sampler.cc 68.7 KB
Newer Older
Da Zheng's avatar
Da Zheng committed
1
2
3
4
5
6
7
/*!
 *  Copyright (c) 2018 by Contributors
 * \file graph/sampler.cc
 * \brief DGL sampler implementation
 */
#include <dgl/sampler.h>
#include <dgl/immutable_graph.h>
8
9
#include <dgl/runtime/container.h>
#include <dgl/packed_func_ext.h>
10
#include <dgl/random.h>
11
#include <dmlc/omp.h>
Da Zheng's avatar
Da Zheng committed
12
#include <algorithm>
13
14
#include <cstdlib>
#include <cmath>
15
#include <numeric>
16
#include "../c_api_common.h"
17
#include "../array/common.h"  // for ATEN_FLOAT_TYPE_SWITCH
Da Zheng's avatar
Da Zheng committed
18

19
using namespace dgl::runtime;
20

Da Zheng's avatar
Da Zheng committed
21
22
23
24
25
26
namespace dgl {

namespace {
/*
 * ArrayHeap is used to sample elements from vector
 */
27
template<typename ValueType>
Da Zheng's avatar
Da Zheng committed
28
29
class ArrayHeap {
 public:
30
  explicit ArrayHeap(const std::vector<ValueType>& prob) {
Da Zheng's avatar
Da Zheng committed
31
32
    vec_size_ = prob.size();
    bit_len_ = ceil(log2(vec_size_));
33
    limit_ = 1UL << bit_len_;
Da Zheng's avatar
Da Zheng committed
34
35
36
    // allocate twice the size
    heap_.resize(limit_ << 1, 0);
    // allocate the leaves
37
    for (size_t i = limit_; i < vec_size_+limit_; ++i) {
Da Zheng's avatar
Da Zheng committed
38
39
40
41
      heap_[i] = prob[i-limit_];
    }
    // iterate up the tree (this is O(m))
    for (int i = bit_len_-1; i >= 0; --i) {
42
      for (size_t j = (1UL << i); j < (1UL << (i + 1)); ++j) {
Da Zheng's avatar
Da Zheng committed
43
44
45
46
47
48
49
50
51
52
53
        heap_[j] = heap_[j << 1] + heap_[(j << 1) + 1];
      }
    }
  }
  ~ArrayHeap() {}

  /*
   * Remove term from index (this costs O(log m) steps)
   */
  void Delete(size_t index) {
    size_t i = index + limit_;
54
    ValueType w = heap_[i];
Da Zheng's avatar
Da Zheng committed
55
56
57
58
59
60
61
62
63
    for (int j = bit_len_; j >= 0; --j) {
      heap_[i] -= w;
      i = i >> 1;
    }
  }

  /*
   * Add value w to index (this costs O(log m) steps)
   */
64
  void Add(size_t index, ValueType w) {
Da Zheng's avatar
Da Zheng committed
65
66
67
68
69
70
71
72
73
74
    size_t i = index + limit_;
    for (int j = bit_len_; j >= 0; --j) {
      heap_[i] += w;
      i = i >> 1;
    }
  }

  /*
   * Sample from arrayHeap
   */
75
  size_t Sample() {
76
    ValueType xi = heap_[1] * RandomEngine::ThreadLocal()->Uniform<float>();
77
    size_t i = 1;
Da Zheng's avatar
Da Zheng committed
78
79
80
81
82
83
84
85
86
87
88
89
90
    while (i < limit_) {
      i = i << 1;
      if (xi >= heap_[i]) {
        xi -= heap_[i];
        i += 1;
      }
    }
    return i - limit_;
  }

  /*
   * Sample a vector by given the size n
   */
91
  void SampleWithoutReplacement(size_t n, std::vector<size_t>* samples) {
Da Zheng's avatar
Da Zheng committed
92
93
    // sample n elements
    for (size_t i = 0; i < n; ++i) {
94
      samples->at(i) = this->Sample();
Da Zheng's avatar
Da Zheng committed
95
96
97
98
99
      this->Delete(samples->at(i));
    }
  }

 private:
100
  size_t vec_size_;  // sample size
Da Zheng's avatar
Da Zheng committed
101
  int bit_len_;   // bit size
102
  size_t limit_;
103
  std::vector<ValueType> heap_;
Da Zheng's avatar
Da Zheng committed
104
105
};

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
///////////////////////// Samplers //////////////////////////
class EdgeSamplerObject: public Object {
 public:
  EdgeSamplerObject(const GraphPtr gptr,
                    IdArray seed_edges,
                    const int64_t batch_size,
                    const int64_t num_workers,
                    const std::string neg_mode,
                    const int64_t neg_sample_size,
                    const bool exclude_positive,
                    const bool check_false_neg,
                    IdArray relations) {
    gptr_ = gptr;
    seed_edges_ = seed_edges;
    relations_ = relations;

    batch_size_ = batch_size;
    num_workers_ = num_workers;
    neg_mode_ = neg_mode;
    neg_sample_size_ = neg_sample_size;
    exclude_positive_ = exclude_positive;
    check_false_neg_ = check_false_neg;
  }

  ~EdgeSamplerObject() {}

  virtual void Fetch(DGLRetValue* rv) = 0;

 protected:
  virtual void randomSample(size_t set_size, size_t num, std::vector<size_t>* out) = 0;
  virtual void randomSample(size_t set_size, size_t num, const std::vector<size_t> &exclude,
                    std::vector<size_t>* out) = 0;

  NegSubgraph genNegEdgeSubgraph(const Subgraph &pos_subg,
                                 const std::string &neg_mode,
                                 int64_t neg_sample_size,
                                 bool exclude_positive,
                                 bool check_false_neg);
  NegSubgraph genPBGNegEdgeSubgraph(const Subgraph &pos_subg,
                                    const std::string &neg_mode,
                                    int64_t neg_sample_size,
                                    bool exclude_positive,
                                    bool check_false_neg);

  GraphPtr gptr_;
  IdArray seed_edges_;
  IdArray relations_;

  int64_t batch_size_;
  int64_t num_workers_;
  std::string neg_mode_;
  int64_t neg_sample_size_;
  bool exclude_positive_;
  bool check_false_neg_;
};

Da Zheng's avatar
Da Zheng committed
162
163
164
/*
 * Uniformly sample integers from [0, set_size) without replacement.
 */
165
void RandomSample(size_t set_size, size_t num, std::vector<size_t>* out) {
Da Zheng's avatar
Da Zheng committed
166
167
168
169
170
171
172
173
174
175
176
177
  if (num < set_size) {
    std::unordered_set<size_t> sampled_idxs;
    while (sampled_idxs.size() < num) {
      sampled_idxs.insert(RandomEngine::ThreadLocal()->RandInt(set_size));
    }
    out->insert(out->end(), sampled_idxs.begin(), sampled_idxs.end());
  } else {
    // If we need to sample all elements in the set, we don't need to
    // generate random numbers.
    for (size_t i = 0; i < set_size; i++)
      out->push_back(i);
  }
Da Zheng's avatar
Da Zheng committed
178
179
}

180
181
182
183
184
185
void RandomSample(size_t set_size, size_t num, const std::vector<size_t> &exclude,
                  std::vector<size_t>* out) {
  std::unordered_map<size_t, int> sampled_idxs;
  for (auto v : exclude) {
    sampled_idxs.insert(std::pair<size_t, int>(v, 0));
  }
Da Zheng's avatar
Da Zheng committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
  if (num + exclude.size() < set_size) {
    while (sampled_idxs.size() < num + exclude.size()) {
      size_t rand = RandomEngine::ThreadLocal()->RandInt(set_size);
      sampled_idxs.insert(std::pair<size_t, int>(rand, 1));
    }
    for (auto it = sampled_idxs.begin(); it != sampled_idxs.end(); it++) {
      if (it->second) {
        out->push_back(it->first);
      }
    }
  } else {
    // If we need to sample all elements in the set, we don't need to
    // generate random numbers.
    for (size_t i = 0; i < set_size; i++) {
      // If the element doesn't exist in exclude.
      if (sampled_idxs.find(i) == sampled_idxs.end()) {
        out->push_back(i);
      }
204
205
206
207
    }
  }
}

Da Zheng's avatar
Da Zheng committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
/*
 * For a sparse array whose non-zeros are represented by nz_idxs,
 * negate the sparse array and outputs the non-zeros in the negated array.
 */
void NegateArray(const std::vector<size_t> &nz_idxs,
                 size_t arr_size,
                 std::vector<size_t>* out) {
  // nz_idxs must have been sorted.
  auto it = nz_idxs.begin();
  size_t i = 0;
  CHECK_GT(arr_size, nz_idxs.back());
  for (; i < arr_size && it != nz_idxs.end(); i++) {
    if (*it == i) {
      it++;
      continue;
    }
    out->push_back(i);
  }
  for (; i < arr_size; i++) {
    out->push_back(i);
  }
}

/*
 * Uniform sample vertices from a list of vertices.
 */
void GetUniformSample(const dgl_id_t* edge_id_list,
                      const dgl_id_t* vid_list,
                      const size_t ver_len,
                      const size_t max_num_neighbor,
                      std::vector<dgl_id_t>* out_ver,
239
                      std::vector<dgl_id_t>* out_edge) {
Da Zheng's avatar
Da Zheng committed
240
241
242
243
244
245
246
247
248
249
  // Copy vid_list to output
  if (ver_len <= max_num_neighbor) {
    out_ver->insert(out_ver->end(), vid_list, vid_list + ver_len);
    out_edge->insert(out_edge->end(), edge_id_list, edge_id_list + ver_len);
    return;
  }
  // If we just sample a small number of elements from a large neighbor list.
  std::vector<size_t> sorted_idxs;
  if (ver_len > max_num_neighbor * 2) {
    sorted_idxs.reserve(max_num_neighbor);
250
    RandomSample(ver_len, max_num_neighbor, &sorted_idxs);
Da Zheng's avatar
Da Zheng committed
251
252
253
254
    std::sort(sorted_idxs.begin(), sorted_idxs.end());
  } else {
    std::vector<size_t> negate;
    negate.reserve(ver_len - max_num_neighbor);
255
    RandomSample(ver_len, ver_len - max_num_neighbor, &negate);
Da Zheng's avatar
Da Zheng committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
    std::sort(negate.begin(), negate.end());
    NegateArray(negate, ver_len, &sorted_idxs);
  }
  // verify the result.
  CHECK_EQ(sorted_idxs.size(), max_num_neighbor);
  for (size_t i = 1; i < sorted_idxs.size(); i++) {
    CHECK_GT(sorted_idxs[i], sorted_idxs[i - 1]);
  }
  for (auto idx : sorted_idxs) {
    out_ver->push_back(vid_list[idx]);
    out_edge->push_back(edge_id_list[idx]);
  }
}

