entity_classify_mb.py 7.51 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""Modeling Relational Data with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1703.06103
Reference Code: https://github.com/tkipf/relational-gcn
"""
import argparse
import itertools
import numpy as np
import time
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from functools import partial

import dgl
16
from dgl.data.rdf import AIFBDataset, MUTAGDataset, BGSDataset, AMDataset
17
from model import EntityClassify, RelGraphEmbed
18

19
def extract_embed(node_embed, input_nodes):
20
    emb = {}
21
22
    for ntype, nid in input_nodes.items():
        nid = input_nodes[ntype]
23
24
25
        emb[ntype] = node_embed[ntype][nid]
    return emb

26
def evaluate(model, loader, node_embed, labels, category, device):
27
    model.eval()
28
29
30
31
    total_loss = 0
    total_acc = 0
    count = 0
    for input_nodes, seeds, blocks in loader:
32
        blocks = [blk.to(device) for blk in blocks]
33
34
        seeds = seeds[category]
        emb = extract_embed(node_embed, input_nodes)
35
36
        emb = {k : e.to(device) for k, e in emb.items()}
        lbl = labels[seeds].to(device)
37
38
39
40
41
42
43
        logits = model(emb, blocks)[category]
        loss = F.cross_entropy(logits, lbl)
        acc = th.sum(logits.argmax(dim=1) == lbl).item()
        total_loss += loss.item() * len(seeds)
        total_acc += acc
        count += len(seeds)
    return total_loss / count, total_acc / count
44
45
46
47

def main(args):
    # load graph data
    if args.dataset == 'aifb':
48
        dataset = AIFBDataset()
49
    elif args.dataset == 'mutag':
50
        dataset = MUTAGDataset()
51
    elif args.dataset == 'bgs':
52
        dataset = BGSDataset()
53
    elif args.dataset == 'am':
54
        dataset = AMDataset()
55
56
57
    else:
        raise ValueError()

58
    g = dataset[0]
59
60
    category = dataset.predict_category
    num_classes = dataset.num_classes
61
62
63
64
65
    train_mask = g.nodes[category].data.pop('train_mask')
    test_mask = g.nodes[category].data.pop('test_mask')
    train_idx = th.nonzero(train_mask).squeeze()
    test_idx = th.nonzero(test_mask).squeeze()
    labels = g.nodes[category].data.pop('labels')
66
67
68
69
70
71
72
73
74

    # split dataset into train, validate, test
    if args.validation:
        val_idx = train_idx[:len(train_idx) // 5]
        train_idx = train_idx[len(train_idx) // 5:]
    else:
        val_idx = train_idx

    # check cuda
75
    device = 'cpu'
76
77
78
    use_cuda = args.gpu >= 0 and th.cuda.is_available()
    if use_cuda:
        th.cuda.set_device(args.gpu)
79
        device = 'cuda:%d' % args.gpu
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

    train_label = labels[train_idx]
    val_label = labels[val_idx]
    test_label = labels[test_idx]

    # create embeddings
    embed_layer = RelGraphEmbed(g, args.n_hidden)
    node_embed = embed_layer()
    # create model
    model = EntityClassify(g,
                           args.n_hidden,
                           num_classes,
                           num_bases=args.n_bases,
                           num_hidden_layers=args.n_layers - 2,
                           dropout=args.dropout,
                           use_self_loop=args.use_self_loop)

    if use_cuda:
        model.cuda()

    # train sampler
101
102
103
104
    sampler = dgl.sampling.MultiLayerNeighborSampler([args.fanout] * args.n_layers)
    loader = dgl.sampling.NodeDataLoader(
        g, {category: train_idx}, sampler,
        batch_size=args.batch_size, shuffle=True, num_workers=0)
105
106

    # validation sampler
107
108
109
110
    val_sampler = dgl.sampling.MultiLayerNeighborSampler([args.fanout] * args.n_layers)
    val_loader = dgl.sampling.NodeDataLoader(
        g, {category: val_idx}, val_sampler,
        batch_size=args.batch_size, shuffle=True, num_workers=0)
111
112

