entity_classify_mb.py 15.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
"""Modeling Relational Data with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1703.06103
Reference Code: https://github.com/tkipf/relational-gcn
"""
import argparse
import itertools
import numpy as np
import time
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from functools import partial

import dgl
import dgl.function as fn
from dgl.data.rdf import AIFB, MUTAG, BGS, AM

class RelGraphConvHetero(nn.Module):
    r"""Relational graph convolution layer.

    Parameters
    ----------
    in_feat : int
        Input feature size.
    out_feat : int
        Output feature size.
    rel_names : int
        Relation names.
    regularizer : str
        Which weight regularizer to use "basis" or "bdd"
    num_bases : int, optional
        Number of bases. If is none, use number of relations. Default: None.
    bias : bool, optional
        True if bias is added. Default: True
    activation : callable, optional
        Activation function. Default: None
    self_loop : bool, optional
        True to include self loop message. Default: False
    use_weight : bool, optional
        If True, multiply the input node feature with a learnable weight matrix
        before message passing.
    dropout : float, optional
        Dropout rate. Default: 0.0
    """
    def __init__(self,
                 in_feat,
                 out_feat,
                 rel_names,
                 regularizer="basis",
                 num_bases=None,
                 bias=True,
                 activation=None,
                 self_loop=False,
                 use_weight=True,
                 dropout=0.0):
        super(RelGraphConvHetero, self).__init__()
        self.in_feat = in_feat
        self.out_feat = out_feat
        self.rel_names = rel_names
        self.num_rels = len(rel_names)
        self.regularizer = regularizer
        self.num_bases = num_bases
        if self.num_bases is None or self.num_bases > self.num_rels or self.num_bases < 0:
            self.num_bases = self.num_rels
        self.bias = bias
        self.activation = activation
        self.self_loop = self_loop

        self.use_weight = use_weight
        if use_weight:
            if regularizer == "basis":
                # add basis weights
                self.weight = nn.Parameter(th.Tensor(self.num_bases, self.in_feat, self.out_feat))
                if self.num_bases < self.num_rels:
                    # linear combination coefficients
                    self.w_comp = nn.Parameter(th.Tensor(self.num_rels, self.num_bases))
                nn.init.xavier_uniform_(self.weight, gain=nn.init.calculate_gain('relu'))
                if self.num_bases < self.num_rels:
                    nn.init.xavier_uniform_(self.w_comp,
                                            gain=nn.init.calculate_gain('relu'))
            else:
                raise ValueError("Only basis regularizer is supported.")

        # bias
        if self.bias:
            self.h_bias = nn.Parameter(th.Tensor(out_feat))
            nn.init.zeros_(self.h_bias)

        # weight for self loop
        if self.self_loop:
            self.loop_weight = nn.Parameter(th.Tensor(in_feat, out_feat))
            nn.init.xavier_uniform_(self.loop_weight,
                                    gain=nn.init.calculate_gain('relu'))

        self.dropout = nn.Dropout(dropout)

    def basis_weight(self):
        """Message function for basis regularizer"""
        if self.num_bases < self.num_rels:
            # generate all weights from bases
            weight = self.weight.view(self.num_bases,
                                      self.in_feat * self.out_feat)
            weight = th.matmul(self.w_comp, weight).view(
                self.num_rels, self.in_feat, self.out_feat)
        else:
            weight = self.weight
        return {self.rel_names[i] : w.squeeze(0) for i, w in enumerate(th.split(weight, 1, dim=0))}

    def forward(self, g, xs):
        """Forward computation

        Parameters
        ----------
        g : DGLHeteroGraph
            Input block graph.
        xs : dict[str, torch.Tensor]
            Node feature for each node type.

        Returns
        -------
        list of torch.Tensor
            New node features for each node type.
        """
        g = g.local_var()
        for ntype, x in xs.items():
            g.srcnodes[ntype].data['x'] = x
        if self.use_weight:
            ws = self.basis_weight()
            funcs = {}
            for i, (srctype, etype, dsttype) in enumerate(g.canonical_etypes):
                if srctype not in xs:
                    continue
                g.srcnodes[srctype].data['h%d' % i] = th.matmul(
                    g.srcnodes[srctype].data['x'], ws[etype])
                funcs[(srctype, etype, dsttype)] = (fn.copy_u('h%d' % i, 'm'), fn.mean('m', 'h'))
        else:
            funcs = {}
            for i, (srctype, etype, dsttype) in enumerate(g.canonical_etypes):
                if srctype not in xs:
                    continue
                g.srcnodes[srctype].data['h%d' % i] = g.srcnodes[srctype].data['x']
                funcs[(srctype, etype, dsttype)] = (fn.copy_u('h%d' % i, 'm'), fn.mean('m', 'h'))
        # message passing
        g.multi_update_all(funcs, 'sum')

        hs = {}
        for ntype in g.dsttypes:
            if 'h' in g.dstnodes[ntype].data:
                hs[ntype] = g.dstnodes[ntype].data['h']
        def _apply(ntype, h):
            # apply bias and activation
            if self.self_loop:
                h = h + th.matmul(xs[ntype][:h.shape[0]], self.loop_weight)
            if self.activation:
                h = self.activation(h)
            h = self.dropout(h)
            return h
        hs = {ntype : _apply(ntype, h) for ntype, h in hs.items()}
        return hs

class RelGraphEmbed(nn.Module):
    r"""Embedding layer for featureless heterograph."""
    def __init__(self,
                 g,
                 embed_size,
                 activation=None,
                 dropout=0.0):
        super(RelGraphEmbed, self).__init__()
        self.g = g
        self.embed_size = embed_size
        self.activation = activation
        self.dropout = nn.Dropout(dropout)