/*
 * Non-uniform sample via ArrayHeap
272
273
 *
 * \param probability Transition probability on the entire graph, indexed by edge ID
Da Zheng's avatar
Da Zheng committed
274
 */
275
276
template<typename ValueType>
void GetNonUniformSample(const ValueType* probability,
Da Zheng's avatar
Da Zheng committed
277
278
279
280
281
                         const dgl_id_t* edge_id_list,
                         const dgl_id_t* vid_list,
                         const size_t ver_len,
                         const size_t max_num_neighbor,
                         std::vector<dgl_id_t>* out_ver,
282
                         std::vector<dgl_id_t>* out_edge) {
Da Zheng's avatar
Da Zheng committed
283
284
285
286
287
288
289
290
  // Copy vid_list to output
  if (ver_len <= max_num_neighbor) {
    out_ver->insert(out_ver->end(), vid_list, vid_list + ver_len);
    out_edge->insert(out_edge->end(), edge_id_list, edge_id_list + ver_len);
    return;
  }
  // Make sample
  std::vector<size_t> sp_index(max_num_neighbor);
291
  std::vector<ValueType> sp_prob(ver_len);
Da Zheng's avatar
Da Zheng committed
292
  for (size_t i = 0; i < ver_len; ++i) {
293
    sp_prob[i] = probability[edge_id_list[i]];
Da Zheng's avatar
Da Zheng committed
294
  }
295
  ArrayHeap<ValueType> arrayHeap(sp_prob);
296
  arrayHeap.SampleWithoutReplacement(max_num_neighbor, &sp_index);
Da Zheng's avatar
Da Zheng committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
  out_ver->resize(max_num_neighbor);
  out_edge->resize(max_num_neighbor);
  for (size_t i = 0; i < max_num_neighbor; ++i) {
    size_t idx = sp_index[i];
    out_ver->at(i) = vid_list[idx];
    out_edge->at(i) = edge_id_list[idx];
  }
  sort(out_ver->begin(), out_ver->end());
  sort(out_edge->begin(), out_edge->end());
}

/*
 * Used for subgraph sampling
 */
struct neigh_list {
  std::vector<dgl_id_t> neighs;
  std::vector<dgl_id_t> edges;
  neigh_list(const std::vector<dgl_id_t> &_neighs,
             const std::vector<dgl_id_t> &_edges)
    : neighs(_neighs), edges(_edges) {}
};

struct neighbor_info {
  dgl_id_t id;
  size_t pos;
  size_t num_edges;

  neighbor_info(dgl_id_t id, size_t pos, size_t num_edges) {
    this->id = id;
    this->pos = pos;
    this->num_edges = num_edges;
  }
};

NodeFlow ConstructNodeFlow(std::vector<dgl_id_t> neighbor_list,
                           std::vector<dgl_id_t> edge_list,
                           std::vector<size_t> layer_offsets,
                           std::vector<std::pair<dgl_id_t, int> > *sub_vers,
                           std::vector<neighbor_info> *neigh_pos,
                           const std::string &edge_type,
                           int64_t num_edges, int num_hops, bool is_multigraph) {
338
  NodeFlow nf = NodeFlow::Create();
Da Zheng's avatar
Da Zheng committed
339
  uint64_t num_vertices = sub_vers->size();
340
341
342
343
  nf->node_mapping = aten::NewIdArray(num_vertices);
  nf->edge_mapping = aten::NewIdArray(num_edges);
  nf->layer_offsets = aten::NewIdArray(num_hops + 1);
  nf->flow_offsets = aten::NewIdArray(num_hops);
Da Zheng's avatar
Da Zheng committed
344

345
346
347
348
  dgl_id_t *node_map_data = static_cast<dgl_id_t *>(nf->node_mapping->data);
  dgl_id_t *layer_off_data = static_cast<dgl_id_t *>(nf->layer_offsets->data);
  dgl_id_t *flow_off_data = static_cast<dgl_id_t *>(nf->flow_offsets->data);
  dgl_id_t *edge_map_data = static_cast<dgl_id_t *>(nf->edge_mapping->data);
Da Zheng's avatar
Da Zheng committed
349
350

  // Construct sub_csr_graph
351
352
353
354
355
  // TODO(minjie): is nodeflow a multigraph?
  auto subg_csr = CSRPtr(new CSR(num_vertices, num_edges, is_multigraph));
  dgl_id_t* indptr_out = static_cast<dgl_id_t*>(subg_csr->indptr()->data);
  dgl_id_t* col_list_out = static_cast<dgl_id_t*>(subg_csr->indices()->data);
  dgl_id_t* eid_out = static_cast<dgl_id_t*>(subg_csr->edge_ids()->data);
Da Zheng's avatar
Da Zheng committed
356
357
358
359
360
361
362
363
364
365
366
367
  size_t collected_nedges = 0;

  // The data from the previous steps:
  // * node data: sub_vers (vid, layer), neigh_pos,
  // * edge data: neighbor_list, edge_list, probability.
  // * layer_offsets: the offset in sub_vers.
  dgl_id_t ver_id = 0;
  std::vector<std::unordered_map<dgl_id_t, dgl_id_t>> layer_ver_maps;
  layer_ver_maps.resize(num_hops);
  size_t out_node_idx = 0;
  for (int layer_id = num_hops - 1; layer_id >= 0; layer_id--) {
    // We sort the vertices in a layer so that we don't need to sort the neighbor Ids
368
369
370
371
372
373
374
375
376
377
378
    // after remap to a subgraph. However, we don't need to sort the first layer
    // because we want the order of the nodes in the first layer is the same as
    // the input seed nodes.
    if (layer_id > 0) {
      std::sort(sub_vers->begin() + layer_offsets[layer_id],
                sub_vers->begin() + layer_offsets[layer_id + 1],
                [](const std::pair<dgl_id_t, dgl_id_t> &a1,
                   const std::pair<dgl_id_t, dgl_id_t> &a2) {
        return a1.first < a2.first;
      });
    }
Da Zheng's avatar
Da Zheng committed
379
380
381
382
383
384

    // Save the sampled vertices and its layer Id.
    for (size_t i = layer_offsets[layer_id]; i < layer_offsets[layer_id + 1]; i++) {
      node_map_data[out_node_idx++] = sub_vers->at(i).first;
      layer_ver_maps[layer_id].insert(std::pair<dgl_id_t, dgl_id_t>(sub_vers->at(i).first,
                                                                    ver_id++));
385
      CHECK_EQ(sub_vers->at(i).second, layer_id);
Da Zheng's avatar
Da Zheng committed
386
387
388
389
390
391
392
393
394
    }
  }
  CHECK(out_node_idx == num_vertices);

  // sampling algorithms have to start from the seed nodes, so the seed nodes are
  // in the first layer and the input nodes are in the last layer.
  // When we expose the sampled graph to a Python user, we say the input nodes
  // are in the first layer and the seed nodes are in the last layer.
  // Thus, when we copy sampled results to a CSR, we need to reverse the order of layers.
395
396
  std::fill(indptr_out, indptr_out + num_vertices + 1, 0);
  size_t row_idx = layer_offsets[num_hops] - layer_offsets[num_hops - 1];
Da Zheng's avatar
Da Zheng committed
397
398
  layer_off_data[0] = 0;
  layer_off_data[1] = layer_offsets[num_hops] - layer_offsets[num_hops - 1];
399
  int out_layer_idx = 1;
Da Zheng's avatar
Da Zheng committed
400
  for (int layer_id = num_hops - 2; layer_id >= 0; layer_id--) {
401
402
403
404
405
406
407
408
409
    // Because we don't sort the vertices in the first layer above, we can't sort
    // the neighbor positions of the vertices in the first layer either.
    if (layer_id > 0) {
      std::sort(neigh_pos->begin() + layer_offsets[layer_id],
                neigh_pos->begin() + layer_offsets[layer_id + 1],
                [](const neighbor_info &a1, const neighbor_info &a2) {
                  return a1.id < a2.id;
                });
    }
Da Zheng's avatar
Da Zheng committed
410
411
412

    for (size_t i = layer_offsets[layer_id]; i < layer_offsets[layer_id + 1]; i++) {
      dgl_id_t dst_id = sub_vers->at(i).first;
413
      CHECK_EQ(dst_id, neigh_pos->at(i).id);
Da Zheng's avatar
Da Zheng committed
414
      size_t pos = neigh_pos->at(i).pos;
415
      CHECK_LE(pos, neighbor_list.size());
416
417
      const size_t nedges = neigh_pos->at(i).num_edges;
      if (neighbor_list.empty()) CHECK_EQ(nedges, 0);
Da Zheng's avatar
Da Zheng committed
418
419
420

      // We need to map the Ids of the neighbors to the subgraph.
      auto neigh_it = neighbor_list.begin() + pos;
421
      for (size_t i = 0; i < nedges; i++) {
Da Zheng's avatar
Da Zheng committed
422
        dgl_id_t neigh = *(neigh_it + i);
423
        CHECK(layer_ver_maps[layer_id + 1].find(neigh) != layer_ver_maps[layer_id + 1].end());
Da Zheng's avatar
Da Zheng committed
424
425
426
427
        col_list_out[collected_nedges + i] = layer_ver_maps[layer_id + 1][neigh];
      }
      // We can simply copy the edge Ids.
      std::copy_n(edge_list.begin() + pos,
428
429
430
                  nedges, edge_map_data + collected_nedges);
      collected_nedges += nedges;
      indptr_out[row_idx+1] = indptr_out[row_idx] + nedges;
Da Zheng's avatar
Da Zheng committed
431
432
433
434
435
436
      row_idx++;
    }
    layer_off_data[out_layer_idx + 1] = layer_off_data[out_layer_idx]
        + layer_offsets[layer_id + 1] - layer_offsets[layer_id];
    out_layer_idx++;
  }
437
438
439
440
  CHECK_EQ(row_idx, num_vertices);
  CHECK_EQ(indptr_out[row_idx], num_edges);
  CHECK_EQ(out_layer_idx, num_hops);
  CHECK_EQ(layer_off_data[out_layer_idx], num_vertices);
Da Zheng's avatar
Da Zheng committed
441
442
443

