entity_classify_mb.py 7.35 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""Modeling Relational Data with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1703.06103
Reference Code: https://github.com/tkipf/relational-gcn
"""
import argparse
import itertools
import numpy as np
import time
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from functools import partial

import dgl
16
from dgl.data.rdf import AIFBDataset, MUTAGDataset, BGSDataset, AMDataset
17
from model import EntityClassify, RelGraphEmbed
18

19
def extract_embed(node_embed, input_nodes):
20
    emb = {}
21
22
    for ntype, nid in input_nodes.items():
        nid = input_nodes[ntype]
23
24
25
        emb[ntype] = node_embed[ntype][nid]
    return emb

26
def evaluate(model, loader, node_embed, labels, category, device):
27
    model.eval()
28
29
30
31
    total_loss = 0
    total_acc = 0
    count = 0
    for input_nodes, seeds, blocks in loader:
32
        blocks = [blk.to(device) for blk in blocks]
33
34
        seeds = seeds[category]
        emb = extract_embed(node_embed, input_nodes)
35
36
        emb = {k : e.to(device) for k, e in emb.items()}
        lbl = labels[seeds].to(device)
37
38
39
40
41
42
43
        logits = model(emb, blocks)[category]
        loss = F.cross_entropy(logits, lbl)
        acc = th.sum(logits.argmax(dim=1) == lbl).item()
        total_loss += loss.item() * len(seeds)
        total_acc += acc
        count += len(seeds)
    return total_loss / count, total_acc / count
44
45
46
47

def main(args):
    # load graph data
    if args.dataset == 'aifb':
48
        dataset = AIFBDataset()
49
    elif args.dataset == 'mutag':
50
        dataset = MUTAGDataset()
51
    elif args.dataset == 'bgs':
52
        dataset = BGSDataset()
53
    elif args.dataset == 'am':
54
        dataset = AMDataset()
55
56
57
    else:
        raise ValueError()

58
    g = dataset[0]
59
60
    category = dataset.predict_category
    num_classes = dataset.num_classes
61
62
    train_mask = g.nodes[category].data.pop('train_mask')
    test_mask = g.nodes[category].data.pop('test_mask')
63
64
    train_idx = th.nonzero(train_mask, as_tuple=False).squeeze()
    test_idx = th.nonzero(test_mask, as_tuple=False).squeeze()
65
    labels = g.nodes[category].data.pop('labels')
66
67
68
69
70
71
72
73
74

    # split dataset into train, validate, test
    if args.validation:
        val_idx = train_idx[:len(train_idx) // 5]
        train_idx = train_idx[len(train_idx) // 5:]
    else:
        val_idx = train_idx

    # check cuda
75
    device = 'cpu'
76
77
78
    use_cuda = args.gpu >= 0 and th.cuda.is_available()
    if use_cuda:
        th.cuda.set_device(args.gpu)
79
        device = 'cuda:%d' % args.gpu
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

    train_label = labels[train_idx]
    val_label = labels[val_idx]
    test_label = labels[test_idx]

    # create embeddings
    embed_layer = RelGraphEmbed(g, args.n_hidden)
    node_embed = embed_layer()
    # create model
    model = EntityClassify(g,
                           args.n_hidden,
                           num_classes,
                           num_bases=args.n_bases,
                           num_hidden_layers=args.n_layers - 2,
                           dropout=args.dropout,
                           use_self_loop=args.use_self_loop)

    if use_cuda:
        model.cuda()

    # train sampler
101
102
    sampler = dgl.dataloading.MultiLayerNeighborSampler([args.fanout] * args.n_layers)
    loader = dgl.dataloading.NodeDataLoader(
103
104
        g, {category: train_idx}, sampler,
        batch_size=args.batch_size, shuffle=True, num_workers=0)
105
106