        # create weight embeddings for each node for each relation
        self.embeds = nn.ParameterDict()
        for ntype in g.ntypes:
            embed = nn.Parameter(th.Tensor(g.number_of_nodes(ntype), self.embed_size))
            nn.init.xavier_uniform_(embed, gain=nn.init.calculate_gain('relu'))
            self.embeds[ntype] = embed


    def forward(self, block=None):
        """Forward computation

        Parameters
        ----------
        block : DGLHeteroGraph, optional
            If not specified, directly return the full graph with embeddings stored in
            :attr:`embed_name`. Otherwise, extract and store the embeddings to the block
            graph and return.

        Returns
        -------
        DGLHeteroGraph
            The block graph fed with embeddings.
        """
        return self.embeds

class EntityClassify(nn.Module):
    def __init__(self,
                 g,
                 h_dim, out_dim,
                 num_bases,
                 num_hidden_layers=1,
                 dropout=0,
                 use_self_loop=False):
        super(EntityClassify, self).__init__()
        self.g = g
        self.h_dim = h_dim
        self.out_dim = out_dim
        self.rel_names = list(set(g.etypes))
        self.rel_names.sort()
        self.num_bases = None if num_bases < 0 else num_bases
        self.num_hidden_layers = num_hidden_layers
        self.dropout = dropout
        self.use_self_loop = use_self_loop

        self.layers = nn.ModuleList()
        # i2h
        self.layers.append(RelGraphConvHetero(
            self.h_dim, self.h_dim, self.rel_names, "basis",
            self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
            dropout=self.dropout, use_weight=False))
        # h2h
        for i in range(self.num_hidden_layers):
            self.layers.append(RelGraphConvHetero(
                self.h_dim, self.h_dim, self.rel_names, "basis",
                self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
                dropout=self.dropout))
        # h2o
        self.layers.append(RelGraphConvHetero(
            self.h_dim, self.out_dim, self.rel_names, "basis",
            self.num_bases, activation=None,
            self_loop=self.use_self_loop))

    def forward(self, h, blocks):
        for layer, block in zip(self.layers, blocks):
            h = layer(block, h)
        return h

class HeteroNeighborSampler:
    """Neighbor sampler on heterogeneous graphs

    Parameters
    ----------
    g : DGLHeteroGraph
        Full graph
    category : str
        Category name of the seed nodes.
    fanouts : list of int
        Fanout of each hop starting from the seed nodes. If a fanout is None,
        sample full neighbors.
    """
    def __init__(self, g, category, fanouts):
        self.g = g
        self.category = category
        self.fanouts = fanouts

    def sample_blocks(self, seeds):
        blocks = []
        seeds = {self.category : th.tensor(seeds).long()}
        cur = seeds
        for fanout in self.fanouts:
            if fanout is None:
                frontier = dgl.in_subgraph(self.g, cur)
            else:
                frontier = dgl.sampling.sample_neighbors(self.g, cur, fanout)
            block = dgl.to_block(frontier, cur)
            cur = {}
            for ntype in block.srctypes:
                cur[ntype] = block.srcnodes[ntype].data[dgl.NID]
            blocks.insert(0, block)
        return seeds, blocks

def extract_embed(node_embed, block):
    emb = {}
    for ntype in block.srctypes:
        nid = block.srcnodes[ntype].data[dgl.NID]
        emb[ntype] = node_embed[ntype][nid]
    return emb


def evaluate(model, seeds, blocks, node_embed, labels, category, use_cuda):
    model.eval()
    emb = extract_embed(node_embed, blocks[0])
    lbl = labels[seeds]
    if use_cuda:
        emb = {k : e.cuda() for k, e in emb.items()}
        lbl = lbl.cuda()
    logits = model(emb, blocks)[category]
    loss = F.cross_entropy(logits, lbl)
    acc = th.sum(logits.argmax(dim=1) == lbl).item() / len(seeds)
    return loss, acc

def main(args):
    # load graph data
    if args.dataset == 'aifb':
        dataset = AIFB()
    elif args.dataset == 'mutag':
        dataset = MUTAG()
    elif args.dataset == 'bgs':
        dataset = BGS()
    elif args.dataset == 'am':
        dataset = AM()
    else:
        raise ValueError()

    g = dataset.graph
    category = dataset.predict_category
    num_classes = dataset.num_classes
    train_idx = dataset.train_idx
    test_idx = dataset.test_idx
    labels = dataset.labels