  // Copy flow offsets.
  flow_off_data[0] = 0;
444
445
  int out_flow_idx = 0;
  for (size_t i = 0; i < layer_offsets.size() - 2; i++) {
446
    size_t num_edges = indptr_out[layer_off_data[i + 2]] - indptr_out[layer_off_data[i + 1]];
Da Zheng's avatar
Da Zheng committed
447
448
449
450
    flow_off_data[out_flow_idx + 1] = flow_off_data[out_flow_idx] + num_edges;
    out_flow_idx++;
  }
  CHECK(out_flow_idx == num_hops - 1);
451
  CHECK(flow_off_data[num_hops - 1] == static_cast<uint64_t>(num_edges));
Da Zheng's avatar
Da Zheng committed
452

453
  std::iota(eid_out, eid_out + num_edges, 0);
Da Zheng's avatar
Da Zheng committed
454

455
  if (edge_type == std::string("in")) {
456
    nf->graph = GraphPtr(new ImmutableGraph(subg_csr, nullptr));
Da Zheng's avatar
Da Zheng committed
457
  } else {
458
    nf->graph = GraphPtr(new ImmutableGraph(nullptr, subg_csr));
Da Zheng's avatar
Da Zheng committed
459
460
461
462
463
  }

  return nf;
}

464
template<typename ValueType>
Da Zheng's avatar
Da Zheng committed
465
NodeFlow SampleSubgraph(const ImmutableGraph *graph,
466
                        const std::vector<dgl_id_t>& seeds,
467
                        const ValueType* probability,
Da Zheng's avatar
Da Zheng committed
468
469
                        const std::string &edge_type,
                        int num_hops,
470
471
                        size_t num_neighbor,
                        const bool add_self_loop) {
472
  CHECK_EQ(graph->NumBits(), 64) << "32 bit graph is not supported yet";
473
  const size_t num_seeds = seeds.size();
Da Zheng's avatar
Da Zheng committed
474
  auto orig_csr = edge_type == "in" ? graph->GetInCSR() : graph->GetOutCSR();
475
476
477
  const dgl_id_t* val_list = static_cast<dgl_id_t*>(orig_csr->edge_ids()->data);
  const dgl_id_t* col_list = static_cast<dgl_id_t*>(orig_csr->indices()->data);
  const dgl_id_t* indptr = static_cast<dgl_id_t*>(orig_csr->indptr()->data);
Da Zheng's avatar
Da Zheng committed
478
479
480
481
482
483

  std::unordered_set<dgl_id_t> sub_ver_map;  // The vertex Ids in a layer.
  std::vector<std::pair<dgl_id_t, int> > sub_vers;
  sub_vers.reserve(num_seeds * 10);
  // add seed vertices
  for (size_t i = 0; i < num_seeds; ++i) {
484
    auto ret = sub_ver_map.insert(seeds[i]);
Da Zheng's avatar
Da Zheng committed
485
486
    // If the vertex is inserted successfully.
    if (ret.second) {
487
      sub_vers.emplace_back(seeds[i], 0);
Da Zheng's avatar
Da Zheng committed
488
489
490
491
492
493
494
495
496
497
498
499
500
501
    }
  }
  std::vector<dgl_id_t> tmp_sampled_src_list;
  std::vector<dgl_id_t> tmp_sampled_edge_list;
  // ver_id, position
  std::vector<neighbor_info> neigh_pos;
  neigh_pos.reserve(num_seeds);
  std::vector<dgl_id_t> neighbor_list;
  std::vector<dgl_id_t> edge_list;
  std::vector<size_t> layer_offsets(num_hops + 1);
  int64_t num_edges = 0;

  layer_offsets[0] = 0;
  layer_offsets[1] = sub_vers.size();
502
  for (int layer_id = 1; layer_id < num_hops; layer_id++) {
Da Zheng's avatar
Da Zheng committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
    // We need to avoid resampling the same node in a layer, but we allow a node
    // to be resampled in multiple layers. We use `sub_ver_map` to keep track of
    // sampled nodes in a layer, and clear it when entering a new layer.
    sub_ver_map.clear();
    // Previous iteration collects all nodes in sub_vers, which are collected
    // in the previous layer. sub_vers is used both as a node collection and a queue.
    for (size_t idx = layer_offsets[layer_id - 1]; idx < layer_offsets[layer_id]; idx++) {
      dgl_id_t dst_id = sub_vers[idx].first;
      const int cur_node_level = sub_vers[idx].second;

      tmp_sampled_src_list.clear();
      tmp_sampled_edge_list.clear();
      dgl_id_t ver_len = *(indptr+dst_id+1) - *(indptr+dst_id);
      if (probability == nullptr) {  // uniform-sample
        GetUniformSample(val_list + *(indptr + dst_id),
                         col_list + *(indptr + dst_id),
                         ver_len,
                         num_neighbor,
                         &tmp_sampled_src_list,
522
                         &tmp_sampled_edge_list);
Da Zheng's avatar
Da Zheng committed
523
524
525
526
527
528
529
      } else {  // non-uniform-sample
        GetNonUniformSample(probability,
                            val_list + *(indptr + dst_id),
                            col_list + *(indptr + dst_id),
                            ver_len,
                            num_neighbor,
                            &tmp_sampled_src_list,
530
                            &tmp_sampled_edge_list);
Da Zheng's avatar
Da Zheng committed
531
      }
Da Zheng's avatar
Da Zheng committed
532
533
534
      // If we need to add self loop and it doesn't exist in the sampled neighbor list.
      if (add_self_loop && std::find(tmp_sampled_src_list.begin(), tmp_sampled_src_list.end(),
                                     dst_id) == tmp_sampled_src_list.end()) {
535
        tmp_sampled_src_list.push_back(dst_id);
Da Zheng's avatar
Da Zheng committed
536
537
538
539
540
541
542
543
544
545
        const dgl_id_t *src_list = col_list + *(indptr + dst_id);
        const dgl_id_t *eid_list = val_list + *(indptr + dst_id);
        // TODO(zhengda) this operation has O(N) complexity. It can be pretty slow.
        const dgl_id_t *src = std::find(src_list, src_list + ver_len, dst_id);
        // If there doesn't exist a self loop in the graph.
        // we have to add -1 as the edge id for the self-loop edge.
        if (src == src_list + ver_len)
          tmp_sampled_edge_list.push_back(-1);
        else
          tmp_sampled_edge_list.push_back(eid_list[src - src_list]);
546
      }
Da Zheng's avatar
Da Zheng committed
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
      CHECK_EQ(tmp_sampled_src_list.size(), tmp_sampled_edge_list.size());
      neigh_pos.emplace_back(dst_id, neighbor_list.size(), tmp_sampled_src_list.size());
      // Then push the vertices
      for (size_t i = 0; i < tmp_sampled_src_list.size(); ++i) {
        neighbor_list.push_back(tmp_sampled_src_list[i]);
      }
      // Finally we push the edge list
      for (size_t i = 0; i < tmp_sampled_edge_list.size(); ++i) {
        edge_list.push_back(tmp_sampled_edge_list[i]);
      }
      num_edges += tmp_sampled_src_list.size();
      for (size_t i = 0; i < tmp_sampled_src_list.size(); ++i) {
        // We need to add the neighbor in the hashtable here. This ensures that
        // the vertex in the queue is unique. If we see a vertex before, we don't
        // need to add it to the queue again.
        auto ret = sub_ver_map.insert(tmp_sampled_src_list[i]);
        // If the sampled neighbor is inserted to the map successfully.
        if (ret.second) {
          sub_vers.emplace_back(tmp_sampled_src_list[i], cur_node_level + 1);
        }
      }
    }
    layer_offsets[layer_id + 1] = layer_offsets[layer_id] + sub_ver_map.size();
    CHECK_EQ(layer_offsets[layer_id + 1], sub_vers.size());
  }

  return ConstructNodeFlow(neighbor_list, edge_list, layer_offsets, &sub_vers, &neigh_pos,
                           edge_type, num_edges, num_hops, graph->IsMultigraph());
}

577
}  // namespace
Da Zheng's avatar
Da Zheng committed
578

579
580
DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetGraph")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
581
582
    NodeFlow nflow = args[0];
    *rv = nflow->graph;
583
584
585
586
  });

DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetNodeMapping")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
587
    NodeFlow nflow = args[0];
588
589
590
591
592
    *rv = nflow->node_mapping;
  });

DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetEdgeMapping")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
593
    NodeFlow nflow = args[0];
594
595
596
597
598
    *rv = nflow->edge_mapping;
  });

DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetLayerOffsets")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
599
    NodeFlow nflow = args[0];
600
601
602
603
604
    *rv = nflow->layer_offsets;
  });

DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetBlockOffsets")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
605
    NodeFlow nflow = args[0];
606
607
608
    *rv = nflow->flow_offsets;
  });

609
610
611
612
613
614
615
template<typename ValueType>
NodeFlow SamplerOp::NeighborSample(const ImmutableGraph *graph,
                                   const std::vector<dgl_id_t>& seeds,
                                   const std::string &edge_type,
                                   int num_hops, int expand_factor,
                                   const bool add_self_loop,
                                   const ValueType *probability) {
Da Zheng's avatar
Da Zheng committed
616
  return SampleSubgraph(graph,
617
618
                        seeds,
                        probability,
Da Zheng's avatar
Da Zheng committed
619
620
                        edge_type,
                        num_hops + 1,
621
622
                        expand_factor,
                        add_self_loop);
Da Zheng's avatar
Da Zheng committed
623
624
}

625
namespace {
626
  void ConstructLayers(const dgl_id_t *indptr,
627
                       const dgl_id_t *indices,
628
629
                       const std::vector<dgl_id_t>& seed_array,
                       IdArray layer_sizes,
630
631
632
633
634
635
636
637
638
                       std::vector<dgl_id_t> *layer_offsets,
                       std::vector<dgl_id_t> *node_mapping,
                       std::vector<int64_t> *actl_layer_sizes,
                       std::vector<float> *probabilities) {
    /*
     * Given a graph and a collection of seed nodes, this function constructs NodeFlow
     * layers via uniform layer-wise sampling, and return the resultant layers and their
     * corresponding probabilities.
     */
639
    std::copy(seed_array.begin(), seed_array.end(), std::back_inserter(*node_mapping));
640
641
    actl_layer_sizes->push_back(node_mapping->size());
    probabilities->insert(probabilities->end(), node_mapping->size(), 1);
642
643
    const int64_t* layer_sizes_data = static_cast<int64_t*>(layer_sizes->data);
    const int64_t num_layers = layer_sizes->shape[0];
644
645
646

    size_t curr = 0;
    size_t next = node_mapping->size();
647
648
    for (int64_t i = num_layers - 1; i >= 0; --i) {
      const int64_t layer_size = layer_sizes_data[i];
649
650
651
652
653
654
655
656
657
658
659
660
      std::unordered_set<dgl_id_t> candidate_set;
      for (auto j = curr; j != next; ++j) {
        auto src = (*node_mapping)[j];
        candidate_set.insert(indices + indptr[src], indices + indptr[src + 1]);
      }

      std::vector<dgl_id_t> candidate_vector;
      std::copy(candidate_set.begin(), candidate_set.end(),
                std::back_inserter(candidate_vector));

      std::unordered_map<dgl_id_t, size_t> n_occurrences;
      auto n_candidates = candidate_vector.size();
661
      for (int64_t j = 0; j != layer_size; ++j) {
662
663
        auto dst = candidate_vector[
          RandomEngine::ThreadLocal()->RandInt(n_candidates)];
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
        if (!n_occurrences.insert(std::make_pair(dst, 1)).second) {
          ++n_occurrences[dst];
        }
      }

      for (auto const &pair : n_occurrences) {
        node_mapping->push_back(pair.first);
        float p = pair.second * n_candidates / static_cast<float>(layer_size);
        probabilities->push_back(p);
      }

      actl_layer_sizes->push_back(node_mapping->size() - next);
      curr = next;
      next = node_mapping->size();
    }
    std::reverse(node_mapping->begin(), node_mapping->end());
    std::reverse(actl_layer_sizes->begin(), actl_layer_sizes->end());
    layer_offsets->push_back(0);
    for (const auto &size : *actl_layer_sizes) {
      layer_offsets->push_back(size + layer_offsets->back());
    }
  }