    # test sampler
113
114
115
116
117

    test_sampler = dgl.sampling.MultiLayerNeighborSampler([args.fanout] * args.n_layers)
    test_loader = dgl.sampling.NodeDataLoader(
        g, {category: test_idx}, test_sampler,
        batch_size=args.batch_size, shuffle=True, num_workers=0)
118
119
120
121
122
123
124
125
126
127
128
129
130
131

    # optimizer
    all_params = itertools.chain(model.parameters(), embed_layer.parameters())
    optimizer = th.optim.Adam(all_params, lr=args.lr, weight_decay=args.l2norm)

    # training loop
    print("start training...")
    dur = []
    for epoch in range(args.n_epochs):
        model.train()
        optimizer.zero_grad()
        if epoch > 3:
            t0 = time.time()

132
        for i, (input_nodes, seeds, blocks) in enumerate(loader):
133
            blocks = [blk.to(device) for blk in blocks]
134
            seeds = seeds[category]     # we only predict the nodes with type "category"
135
            batch_tic = time.time()
136
137
            emb = extract_embed(node_embed, input_nodes)
            lbl = labels[seeds]
138
139
140
141
142
143
144
145
            if use_cuda:
                emb = {k : e.cuda() for k, e in emb.items()}
                lbl = lbl.cuda()
            logits = model(emb, blocks)[category]
            loss = F.cross_entropy(logits, lbl)
            loss.backward()
            optimizer.step()

146
            train_acc = th.sum(logits.argmax(dim=1) == lbl).item() / len(seeds)
147
148
149
150
151
152
            print("Epoch {:05d} | Batch {:03d} | Train Acc: {:.4f} | Train Loss: {:.4f} | Time: {:.4f}".
                  format(epoch, i, train_acc, loss.item(), time.time() - batch_tic))

        if epoch > 3:
            dur.append(time.time() - t0)

153
        val_loss, val_acc = evaluate(model, val_loader, node_embed, labels, category, device)
154
        print("Epoch {:05d} | Valid Acc: {:.4f} | Valid loss: {:.4f} | Time: {:.4f}".
155
              format(epoch, val_acc, val_loss, np.average(dur)))
156
157
158
159
    print()
    if args.model_path is not None:
        th.save(model.state_dict(), args.model_path)

160
161
162
163
164
165
    output = model.inference(
        g, args.batch_size, 'cuda' if use_cuda else 'cpu', 0, node_embed)
    test_pred = output[category][test_idx]
    test_labels = labels[test_idx]
    test_acc = (test_pred.argmax(1) == test_labels).float().mean()
    print("Test Acc: {:.4f}".format(test_acc))
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    print()

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='RGCN')
    parser.add_argument("--dropout", type=float, default=0,
            help="dropout probability")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden units")
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
            help="learning rate")
    parser.add_argument("--n-bases", type=int, default=-1,
            help="number of filter weight matrices, default: -1 [use all]")
    parser.add_argument("--n-layers", type=int, default=2,
            help="number of propagation rounds")
    parser.add_argument("-e", "--n-epochs", type=int, default=20,
            help="number of training epochs")
    parser.add_argument("-d", "--dataset", type=str, required=True,
            help="dataset to use")
    parser.add_argument("--model_path", type=str, default=None,
            help='path for save the model')
    parser.add_argument("--l2norm", type=float, default=0,
            help="l2 norm coef")
    parser.add_argument("--use-self-loop", default=False, action='store_true',
            help="include self feature as a special relation")
    parser.add_argument("--batch-size", type=int, default=100,
            help="Mini-batch size. If -1, use full graph training.")
    parser.add_argument("--fanout", type=int, default=4,
            help="Fan-out of neighbor sampling.")
    fp = parser.add_mutually_exclusive_group(required=False)
    fp.add_argument('--validation', dest='validation', action='store_true')
    fp.add_argument('--testing', dest='validation', action='store_false')
    parser.set_defaults(validation=True)

    args = parser.parse_args()
    print(args)
    main(args)