    # validation sampler
107
    # we do not use full neighbor to save computation resources
108
109
    val_sampler = dgl.dataloading.MultiLayerNeighborSampler([args.fanout] * args.n_layers)
    val_loader = dgl.dataloading.NodeDataLoader(
110
111
        g, {category: val_idx}, val_sampler,
        batch_size=args.batch_size, shuffle=True, num_workers=0)
112
113
114
115
116
117
118
119
120
121
122
123
124
125

    # optimizer
    all_params = itertools.chain(model.parameters(), embed_layer.parameters())
    optimizer = th.optim.Adam(all_params, lr=args.lr, weight_decay=args.l2norm)

    # training loop
    print("start training...")
    dur = []
    for epoch in range(args.n_epochs):
        model.train()
        optimizer.zero_grad()
        if epoch > 3:
            t0 = time.time()

126
        for i, (input_nodes, seeds, blocks) in enumerate(loader):
127
            blocks = [blk.to(device) for blk in blocks]
128
            seeds = seeds[category]     # we only predict the nodes with type "category"
129
            batch_tic = time.time()
130
131
            emb = extract_embed(node_embed, input_nodes)
            lbl = labels[seeds]
132
133
134
135
136
137
138
139
            if use_cuda:
                emb = {k : e.cuda() for k, e in emb.items()}
                lbl = lbl.cuda()
            logits = model(emb, blocks)[category]
            loss = F.cross_entropy(logits, lbl)
            loss.backward()
            optimizer.step()

140
            train_acc = th.sum(logits.argmax(dim=1) == lbl).item() / len(seeds)
141
142
143
144
145
146
            print("Epoch {:05d} | Batch {:03d} | Train Acc: {:.4f} | Train Loss: {:.4f} | Time: {:.4f}".
                  format(epoch, i, train_acc, loss.item(), time.time() - batch_tic))

        if epoch > 3:
            dur.append(time.time() - t0)

147
        val_loss, val_acc = evaluate(model, val_loader, node_embed, labels, category, device)
148
        print("Epoch {:05d} | Valid Acc: {:.4f} | Valid loss: {:.4f} | Time: {:.4f}".
149
              format(epoch, val_acc, val_loss, np.average(dur)))
150
151
152
153
    print()
    if args.model_path is not None:
        th.save(model.state_dict(), args.model_path)

154
155
156
157
158
159
    output = model.inference(
        g, args.batch_size, 'cuda' if use_cuda else 'cpu', 0, node_embed)
    test_pred = output[category][test_idx]
    test_labels = labels[test_idx]
    test_acc = (test_pred.argmax(1) == test_labels).float().mean()
    print("Test Acc: {:.4f}".format(test_acc))
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    print()

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='RGCN')
    parser.add_argument("--dropout", type=float, default=0,
            help="dropout probability")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden units")
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
            help="learning rate")
    parser.add_argument("--n-bases", type=int, default=-1,
            help="number of filter weight matrices, default: -1 [use all]")
    parser.add_argument("--n-layers", type=int, default=2,
            help="number of propagation rounds")
    parser.add_argument("-e", "--n-epochs", type=int, default=20,
            help="number of training epochs")
    parser.add_argument("-d", "--dataset", type=str, required=True,
            help="dataset to use")
    parser.add_argument("--model_path", type=str, default=None,
            help='path for save the model')
    parser.add_argument("--l2norm", type=float, default=0,
            help="l2 norm coef")
    parser.add_argument("--use-self-loop", default=False, action='store_true',
            help="include self feature as a special relation")
    parser.add_argument("--batch-size", type=int, default=100,
            help="Mini-batch size. If -1, use full graph training.")
    parser.add_argument("--fanout", type=int, default=4,
            help="Fan-out of neighbor sampling.")
    fp = parser.add_mutually_exclusive_group(required=False)
    fp.add_argument('--validation', dest='validation', action='store_true')
    fp.add_argument('--testing', dest='validation', action='store_false')
    parser.set_defaults(validation=True)

    args = parser.parse_args()
    print(args)
    main(args)