entity_classify_mb.py 7.17 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
"""Modeling Relational Data with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1703.06103
Reference Code: https://github.com/tkipf/relational-gcn
"""
import argparse
import itertools
import numpy as np
import time
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from functools import partial

import dgl
from dgl.data.rdf import AIFB, MUTAG, BGS, AM
17
from model import EntityClassify, RelGraphEmbed
18

19
def extract_embed(node_embed, input_nodes):
20
    emb = {}
21
22
    for ntype, nid in input_nodes.items():
        nid = input_nodes[ntype]
23
24
25
        emb[ntype] = node_embed[ntype][nid]
    return emb

26
def evaluate(model, loader, node_embed, labels, category, use_cuda):
27
    model.eval()
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
    total_loss = 0
    total_acc = 0
    count = 0
    for input_nodes, seeds, blocks in loader:
        seeds = seeds[category]
        emb = extract_embed(node_embed, input_nodes)
        lbl = labels[seeds]
        if use_cuda:
            emb = {k : e.cuda() for k, e in emb.items()}
            lbl = lbl.cuda()
        logits = model(emb, blocks)[category]
        loss = F.cross_entropy(logits, lbl)
        acc = th.sum(logits.argmax(dim=1) == lbl).item()
        total_loss += loss.item() * len(seeds)
        total_acc += acc
        count += len(seeds)
    return total_loss / count, total_acc / count
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

def main(args):
    # load graph data
    if args.dataset == 'aifb':
        dataset = AIFB()
    elif args.dataset == 'mutag':
        dataset = MUTAG()
    elif args.dataset == 'bgs':
        dataset = BGS()
    elif args.dataset == 'am':
        dataset = AM()
    else:
        raise ValueError()

    g = dataset.graph
    category = dataset.predict_category
    num_classes = dataset.num_classes
    train_idx = dataset.train_idx
    test_idx = dataset.test_idx
    labels = dataset.labels

    # split dataset into train, validate, test
    if args.validation:
        val_idx = train_idx[:len(train_idx) // 5]
        train_idx = train_idx[len(train_idx) // 5:]
    else:
        val_idx = train_idx

    # check cuda
    use_cuda = args.gpu >= 0 and th.cuda.is_available()
    if use_cuda:
        th.cuda.set_device(args.gpu)

    train_label = labels[train_idx]
    val_label = labels[val_idx]
    test_label = labels[test_idx]

    # create embeddings
    embed_layer = RelGraphEmbed(g, args.n_hidden)
    node_embed = embed_layer()
    # create model
    model = EntityClassify(g,
                           args.n_hidden,
                           num_classes,
                           num_bases=args.n_bases,
                           num_hidden_layers=args.n_layers - 2,
                           dropout=args.dropout,
                           use_self_loop=args.use_self_loop)

    if use_cuda:
        model.cuda()

    # train sampler
98
99
100
101
    sampler = dgl.sampling.MultiLayerNeighborSampler([args.fanout] * args.n_layers)
    loader = dgl.sampling.NodeDataLoader(
        g, {category: train_idx}, sampler,
        batch_size=args.batch_size, shuffle=True, num_workers=0)
102
103

    # validation sampler
104
105
106
107
    val_sampler = dgl.sampling.MultiLayerNeighborSampler([args.fanout] * args.n_layers)
    val_loader = dgl.sampling.NodeDataLoader(
        g, {category: val_idx}, val_sampler,
        batch_size=args.batch_size, shuffle=True, num_workers=0)
108
109

    # test sampler
110
111
112
113
114

    test_sampler = dgl.sampling.MultiLayerNeighborSampler([args.fanout] * args.n_layers)
    test_loader = dgl.sampling.NodeDataLoader(
        g, {category: test_idx}, test_sampler,
        batch_size=args.batch_size, shuffle=True, num_workers=0)
115
116
117
118
119
120
121
122
123
124
125
126
127
128

    # optimizer
    all_params = itertools.chain(model.parameters(), embed_layer.parameters())
    optimizer = th.optim.Adam(all_params, lr=args.lr, weight_decay=args.l2norm)

    # training loop
    print("start training...")
    dur = []
    for epoch in range(args.n_epochs):
        model.train()
        optimizer.zero_grad()
        if epoch > 3:
            t0 = time.time()

129
130
        for i, (input_nodes, seeds, blocks) in enumerate(loader):
            seeds = seeds[category]     # we only predict the nodes with type "category"
131
            batch_tic = time.time()
132
133
            emb = extract_embed(node_embed, input_nodes)
            lbl = labels[seeds]
134
135
136
137
138
139
140
141
            if use_cuda:
                emb = {k : e.cuda() for k, e in emb.items()}
                lbl = lbl.cuda()
            logits = model(emb, blocks)[category]
            loss = F.cross_entropy(logits, lbl)
            loss.backward()
            optimizer.step()

142
            train_acc = th.sum(logits.argmax(dim=1) == lbl).item() / len(seeds)
143
144
145
146
147
148
            print("Epoch {:05d} | Batch {:03d} | Train Acc: {:.4f} | Train Loss: {:.4f} | Time: {:.4f}".
                  format(epoch, i, train_acc, loss.item(), time.time() - batch_tic))

        if epoch > 3:
            dur.append(time.time() - t0)

149
        val_loss, val_acc = evaluate(model, val_loader, node_embed, labels, category, use_cuda)
150
        print("Epoch {:05d} | Valid Acc: {:.4f} | Valid loss: {:.4f} | Time: {:.4f}".
151
              format(epoch, val_acc, val_loss, np.average(dur)))
152
153
154
155
    print()
    if args.model_path is not None:
        th.save(model.state_dict(), args.model_path)

156
157
158
159
160
161
    output = model.inference(
        g, args.batch_size, 'cuda' if use_cuda else 'cpu', 0, node_embed)
    test_pred = output[category][test_idx]
    test_labels = labels[test_idx]
    test_acc = (test_pred.argmax(1) == test_labels).float().mean()
    print("Test Acc: {:.4f}".format(test_acc))
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
    print()

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='RGCN')
    parser.add_argument("--dropout", type=float, default=0,
            help="dropout probability")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden units")
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
            help="learning rate")
    parser.add_argument("--n-bases", type=int, default=-1,
            help="number of filter weight matrices, default: -1 [use all]")
    parser.add_argument("--n-layers", type=int, default=2,
            help="number of propagation rounds")
    parser.add_argument("-e", "--n-epochs", type=int, default=20,
            help="number of training epochs")
    parser.add_argument("-d", "--dataset", type=str, required=True,
            help="dataset to use")
    parser.add_argument("--model_path", type=str, default=None,
            help='path for save the model')
    parser.add_argument("--l2norm", type=float, default=0,
            help="l2 norm coef")
    parser.add_argument("--use-self-loop", default=False, action='store_true',
            help="include self feature as a special relation")
    parser.add_argument("--batch-size", type=int, default=100,
            help="Mini-batch size. If -1, use full graph training.")
    parser.add_argument("--fanout", type=int, default=4,
            help="Fan-out of neighbor sampling.")
    fp = parser.add_mutually_exclusive_group(required=False)
    fp.add_argument('--validation', dest='validation', action='store_true')
    fp.add_argument('--testing', dest='validation', action='store_false')
    parser.set_defaults(validation=True)

    args = parser.parse_args()
    print(args)
    main(args)