687
  void ConstructFlows(const dgl_id_t *indptr,
688
689
690
691
                      const dgl_id_t *indices,
                      const dgl_id_t *eids,
                      const std::vector<dgl_id_t> &node_mapping,
                      const std::vector<int64_t> &actl_layer_sizes,
692
693
694
                      std::vector<dgl_id_t> *sub_indptr,
                      std::vector<dgl_id_t> *sub_indices,
                      std::vector<dgl_id_t> *sub_eids,
695
696
697
698
699
700
701
                      std::vector<dgl_id_t> *flow_offsets,
                      std::vector<dgl_id_t> *edge_mapping) {
    /*
     * Given a graph and a sequence of NodeFlow layers, this function constructs dense
     * subgraphs (flows) between consecutive layers.
     */
    auto n_flows = actl_layer_sizes.size() - 1;
702
703
    for (int64_t i = 0; i < actl_layer_sizes.front() + 1; i++)
      sub_indptr->push_back(0);
704
705
706
707
708
709
710
711
712
713
714
715
716
    flow_offsets->push_back(0);
    int64_t first = 0;
    for (size_t i = 0; i < n_flows; ++i) {
      auto src_size = actl_layer_sizes[i];
      std::unordered_map<dgl_id_t, dgl_id_t> source_map;
      for (int64_t j = 0; j < src_size; ++j) {
        source_map.insert(std::make_pair(node_mapping[first + j], first + j));
      }
      auto dst_size = actl_layer_sizes[i + 1];
      for (int64_t j = 0; j < dst_size; ++j) {
        auto dst = node_mapping[first + src_size + j];
        typedef std::pair<dgl_id_t, dgl_id_t> id_pair;
        std::vector<id_pair> neighbor_indices;
717
        for (dgl_id_t k = indptr[dst]; k < indptr[dst + 1]; ++k) {
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
          // TODO(gaiyu): accelerate hash table lookup
          auto ret = source_map.find(indices[k]);
          if (ret != source_map.end()) {
            neighbor_indices.push_back(std::make_pair(ret->second, eids[k]));
          }
        }
        auto cmp = [](const id_pair p, const id_pair q)->bool { return p.first < q.first; };
        std::sort(neighbor_indices.begin(), neighbor_indices.end(), cmp);
        for (const auto &pair : neighbor_indices) {
          sub_indices->push_back(pair.first);
          edge_mapping->push_back(pair.second);
        }
        sub_indptr->push_back(sub_indices->size());
      }
      flow_offsets->push_back(sub_indices->size());
      first += src_size;
    }
    sub_eids->resize(sub_indices->size());
    std::iota(sub_eids->begin(), sub_eids->end(), 0);
  }
}  // namespace

NodeFlow SamplerOp::LayerUniformSample(const ImmutableGraph *graph,
741
                                       const std::vector<dgl_id_t>& seeds,
742
                                       const std::string &neighbor_type,
743
                                       IdArray layer_sizes) {
744
  const auto g_csr = neighbor_type == "in" ? graph->GetInCSR() : graph->GetOutCSR();
745
746
747
  const dgl_id_t *indptr = static_cast<dgl_id_t*>(g_csr->indptr()->data);
  const dgl_id_t *indices = static_cast<dgl_id_t*>(g_csr->indices()->data);
  const dgl_id_t *eids = static_cast<dgl_id_t*>(g_csr->edge_ids()->data);
748
749
750
751
752
753
754

  std::vector<dgl_id_t> layer_offsets;
  std::vector<dgl_id_t> node_mapping;
  std::vector<int64_t> actl_layer_sizes;
  std::vector<float> probabilities;
  ConstructLayers(indptr,
                  indices,
755
                  seeds,
756
757
758
759
760
761
                  layer_sizes,
                  &layer_offsets,
                  &node_mapping,
                  &actl_layer_sizes,
                  &probabilities);

762
  std::vector<dgl_id_t> sub_indptr, sub_indices, sub_edge_ids;
763
764
765
766
767
768
769
  std::vector<dgl_id_t> flow_offsets;
  std::vector<dgl_id_t> edge_mapping;
  ConstructFlows(indptr,
                 indices,
                 eids,
                 node_mapping,
                 actl_layer_sizes,
770
771
772
                 &sub_indptr,
                 &sub_indices,
                 &sub_edge_ids,
773
774
                 &flow_offsets,
                 &edge_mapping);
775
776
777
778
779
  // sanity check
  CHECK_GT(sub_indptr.size(), 0);
  CHECK_EQ(sub_indptr[0], 0);
  CHECK_EQ(sub_indptr.back(), sub_indices.size());
  CHECK_EQ(sub_indices.size(), sub_edge_ids.size());
780

781
  NodeFlow nf = NodeFlow::Create();
782
783
784
  auto sub_csr = CSRPtr(new CSR(aten::VecToIdArray(sub_indptr),
                                aten::VecToIdArray(sub_indices),
                                aten::VecToIdArray(sub_edge_ids)));
785
786

  if (neighbor_type == std::string("in")) {
787
    nf->graph = GraphPtr(new ImmutableGraph(sub_csr, nullptr));
788
  } else {
789
    nf->graph = GraphPtr(new ImmutableGraph(nullptr, sub_csr));
790
791
  }

792
793
794
795
  nf->node_mapping = aten::VecToIdArray(node_mapping);
  nf->edge_mapping = aten::VecToIdArray(edge_mapping);
  nf->layer_offsets = aten::VecToIdArray(layer_offsets);
  nf->flow_offsets = aten::VecToIdArray(flow_offsets);
796
797
798
799

  return nf;
}

Da Zheng's avatar
Da Zheng committed
800
801
802
803
804
805
806
807
808
809
810
811
void BuildCsr(const ImmutableGraph &g, const std::string neigh_type) {
  if (neigh_type == "in") {
    auto csr = g.GetInCSR();
    assert(csr);
  } else if (neigh_type == "out") {
    auto csr = g.GetOutCSR();
    assert(csr);
  } else {
    LOG(FATAL) << "We don't support sample from neighbor type " << neigh_type;
  }
}

812
813
814
815
816
817
818
819
820
821
822
template<typename ValueType>
std::vector<NodeFlow> NeighborSamplingImpl(const ImmutableGraphPtr gptr,
                                           const IdArray seed_nodes,
                                           const int64_t batch_start_id,
                                           const int64_t batch_size,
                                           const int64_t max_num_workers,
                                           const int64_t expand_factor,
                                           const int64_t num_hops,
                                           const std::string neigh_type,
                                           const bool add_self_loop,
                                           const ValueType *probability) {
823
    // process args
824
    CHECK(aten::IsValidIdArray(seed_nodes));
825
826
827
828
    const dgl_id_t* seed_nodes_data = static_cast<dgl_id_t*>(seed_nodes->data);
    const int64_t num_seeds = seed_nodes->shape[0];
    const int64_t num_workers = std::min(max_num_workers,
        (num_seeds + batch_size - 1) / batch_size - batch_start_id);
Da Zheng's avatar
Da Zheng committed
829
830
    // We need to make sure we have the right CSR before we enter parallel sampling.
    BuildCsr(*gptr, neigh_type);
831
    // generate node flows
832
    std::vector<NodeFlow> nflows(num_workers);
833
834
835
836
837
838
839
840
841
#pragma omp parallel for
    for (int i = 0; i < num_workers; i++) {
      // create per-worker seed nodes.
      const int64_t start = (batch_start_id + i) * batch_size;
      const int64_t end = std::min(start + batch_size, num_seeds);
      // TODO(minjie): the vector allocation/copy is unnecessary
      std::vector<dgl_id_t> worker_seeds(end - start);
      std::copy(seed_nodes_data + start, seed_nodes_data + end,
                worker_seeds.begin());
842
843
844
      nflows[i] = SamplerOp::NeighborSample(
          gptr.get(), worker_seeds, neigh_type, num_hops, expand_factor,
          add_self_loop, probability);
845
    }
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
    return nflows;
}

DGL_REGISTER_GLOBAL("sampling._CAPI_UniformSampling")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    // arguments
    const GraphRef g = args[0];
    const IdArray seed_nodes = args[1];
    const int64_t batch_start_id = args[2];
    const int64_t batch_size = args[3];
    const int64_t max_num_workers = args[4];
    const int64_t expand_factor = args[5];
    const int64_t num_hops = args[6];
    const std::string neigh_type = args[7];
    const bool add_self_loop = args[8];

    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
    CHECK(gptr) << "sampling isn't implemented in mutable graph";

    std::vector<NodeFlow> nflows = NeighborSamplingImpl<float>(
        gptr, seed_nodes, batch_start_id, batch_size, max_num_workers,
        expand_factor, num_hops, neigh_type, add_self_loop, nullptr);

    *rv = List<NodeFlow>(nflows);
  });

DGL_REGISTER_GLOBAL("sampling._CAPI_NeighborSampling")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    // arguments
    const GraphRef g = args[0];
    const IdArray seed_nodes = args[1];
    const int64_t batch_start_id = args[2];
    const int64_t batch_size = args[3];
    const int64_t max_num_workers = args[4];
    const int64_t expand_factor = args[5];
    const int64_t num_hops = args[6];
    const std::string neigh_type = args[7];
    const bool add_self_loop = args[8];
    const NDArray probability = args[9];

    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
    CHECK(gptr) << "sampling isn't implemented in mutable graph";

    std::vector<NodeFlow> nflows;