    # split dataset into train, validate, test
    if args.validation:
        val_idx = train_idx[:len(train_idx) // 5]
        train_idx = train_idx[len(train_idx) // 5:]
    else:
        val_idx = train_idx

    # check cuda
    use_cuda = args.gpu >= 0 and th.cuda.is_available()
    if use_cuda:
        th.cuda.set_device(args.gpu)

    train_label = labels[train_idx]
    val_label = labels[val_idx]
    test_label = labels[test_idx]

    # create embeddings
    embed_layer = RelGraphEmbed(g, args.n_hidden)
    node_embed = embed_layer()
    # create model
    model = EntityClassify(g,
                           args.n_hidden,
                           num_classes,
                           num_bases=args.n_bases,
                           num_hidden_layers=args.n_layers - 2,
                           dropout=args.dropout,
                           use_self_loop=args.use_self_loop)

    if use_cuda:
        model.cuda()

    # train sampler
    sampler = HeteroNeighborSampler(g, category, [args.fanout] * args.n_layers)
    loader = DataLoader(dataset=train_idx.numpy(),
                        batch_size=args.batch_size,
                        collate_fn=sampler.sample_blocks,
                        shuffle=True,
                        num_workers=0)

    # validation sampler
    val_sampler = HeteroNeighborSampler(g, category, [None] * args.n_layers)
    _, val_blocks = val_sampler.sample_blocks(val_idx)

    # test sampler
    test_sampler = HeteroNeighborSampler(g, category, [None] * args.n_layers)
    _, test_blocks = test_sampler.sample_blocks(test_idx)

    # optimizer
    all_params = itertools.chain(model.parameters(), embed_layer.parameters())
    optimizer = th.optim.Adam(all_params, lr=args.lr, weight_decay=args.l2norm)

    # training loop
    print("start training...")
    dur = []
    for epoch in range(args.n_epochs):
        model.train()
        optimizer.zero_grad()
        if epoch > 3:
            t0 = time.time()

        for i, (seeds, blocks) in enumerate(loader):
            batch_tic = time.time()
            emb = extract_embed(node_embed, blocks[0])
            lbl = labels[seeds[category]]
            if use_cuda:
                emb = {k : e.cuda() for k, e in emb.items()}
                lbl = lbl.cuda()
            logits = model(emb, blocks)[category]
            loss = F.cross_entropy(logits, lbl)
            loss.backward()
            optimizer.step()

            train_acc = th.sum(logits.argmax(dim=1) == lbl).item() / len(seeds[category])
            print("Epoch {:05d} | Batch {:03d} | Train Acc: {:.4f} | Train Loss: {:.4f} | Time: {:.4f}".
                  format(epoch, i, train_acc, loss.item(), time.time() - batch_tic))

        if epoch > 3:
            dur.append(time.time() - t0)

        val_loss, val_acc = evaluate(model, val_idx, val_blocks, node_embed, labels, category, use_cuda)
        print("Epoch {:05d} | Valid Acc: {:.4f} | Valid loss: {:.4f} | Time: {:.4f}".
              format(epoch, val_acc, val_loss.item(), np.average(dur)))
    print()
    if args.model_path is not None:
        th.save(model.state_dict(), args.model_path)

    test_loss, test_acc = evaluate(model, test_idx, test_blocks, node_embed, labels, category, use_cuda)
    print("Test Acc: {:.4f} | Test loss: {:.4f}".format(test_acc, test_loss.item()))
    print()

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='RGCN')
    parser.add_argument("--dropout", type=float, default=0,
            help="dropout probability")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden units")
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
            help="learning rate")
    parser.add_argument("--n-bases", type=int, default=-1,
            help="number of filter weight matrices, default: -1 [use all]")
    parser.add_argument("--n-layers", type=int, default=2,
            help="number of propagation rounds")
    parser.add_argument("-e", "--n-epochs", type=int, default=20,
            help="number of training epochs")
    parser.add_argument("-d", "--dataset", type=str, required=True,
            help="dataset to use")
    parser.add_argument("--model_path", type=str, default=None,
            help='path for save the model')
    parser.add_argument("--l2norm", type=float, default=0,
            help="l2 norm coef")
    parser.add_argument("--use-self-loop", default=False, action='store_true',
            help="include self feature as a special relation")
    parser.add_argument("--batch-size", type=int, default=100,
            help="Mini-batch size. If -1, use full graph training.")
    parser.add_argument("--fanout", type=int, default=4,
            help="Fan-out of neighbor sampling.")
    fp = parser.add_mutually_exclusive_group(required=False)
    fp.add_argument('--validation', dest='validation', action='store_true')
    fp.add_argument('--testing', dest='validation', action='store_false')
    parser.set_defaults(validation=True)

    args = parser.parse_args()
    print(args)
    main(args)