grad(v1)

    with F.record_grad():
        rst2 = segment_reduce(seglen, v2, reducer=reducer)
        F.backward(F.reduce_sum(rst2))
        assert F.allclose(rst1, rst2)
        print('forward passed')

        grad2 = F.grad(v2)
        assert F.allclose(grad1, grad2)
        print('backward passed')


287
if __name__ == '__main__':
288
    test_spmm(F.int32, graphs[0], spmm_shapes[0], 'mul', 'sum')