    CHECK(probability->dtype.code == kDLFloat)
      << "transition probability must be float";
    CHECK(probability->ndim == 1)
      << "transition probability must be a 1-dimensional vector";

    ATEN_FLOAT_TYPE_SWITCH(
      probability->dtype,
      FloatType,
      "transition probability",
      {
        const FloatType *prob;

        if (probability->ndim == 1 && probability->shape[0] == 0) {
          prob = nullptr;
        } else {
          CHECK(probability->shape[0] == gptr->NumEdges())
            << "transition probability must have same number of elements as edges";
          CHECK(probability.IsContiguous())
            << "transition probability must be contiguous tensor";
          prob = static_cast<const FloatType *>(probability->data);
        }

        nflows = NeighborSamplingImpl(
            gptr, seed_nodes, batch_start_id, batch_size, max_num_workers,
            expand_factor, num_hops, neigh_type, add_self_loop, prob);
    });

918
    *rv = List<NodeFlow>(nflows);
919
920
921
922
923
  });

DGL_REGISTER_GLOBAL("sampling._CAPI_LayerSampling")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    // arguments
924
    GraphRef g = args[0];
925
    const IdArray seed_nodes = args[1];
926
927
928
    const int64_t batch_start_id = args[2];
    const int64_t batch_size = args[3];
    const int64_t max_num_workers = args[4];
929
    const IdArray layer_sizes = args[5];
930
931
    const std::string neigh_type = args[6];
    // process args
932
    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
933
    CHECK(gptr) << "sampling isn't implemented in mutable graph";
934
    CHECK(aten::IsValidIdArray(seed_nodes));
935
936
937
938
    const dgl_id_t* seed_nodes_data = static_cast<dgl_id_t*>(seed_nodes->data);
    const int64_t num_seeds = seed_nodes->shape[0];
    const int64_t num_workers = std::min(max_num_workers,
        (num_seeds + batch_size - 1) / batch_size - batch_start_id);
Da Zheng's avatar
Da Zheng committed
939
940
    // We need to make sure we have the right CSR before we enter parallel sampling.
    BuildCsr(*gptr, neigh_type);
941
    // generate node flows
942
    std::vector<NodeFlow> nflows(num_workers);
943
944
945
946
947
948
949
950
951
#pragma omp parallel for
    for (int i = 0; i < num_workers; i++) {
      // create per-worker seed nodes.
      const int64_t start = (batch_start_id + i) * batch_size;
      const int64_t end = std::min(start + batch_size, num_seeds);
      // TODO(minjie): the vector allocation/copy is unnecessary
      std::vector<dgl_id_t> worker_seeds(end - start);
      std::copy(seed_nodes_data + start, seed_nodes_data + end,
                worker_seeds.begin());
952
953
      nflows[i] = SamplerOp::LayerUniformSample(
          gptr.get(), worker_seeds, neigh_type, layer_sizes);
954
    }
955
    *rv = List<NodeFlow>(nflows);
956
957
  });

958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
namespace {

void BuildCoo(const ImmutableGraph &g) {
  auto coo = g.GetCOO();
  assert(coo);
}


dgl_id_t global2local_map(dgl_id_t global_id,
                          std::unordered_map<dgl_id_t, dgl_id_t> *map) {
  auto it = map->find(global_id);
  if (it == map->end()) {
    dgl_id_t local_id = map->size();
    map->insert(std::pair<dgl_id_t, dgl_id_t>(global_id, local_id));
    return local_id;
  } else {
    return it->second;
  }
}

Da Zheng's avatar
Da Zheng committed
978
inline bool IsNegativeHeadMode(const std::string &mode) {
979
980
981
  return mode == "head";
}

982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
IdArray GetGlobalVid(IdArray induced_nid, IdArray subg_nid) {
  IdArray gnid = IdArray::Empty({subg_nid->shape[0]}, subg_nid->dtype, subg_nid->ctx);
  const dgl_id_t *induced_nid_data = static_cast<dgl_id_t *>(induced_nid->data);
  const dgl_id_t *subg_nid_data = static_cast<dgl_id_t *>(subg_nid->data);
  dgl_id_t *gnid_data = static_cast<dgl_id_t *>(gnid->data);
  for (int64_t i = 0; i < subg_nid->shape[0]; i++) {
    gnid_data[i] = induced_nid_data[subg_nid_data[i]];
  }
  return gnid;
}

IdArray CheckExistence(GraphPtr gptr, IdArray neg_src, IdArray neg_dst,
                       IdArray induced_nid) {
  return gptr->HasEdgesBetween(GetGlobalVid(induced_nid, neg_src),
                               GetGlobalVid(induced_nid, neg_dst));
}

IdArray CheckExistence(GraphPtr gptr, IdArray relations,
                       IdArray neg_src, IdArray neg_dst,
                       IdArray induced_nid, IdArray neg_eid) {
  neg_src = GetGlobalVid(induced_nid, neg_src);
  neg_dst = GetGlobalVid(induced_nid, neg_dst);
  BoolArray exist = gptr->HasEdgesBetween(neg_src, neg_dst);
  dgl_id_t *neg_dst_data = static_cast<dgl_id_t *>(neg_dst->data);
  dgl_id_t *neg_src_data = static_cast<dgl_id_t *>(neg_src->data);
  dgl_id_t *neg_eid_data = static_cast<dgl_id_t *>(neg_eid->data);
  dgl_id_t *relation_data = static_cast<dgl_id_t *>(relations->data);
  // TODO(zhengda) is this right?
  dgl_id_t *exist_data = static_cast<dgl_id_t *>(exist->data);
  int64_t num_neg_edges = neg_src->shape[0];
  for (int64_t i = 0; i < num_neg_edges; i++) {
    // If the edge doesn't exist, we don't need to do anything.
    if (!exist_data[i])
      continue;
    // If the edge exists, we need to double check if the relations match.
    // If they match, this negative edge isn't really a negative edge.
    dgl_id_t eid1 = neg_eid_data[i];
    dgl_id_t orig_neg_rel1 = relation_data[eid1];
    IdArray eids = gptr->EdgeId(neg_src_data[i], neg_dst_data[i]);
    dgl_id_t *eid_data = static_cast<dgl_id_t *>(eids->data);
    int64_t num_edges_between = eids->shape[0];
    bool same_rel = false;
    for (int64_t j = 0; j < num_edges_between; j++) {
      dgl_id_t neg_rel1 = relation_data[eid_data[j]];
      if (neg_rel1 == orig_neg_rel1) {
        same_rel = true;
        break;
      }
    }
    exist_data[i] = same_rel;
  }
  return exist;
}

Da Zheng's avatar
Da Zheng committed
1036
std::vector<dgl_id_t> Global2Local(const std::vector<size_t> &ids,
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
                                   const std::unordered_map<dgl_id_t, dgl_id_t> &map) {
  std::vector<dgl_id_t> local_ids(ids.size());
  for (size_t i = 0; i < ids.size(); i++) {
    auto it = map.find(ids[i]);
    assert(it != map.end());
    local_ids[i] = it->second;
  }
  return local_ids;
}

1047
1048
1049
1050
1051
1052
NegSubgraph EdgeSamplerObject::genNegEdgeSubgraph(const Subgraph &pos_subg,
                                                  const std::string &neg_mode,
                                                  int64_t neg_sample_size,
                                                  bool exclude_positive,
                                                  bool check_false_neg) {
  int64_t num_tot_nodes = gptr_->NumVertices();
Da Zheng's avatar
Da Zheng committed
1053
1054
  if (neg_sample_size > num_tot_nodes)
    neg_sample_size = num_tot_nodes;
1055
  bool is_multigraph = gptr_->IsMultigraph();
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
  std::vector<IdArray> adj = pos_subg.graph->GetAdj(false, "coo");
  IdArray coo = adj[0];
  int64_t num_pos_edges = coo->shape[0] / 2;
  int64_t num_neg_edges = num_pos_edges * neg_sample_size;
  IdArray neg_dst = IdArray::Empty({num_neg_edges}, coo->dtype, coo->ctx);
  IdArray neg_src = IdArray::Empty({num_neg_edges}, coo->dtype, coo->ctx);
  IdArray neg_eid = IdArray::Empty({num_neg_edges}, coo->dtype, coo->ctx);
  IdArray induced_neg_eid = IdArray::Empty({num_neg_edges}, coo->dtype, coo->ctx);

  // These are vids in the positive subgraph.
  const dgl_id_t *dst_data = static_cast<const dgl_id_t *>(coo->data);
  const dgl_id_t *src_data = static_cast<const dgl_id_t *>(coo->data) + num_pos_edges;
1068
1069
1070
1071
  const dgl_id_t *induced_vid_data =
      static_cast<const dgl_id_t *>(pos_subg.induced_vertices->data);
  const dgl_id_t *induced_eid_data =
      static_cast<const dgl_id_t *>(pos_subg.induced_edges->data);
1072
1073
1074
1075
1076
1077
1078
1079
  size_t num_pos_nodes = pos_subg.graph->NumVertices();
  std::vector<size_t> pos_nodes(induced_vid_data, induced_vid_data + num_pos_nodes);

  dgl_id_t *neg_dst_data = static_cast<dgl_id_t *>(neg_dst->data);
  dgl_id_t *neg_src_data = static_cast<dgl_id_t *>(neg_src->data);
  dgl_id_t *neg_eid_data = static_cast<dgl_id_t *>(neg_eid->data);
  dgl_id_t *induced_neg_eid_data = static_cast<dgl_id_t *>(induced_neg_eid->data);

Da Zheng's avatar
Da Zheng committed
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
  const dgl_id_t *unchanged;
  dgl_id_t *neg_unchanged;
  dgl_id_t *neg_changed;
  if (IsNegativeHeadMode(neg_mode)) {
    unchanged = dst_data;
    neg_unchanged = neg_dst_data;
    neg_changed = neg_src_data;
  } else {
    unchanged = src_data;
    neg_unchanged = neg_src_data;
    neg_changed = neg_dst_data;
  }

1093
1094
1095
1096
  std::unordered_map<dgl_id_t, dgl_id_t> neg_map;
  std::vector<dgl_id_t> local_pos_vids;
  local_pos_vids.reserve(num_pos_edges);

1097
1098
1099
  dgl_id_t curr_eid = 0;
  std::vector<size_t> neg_vids;
  neg_vids.reserve(neg_sample_size);
Da Zheng's avatar
Da Zheng committed
1100
1101
1102
1103
1104
1105
1106
1107
  // If we don't exclude positive edges, we are actually sampling more than
  // the total number of nodes in the graph.
  if (!exclude_positive && neg_sample_size >= num_tot_nodes) {
    // We add all nodes as negative nodes.
    for (int64_t i = 0; i < num_tot_nodes; i++) {
      neg_vids.push_back(i);
      neg_map[i] = i;
    }
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128

    // Get all nodes in the positive side.
    for (int64_t i = 0; i < num_pos_edges; i++) {
      dgl_id_t vid = induced_vid_data[unchanged[i]];
      local_pos_vids.push_back(neg_map[vid]);
    }
    // There is no guarantee that the nodes in the vector are unique.
    std::sort(local_pos_vids.begin(), local_pos_vids.end());
    auto it = std::unique(local_pos_vids.begin(), local_pos_vids.end());
    local_pos_vids.resize(it - local_pos_vids.begin());
  } else {
    // Collect nodes in the positive side.
    dgl_id_t local_vid = 0;
    for (int64_t i = 0; i < num_pos_edges; i++) {
      dgl_id_t vid = induced_vid_data[unchanged[i]];
      auto it = neg_map.find(vid);
      if (it == neg_map.end()) {
        local_pos_vids.push_back(local_vid);
        neg_map.insert(std::pair<dgl_id_t, dgl_id_t>(vid, local_vid++));
      }
    }
Da Zheng's avatar
Da Zheng committed
1129
1130
  }

1131
  int64_t prev_neg_offset = 0;
1132
1133
1134
1135
1136
  for (int64_t i = 0; i < num_pos_edges; i++) {
    size_t neg_idx = i * neg_sample_size;

    std::vector<size_t> neighbors;
    DGLIdIters neigh_it;
Da Zheng's avatar
Da Zheng committed
1137
    if (IsNegativeHeadMode(neg_mode)) {
1138
      neigh_it = gptr_->PredVec(induced_vid_data[unchanged[i]]);
1139
    } else {
1140
      neigh_it = gptr_->SuccVec(induced_vid_data[unchanged[i]]);
1141
1142
    }

Da Zheng's avatar
Da Zheng committed
1143
1144
1145
    // If the number of negative nodes is smaller than the number of total nodes
    // in the graph.
    if (exclude_positive && neg_sample_size < num_tot_nodes) {
1146
1147
      std::vector<size_t> exclude;
      for (auto it = neigh_it.begin(); it != neigh_it.end(); it++) {
1148
1149
        dgl_id_t global_vid = *it;
        exclude.push_back(global_vid);
1150
      }
1151
      prev_neg_offset = neg_vids.size();
1152
      randomSample(num_tot_nodes, neg_sample_size, exclude, &neg_vids);
1153
      assert(prev_neg_offset + neg_sample_size == neg_vids.size());
Da Zheng's avatar
Da Zheng committed
1154
    } else if (neg_sample_size < num_tot_nodes) {
1155
      prev_neg_offset = neg_vids.size();
1156
      randomSample(num_tot_nodes, neg_sample_size, &neg_vids);
1157
      assert(prev_neg_offset + neg_sample_size == neg_vids.size());
Da Zheng's avatar
Da Zheng committed
1158
    } else if (exclude_positive) {
1159
1160
      LOG(FATAL) << "We can't exclude positive edges"
                    "when sampling negative edges with all nodes.";
Da Zheng's avatar
Da Zheng committed
1161
1162
1163
1164
1165
    } else {
      // We don't need to do anything here.
      // In this case, every edge has the same negative edges. That is,
      // neg_vids contains all nodes of the graph. They have been generated
      // before the for loop.
1166
1167
1168
1169
1170
1171
1172
1173
    }

    dgl_id_t global_unchanged = induced_vid_data[unchanged[i]];
    dgl_id_t local_unchanged = global2local_map(global_unchanged, &neg_map);

    for (int64_t j = 0; j < neg_sample_size; j++) {
      neg_unchanged[neg_idx + j] = local_unchanged;
      neg_eid_data[neg_idx + j] = curr_eid++;
1174
      dgl_id_t local_changed = global2local_map(neg_vids[j + prev_neg_offset], &neg_map);
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
      neg_changed[neg_idx + j] = local_changed;
      // induced negative eid references to the positive one.
      induced_neg_eid_data[neg_idx + j] = induced_eid_data[i];
    }
  }

  // Now we know the number of vertices in the negative graph.
  int64_t num_neg_nodes = neg_map.size();
  IdArray induced_neg_vid = IdArray::Empty({num_neg_nodes}, coo->dtype, coo->ctx);
  dgl_id_t *induced_neg_vid_data = static_cast<dgl_id_t *>(induced_neg_vid->data);
  for (auto it = neg_map.begin(); it != neg_map.end(); it++) {
    induced_neg_vid_data[it->second] = it->first;
  }

1189
  NegSubgraph neg_subg;
1190
1191
1192
1193
1194
1195
  // We sample negative vertices without replacement.
  // There shouldn't be duplicated edges.
  COOPtr neg_coo(new COO(num_neg_nodes, neg_src, neg_dst, is_multigraph));
  neg_subg.graph = GraphPtr(new ImmutableGraph(neg_coo));
  neg_subg.induced_vertices = induced_neg_vid;
  neg_subg.induced_edges = induced_neg_eid;
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
  // If we didn't sample all nodes to form negative edges, some of the nodes
  // in the vector might be redundant.
  if (neg_sample_size < num_tot_nodes) {
    std::sort(neg_vids.begin(), neg_vids.end());
    auto it = std::unique(neg_vids.begin(), neg_vids.end());
    neg_vids.resize(it - neg_vids.begin());
  }
  if (IsNegativeHeadMode(neg_mode)) {
    neg_subg.head_nid = aten::VecToIdArray(Global2Local(neg_vids, neg_map));
    neg_subg.tail_nid = aten::VecToIdArray(local_pos_vids);
  } else {
    neg_subg.head_nid = aten::VecToIdArray(local_pos_vids);
    neg_subg.tail_nid = aten::VecToIdArray(Global2Local(neg_vids, neg_map));
  }
1210
  // TODO(zhengda) we should provide an array of 1s if exclude_positive
Da Zheng's avatar
Da Zheng committed
1211
  if (check_false_neg) {
1212
1213
    if (relations_->shape[0] == 0) {
      neg_subg.exist = CheckExistence(gptr_, neg_src, neg_dst, induced_neg_vid);
Da Zheng's avatar
Da Zheng committed
1214
    } else {
1215
      neg_subg.exist = CheckExistence(gptr_, relations_, neg_src, neg_dst,
Da Zheng's avatar
Da Zheng committed
1216
1217
                                      induced_neg_vid, induced_neg_eid);
    }
1218
  }
1219
1220
1221
  return neg_subg;
}

1222
1223
1224
1225
1226
1227
NegSubgraph EdgeSamplerObject::genPBGNegEdgeSubgraph(const Subgraph &pos_subg,
                                                     const std::string &neg_mode,
                                                     int64_t neg_sample_size,
                                                     bool exclude_positive,
                                                     bool check_false_neg) {
  int64_t num_tot_nodes = gptr_->NumVertices();
1228
1229
1230
  std::vector<IdArray> adj = pos_subg.graph->GetAdj(false, "coo");
  IdArray coo = adj[0];
  int64_t num_pos_edges = coo->shape[0] / 2;
Da Zheng's avatar
Da Zheng committed
1231
1232
  if (neg_sample_size > num_tot_nodes)
    neg_sample_size = num_tot_nodes;
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258

  int64_t chunk_size = neg_sample_size;
  // If num_pos_edges isn't divisible by chunk_size, the actual number of chunks
  // is num_chunks + 1 and the last chunk size is last_chunk_size.
  // Otherwise, the actual number of chunks is num_chunks, the last chunk size
  // is 0.
  int64_t num_chunks = num_pos_edges / chunk_size;
  int64_t last_chunk_size = num_pos_edges - num_chunks * chunk_size;

  // The number of negative edges.
  int64_t num_neg_edges = neg_sample_size * chunk_size * num_chunks;
  int64_t num_neg_edges_last_chunk = neg_sample_size * last_chunk_size;
  int64_t num_all_neg_edges = num_neg_edges + num_neg_edges_last_chunk;

  // We should include the last chunk.
  if (last_chunk_size > 0)
    num_chunks++;

  IdArray neg_dst = IdArray::Empty({num_all_neg_edges}, coo->dtype, coo->ctx);
  IdArray neg_src = IdArray::Empty({num_all_neg_edges}, coo->dtype, coo->ctx);
  IdArray neg_eid = IdArray::Empty({num_all_neg_edges}, coo->dtype, coo->ctx);
  IdArray induced_neg_eid = IdArray::Empty({num_all_neg_edges}, coo->dtype, coo->ctx);

  // These are vids in the positive subgraph.
  const dgl_id_t *dst_data = static_cast<const dgl_id_t *>(coo->data);
  const dgl_id_t *src_data = static_cast<const dgl_id_t *>(coo->data) + num_pos_edges;
1259
1260
1261
1262
1263
1264
  const dgl_id_t *induced_vid_data =
      static_cast<const dgl_id_t *>(pos_subg.induced_vertices->data);
  const dgl_id_t *induced_eid_data =
      static_cast<const dgl_id_t *>(pos_subg.induced_edges->data);
  int64_t num_pos_nodes = pos_subg.graph->NumVertices();
  std::vector<dgl_id_t> pos_nodes(induced_vid_data, induced_vid_data + num_pos_nodes);
1265
1266
1267
1268
1269
1270
1271
1272
1273

  dgl_id_t *neg_dst_data = static_cast<dgl_id_t *>(neg_dst->data);
  dgl_id_t *neg_src_data = static_cast<dgl_id_t *>(neg_src->data);
  dgl_id_t *neg_eid_data = static_cast<dgl_id_t *>(neg_eid->data);
  dgl_id_t *induced_neg_eid_data = static_cast<dgl_id_t *>(induced_neg_eid->data);

  const dgl_id_t *unchanged;
  dgl_id_t *neg_unchanged;
  dgl_id_t *neg_changed;
Da Zheng's avatar
Da Zheng committed
1274
  if (IsNegativeHeadMode(neg_mode)) {
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
    unchanged = dst_data;
    neg_unchanged = neg_dst_data;
    neg_changed = neg_src_data;
  } else {
    unchanged = src_data;
    neg_unchanged = neg_src_data;
    neg_changed = neg_dst_data;
  }

  // We first sample all negative edges.
  std::vector<size_t> neg_vids;
1286
  randomSample(num_tot_nodes,
1287
1288
1289
1290
1291
               num_chunks * neg_sample_size,
               &neg_vids);

  dgl_id_t curr_eid = 0;
  std::unordered_map<dgl_id_t, dgl_id_t> neg_map;
1292
  dgl_id_t local_vid = 0;
1293

1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
  // Collect nodes in the positive side.
  std::vector<dgl_id_t> local_pos_vids;
  local_pos_vids.reserve(num_pos_edges);
  for (int64_t i = 0; i < num_pos_edges; i++) {
    dgl_id_t vid = induced_vid_data[unchanged[i]];
    auto it = neg_map.find(vid);
    if (it == neg_map.end()) {
      local_pos_vids.push_back(local_vid);
      neg_map.insert(std::pair<dgl_id_t, dgl_id_t>(vid, local_vid++));
    }
  }

1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
  for (int64_t i_chunk = 0; i_chunk < num_chunks; i_chunk++) {
    // for each chunk.
    int64_t neg_idx = neg_sample_size * chunk_size * i_chunk;
    int64_t pos_edge_idx = chunk_size * i_chunk;
    int64_t neg_node_idx = neg_sample_size * i_chunk;
    // The actual chunk size. It'll be different for the last chunk.
    int64_t chunk_size1;
    if (i_chunk == num_chunks - 1 && last_chunk_size > 0)
      chunk_size1 = last_chunk_size;
    else
      chunk_size1 = chunk_size;

    for (int64_t in_chunk = 0; in_chunk != chunk_size1; ++in_chunk) {
      // For each positive node in a chunk.
      dgl_id_t global_unchanged = induced_vid_data[unchanged[pos_edge_idx + in_chunk]];
      dgl_id_t local_unchanged = global2local_map(global_unchanged, &neg_map);
      for (int64_t j = 0; j < neg_sample_size; ++j) {
        neg_unchanged[neg_idx] = local_unchanged;
        neg_eid_data[neg_idx] = curr_eid++;
        dgl_id_t global_changed_vid = neg_vids[neg_node_idx + j];

        // TODO(zhengda) we can avoid the hashtable lookup here.
        dgl_id_t local_changed = global2local_map(global_changed_vid, &neg_map);
        neg_changed[neg_idx] = local_changed;
        induced_neg_eid_data[neg_idx] = induced_eid_data[pos_edge_idx + in_chunk];
        neg_idx++;
      }
    }
  }

  // Now we know the number of vertices in the negative graph.
  int64_t num_neg_nodes = neg_map.size();
  IdArray induced_neg_vid = IdArray::Empty({num_neg_nodes}, coo->dtype, coo->ctx);
  dgl_id_t *induced_neg_vid_data = static_cast<dgl_id_t *>(induced_neg_vid->data);
  for (auto it = neg_map.begin(); it != neg_map.end(); it++) {
    induced_neg_vid_data[it->second] = it->first;
  }

1344
  NegSubgraph neg_subg;
1345
1346
  // We sample negative vertices without replacement.
  // There shouldn't be duplicated edges.
1347
  COOPtr neg_coo(new COO(num_neg_nodes, neg_src, neg_dst, gptr_->IsMultigraph()));
1348
1349
1350
  neg_subg.graph = GraphPtr(new ImmutableGraph(neg_coo));
  neg_subg.induced_vertices = induced_neg_vid;
  neg_subg.induced_edges = induced_neg_eid;
1351
1352
1353
1354
1355
1356
1357
  if (IsNegativeHeadMode(neg_mode)) {
    neg_subg.head_nid = aten::VecToIdArray(Global2Local(neg_vids, neg_map));
    neg_subg.tail_nid = aten::VecToIdArray(local_pos_vids);
  } else {
    neg_subg.head_nid = aten::VecToIdArray(local_pos_vids);
    neg_subg.tail_nid = aten::VecToIdArray(Global2Local(neg_vids, neg_map));
  }
Da Zheng's avatar
Da Zheng committed
1358
  if (check_false_neg) {
1359
1360
    if (relations_->shape[0] == 0) {
      neg_subg.exist = CheckExistence(gptr_, neg_src, neg_dst, induced_neg_vid);
Da Zheng's avatar
Da Zheng committed
1361
    } else {
1362
      neg_subg.exist = CheckExistence(gptr_, relations_, neg_src, neg_dst,
Da Zheng's avatar
Da Zheng committed
1363
1364
                                      induced_neg_vid, induced_neg_eid);
    }
1365
  }
1366
1367
1368
  return neg_subg;
}

1369
1370
1371
1372
inline SubgraphRef ConvertRef(const Subgraph &subg) {
    return SubgraphRef(std::shared_ptr<Subgraph>(new Subgraph(subg)));
}

1373
1374
1375
1376
inline SubgraphRef ConvertRef(const NegSubgraph &subg) {
    return SubgraphRef(std::shared_ptr<Subgraph>(new NegSubgraph(subg)));
}

1377
1378
}  // namespace

1379
DGL_REGISTER_GLOBAL("sampling._CAPI_GetNegEdgeExistence")
1380
.set_body([] (DGLArgs args, DGLRetValue* rv) {
1381
1382
1383
1384
  SubgraphRef g = args[0];
  auto gptr = std::dynamic_pointer_cast<NegSubgraph>(g.sptr());
  *rv = gptr->exist;
});
1385

1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
DGL_REGISTER_GLOBAL("sampling._CAPI_GetEdgeSubgraphHead")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
  SubgraphRef g = args[0];
  auto gptr = std::dynamic_pointer_cast<NegSubgraph>(g.sptr());
  *rv = gptr->head_nid;
});

DGL_REGISTER_GLOBAL("sampling._CAPI_GetEdgeSubgraphTail")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
  SubgraphRef g = args[0];
  auto gptr = std::dynamic_pointer_cast<NegSubgraph>(g.sptr());
  *rv = gptr->tail_nid;
});

class UniformEdgeSamplerObject: public EdgeSamplerObject {
public:
  explicit UniformEdgeSamplerObject(const GraphPtr gptr,
                                    IdArray seed_edges,
                                    const int64_t batch_size,
                                    const int64_t num_workers,
                                    const std::string neg_mode,
                                    const int64_t neg_sample_size,
                                    const bool exclude_positive,
                                    const bool check_false_neg,
                                    IdArray relations)
                                    : EdgeSamplerObject(gptr,
                                        seed_edges,
                                        batch_size,
                                        num_workers,
                                        neg_mode,
                                        neg_sample_size,
                                        exclude_positive,
                                        check_false_neg,
                                        relations) {
    batch_curr_id_ = 0;
    num_seeds_ = seed_edges->shape[0];
    max_batch_id_ = (num_seeds_ + batch_size - 1) / batch_size;
    // TODO(song): Tricky thing here to make sure gptr_ has coo cache
    gptr_->FindEdge(0);
  }
  ~UniformEdgeSamplerObject() {}

  void Fetch(DGLRetValue* rv) {
    const int64_t num_workers = std::min(num_workers_, max_batch_id_ - batch_curr_id_);
1430
1431
1432
    // generate subgraphs.
    std::vector<SubgraphRef> positive_subgs(num_workers);
    std::vector<SubgraphRef> negative_subgs(num_workers);
1433

1434
#pragma omp parallel for
1435
1436
1437
    for (int64_t i = 0; i < num_workers; i++) {
      const int64_t start = (batch_curr_id_ + i) * batch_size_;
      const int64_t end = std::min(start + batch_size_, num_seeds_);
1438
      const int64_t num_edges = end - start;
1439
      IdArray worker_seeds = seed_edges_.CreateView({num_edges}, DLDataType{kDLInt, 64, 1},
1440
                                                   sizeof(dgl_id_t) * start);
1441
      EdgeArray arr = gptr_->FindEdges(worker_seeds);
1442
1443
1444
1445
1446
1447
      const dgl_id_t *src_ids = static_cast<const dgl_id_t *>(arr.src->data);
      const dgl_id_t *dst_ids = static_cast<const dgl_id_t *>(arr.dst->data);
      std::vector<dgl_id_t> src_vec(src_ids, src_ids + num_edges);
      std::vector<dgl_id_t> dst_vec(dst_ids, dst_ids + num_edges);
      // TODO(zhengda) what if there are duplicates in the src and dst vectors.

1448
      Subgraph subg = gptr_->EdgeSubgraph(worker_seeds, false);
1449
      positive_subgs[i] = ConvertRef(subg);
1450
1451
      // For PBG negative sampling, we accept "PBG-head" for corrupting head
      // nodes and "PBG-tail" for corrupting tail nodes.
1452
1453
1454
1455
1456
      if (neg_mode_.substr(0, 3) == "PBG") {
        NegSubgraph neg_subg = genPBGNegEdgeSubgraph(subg, neg_mode_.substr(4),
                                                     neg_sample_size_,
                                                     exclude_positive_,
                                                     check_false_neg_);
1457
        negative_subgs[i] = ConvertRef(neg_subg);
1458
1459
1460
1461
1462
      } else if (neg_mode_.size() > 0) {
        NegSubgraph neg_subg = genNegEdgeSubgraph(subg, neg_mode_,
                                                  neg_sample_size_,
                                                  exclude_positive_,
                                                  check_false_neg_);
1463
1464
1465
        negative_subgs[i] = ConvertRef(neg_subg);
      }
    }
1466
    if (neg_mode_.size() > 0) {
1467
1468
      positive_subgs.insert(positive_subgs.end(), negative_subgs.begin(), negative_subgs.end());
    }
1469
1470
    batch_curr_id_ += num_workers;

1471
    *rv = List<SubgraphRef>(positive_subgs);
1472
  }
1473

1474
  DGL_DECLARE_OBJECT_TYPE_INFO(UniformEdgeSamplerObject, Object);
1475

1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
private:
  void randomSample(size_t set_size, size_t num, std::vector<size_t>* out) {
    RandomSample(set_size, num, out);
  }

  void randomSample(size_t set_size, size_t num, const std::vector<size_t> &exclude,
                    std::vector<size_t>* out) {
    RandomSample(set_size, num, exclude, out);
  }

  int64_t batch_curr_id_;
  int64_t max_batch_id_;
  int64_t num_seeds_;
};

class UniformEdgeSampler: public ObjectRef {
 public:
  UniformEdgeSampler() {}
  explicit UniformEdgeSampler(std::shared_ptr<runtime::Object> obj): ObjectRef(obj) {}

  UniformEdgeSamplerObject* operator->() const {
    return static_cast<UniformEdgeSamplerObject*>(obj_.get());
  }

  std::shared_ptr<UniformEdgeSamplerObject> sptr() const {
    return CHECK_NOTNULL(std::dynamic_pointer_cast<UniformEdgeSamplerObject>(obj_));
  }

  operator bool() const { return this->defined(); }
  using ContainerType = UniformEdgeSamplerObject;
};

DGL_REGISTER_GLOBAL("sampling._CAPI_CreateUniformEdgeSampler")
1509
.set_body([] (DGLArgs args, DGLRetValue* rv) {
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
    // arguments
    GraphRef g = args[0];
    IdArray seed_edges = args[1];
    const int64_t batch_size = args[2];
    const int64_t max_num_workers = args[3];
    const std::string neg_mode = args[4];
    const int neg_sample_size = args[5];
    const bool exclude_positive = args[6];
    const bool check_false_neg = args[7];
    IdArray relations = args[8];
    // process args
    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
    CHECK(gptr) << "sampling isn't implemented in mutable graph";
    CHECK(aten::IsValidIdArray(seed_edges));
    BuildCoo(*gptr);

    auto o = std::make_shared<UniformEdgeSamplerObject>(gptr,
                                                        seed_edges,
                                                        batch_size,
                                                        max_num_workers,
                                                        neg_mode,
                                                        neg_sample_size,
                                                        exclude_positive,
                                                        check_false_neg,
                                                        relations);
    *rv = o;
1536
1537
});

1538
DGL_REGISTER_GLOBAL("sampling._CAPI_FetchUniformEdgeSample")
1539
.set_body([] (DGLArgs args, DGLRetValue* rv) {
1540
1541
  UniformEdgeSampler sampler = args[0];
  sampler->Fetch(rv);
1542
1543
});

1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
template<typename ValueType>
class WeightedEdgeSamplerObject: public EdgeSamplerObject {
public:
  explicit WeightedEdgeSamplerObject(const GraphPtr gptr,
                                     IdArray seed_edges,
                                     NDArray edge_weight,
                                     NDArray node_weight,
                                     const int64_t batch_size,
                                     const int64_t num_workers,
                                     const std::string neg_mode,
                                     const int64_t neg_sample_size,
                                     const bool exclude_positive,
                                     const bool check_false_neg,
                                     IdArray relations)
                                     : EdgeSamplerObject(gptr,
                                        seed_edges,
                                        batch_size,
                                        num_workers,
                                        neg_mode,
                                        neg_sample_size,
                                        exclude_positive,
                                        check_false_neg,
                                        relations) {
    const size_t num_edges = edge_weight->shape[0];
    const ValueType *edge_prob = static_cast<const ValueType*>(edge_weight->data);
    std::vector<ValueType> eprob(num_edges);
    for (size_t i = 0; i < num_edges; ++i) {
      eprob[i] = edge_prob[i];
    }
    edge_selector_ = std::make_shared<ArrayHeap<ValueType>>(eprob);

    const size_t num_nodes = node_weight->shape[0];
    if (num_nodes == 0) {
      node_selector_ = nullptr;
    } else {
      const ValueType *node_prob = static_cast<const ValueType*>(node_weight->data);
      std::vector<ValueType> nprob(num_nodes);
      for (size_t i = 0; i < num_nodes; ++i) {
        nprob[i] = node_prob[i];
      }
      node_selector_ = std::make_shared<ArrayHeap<ValueType>>(nprob);
    }

    // TODO(song): Tricky thing here to make sure gptr_ has coo cache
    gptr_->FindEdge(0);
  }

  ~WeightedEdgeSamplerObject() {
  }

  void Fetch(DGLRetValue* rv) {
    // generate subgraphs.
    std::vector<SubgraphRef> positive_subgs(num_workers_);
    std::vector<SubgraphRef> negative_subgs(num_workers_);
#pragma omp parallel for
    for (int i = 0; i < num_workers_; i++) {
      const dgl_id_t *seed_edge_ids = static_cast<const dgl_id_t *>(seed_edges_->data);
      std::vector<int64_t> edge_ids(batch_size_);

      for (int i = 0; i < batch_size_; ++i) {
        int64_t edge_id = edge_selector_->Sample();
        edge_ids[i] = seed_edge_ids[edge_id];
      }
      auto worker_seeds = aten::VecToIdArray(edge_ids, seed_edges_->dtype.bits);

      EdgeArray arr = gptr_->FindEdges(worker_seeds);
      const dgl_id_t *src_ids = static_cast<const dgl_id_t *>(arr.src->data);
      const dgl_id_t *dst_ids = static_cast<const dgl_id_t *>(arr.dst->data);
      std::vector<dgl_id_t> src_vec(src_ids, src_ids + batch_size_);
      std::vector<dgl_id_t> dst_vec(dst_ids, dst_ids + batch_size_);
      // TODO(zhengda) what if there are duplicates in the src and dst vectors.

      Subgraph subg = gptr_->EdgeSubgraph(worker_seeds, false);
      positive_subgs[i] = ConvertRef(subg);
      // For PBG negative sampling, we accept "PBG-head" for corrupting head
      // nodes and "PBG-tail" for corrupting tail nodes.
      if (neg_mode_.substr(0, 3) == "PBG") {
        NegSubgraph neg_subg = genPBGNegEdgeSubgraph(subg, neg_mode_.substr(4),
                                                     neg_sample_size_,
                                                     exclude_positive_,
                                                     check_false_neg_);
        negative_subgs[i] = ConvertRef(neg_subg);
      } else if (neg_mode_.size() > 0) {
        NegSubgraph neg_subg = genNegEdgeSubgraph(subg, neg_mode_,
                                                  neg_sample_size_,
                                                  exclude_positive_,
                                                  check_false_neg_);
        negative_subgs[i] = ConvertRef(neg_subg);
      }
    }

    if (neg_mode_.size() > 0) {
      positive_subgs.insert(positive_subgs.end(), negative_subgs.begin(), negative_subgs.end());
    }

    *rv = List<SubgraphRef>(positive_subgs);
  }

  DGL_DECLARE_OBJECT_TYPE_INFO(WeightedEdgeSamplerObject<ValueType>, Object);

private:
  void randomSample(size_t set_size, size_t num, std::vector<size_t>* out) {
    if (num < set_size) {
      std::unordered_set<size_t> sampled_idxs;
      while (sampled_idxs.size() < num) {
        if (node_selector_ == nullptr) {
          sampled_idxs.insert(RandomEngine::ThreadLocal()->RandInt(set_size));
        } else {
          size_t id = node_selector_->Sample();
          sampled_idxs.insert(id);
        }
      }

      out->insert(out->end(), sampled_idxs.begin(), sampled_idxs.end());
    } else {
      // If we need to sample all elements in the set, we don't need to
      // generate random numbers.
      for (size_t i = 0; i < set_size; i++)
        out->push_back(i);
    }
  }

  void randomSample(size_t set_size, size_t num, const std::vector<size_t> &exclude,
                    std::vector<size_t>* out) {
    std::unordered_map<size_t, int> sampled_idxs;
    for (auto v : exclude) {
      sampled_idxs.insert(std::pair<size_t, int>(v, 0));
    }
    if (num + exclude.size() < set_size) {
      while (sampled_idxs.size() < num + exclude.size()) {
        size_t rand;
        if (node_selector_ == nullptr) {
          rand =  RandomEngine::ThreadLocal()->RandInt(set_size);
        } else {
          rand = node_selector_->Sample();
        }
        sampled_idxs.insert(std::pair<size_t, int>(rand, 1));
      }
      for (auto it = sampled_idxs.begin(); it != sampled_idxs.end(); it++) {
        if (it->second) {
          out->push_back(it->first);
        }
      }
    } else {
      // If we need to sample all elements in the set, we don't need to
      // generate random numbers.
      for (size_t i = 0; i < set_size; i++) {
        // If the element doesn't exist in exclude.
        if (sampled_idxs.find(i) == sampled_idxs.end()) {
          out->push_back(i);
        }
      }
    }
  }

private:
  std::shared_ptr<ArrayHeap<ValueType>> edge_selector_;
  std::shared_ptr<ArrayHeap<ValueType>> node_selector_;
};

template class WeightedEdgeSamplerObject<float>;

class FloatWeightedEdgeSampler: public ObjectRef {
 public:
  FloatWeightedEdgeSampler() {}
  explicit FloatWeightedEdgeSampler(std::shared_ptr<runtime::Object> obj): ObjectRef(obj) {}

  WeightedEdgeSamplerObject<float>* operator->() const {
    return static_cast<WeightedEdgeSamplerObject<float>*>(obj_.get());
  }

  std::shared_ptr<WeightedEdgeSamplerObject<float>> sptr() const {
    return CHECK_NOTNULL(std::dynamic_pointer_cast<WeightedEdgeSamplerObject<float>>(obj_));
  }

  operator bool() const { return this->defined(); }
  using ContainerType = WeightedEdgeSamplerObject<float>;
};

DGL_REGISTER_GLOBAL("sampling._CAPI_CreateWeightedEdgeSampler")
1724
.set_body([] (DGLArgs args, DGLRetValue* rv) {
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
    // arguments
    GraphRef g = args[0];
    IdArray seed_edges = args[1];
    NDArray edge_weight = args[2];
    NDArray node_weight = args[3];
    const int64_t batch_size = args[4];
    const int64_t max_num_workers = args[5];
    const std::string neg_mode = args[6];
    const int64_t neg_sample_size = args[7];
    const bool exclude_positive = args[8];
    const bool check_false_neg = args[9];
    IdArray relations = args[10];

    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
    CHECK(gptr) << "sampling isn't implemented in mutable graph";
    CHECK(aten::IsValidIdArray(seed_edges));
    CHECK(edge_weight->dtype.code == kDLFloat) << "edge_weight should be FloatType";
    CHECK(edge_weight->dtype.bits == 32) << "WeightedEdgeSampler only support float weight";
    if (node_weight->shape[0] > 0) {
      CHECK(node_weight->dtype.code == kDLFloat) << "node_weight should be FloatType";
      CHECK(node_weight->dtype.bits == 32) << "WeightedEdgeSampler only support float weight";
    }
    BuildCoo(*gptr);

    const int64_t num_seeds = seed_edges->shape[0];
    const int64_t num_workers = std::min(max_num_workers,
        (num_seeds + batch_size - 1) / batch_size);

    auto o = std::make_shared<WeightedEdgeSamplerObject<float>>(gptr,
                                                                seed_edges,
                                                                edge_weight,
                                                                node_weight,
                                                                batch_size,
                                                                num_workers,
                                                                neg_mode,
                                                                neg_sample_size,
                                                                exclude_positive,
                                                                check_false_neg,
                                                                relations);
    *rv = o;
});

DGL_REGISTER_GLOBAL("sampling._CAPI_FetchWeightedEdgeSample")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
  FloatWeightedEdgeSampler sampler = args[0];
  sampler->Fetch(rv);
1771
1772
});

Da Zheng's avatar
Da Zheng committed
1773
}  // namespace dgl