test_dist_graph_store.py 32.3 KB
Newer Older
1
2
3
4
5
6
import os
os.environ['OMP_NUM_THREADS'] = '1'
import dgl
import sys
import numpy as np
import time
7
import socket
8
9
10
11
from scipy import sparse as spsp
from numpy.testing import assert_array_equal
from multiprocessing import Process, Manager, Condition, Value
import multiprocessing as mp
12
from dgl.heterograph_index import create_unitgraph_from_coo
13
14
from dgl.data.utils import load_graphs, save_graphs
from dgl.distributed import DistGraphServer, DistGraph
15
from dgl.distributed import partition_graph, load_partition, load_partition_book, node_split, edge_split
16
from numpy.testing import assert_almost_equal
17
import backend as F
18
import math
19
20
import unittest
import pickle
21
from utils import reset_envs, generate_ip_config
22
import pytest
23

24
25
26
27
if os.name != 'nt':
    import fcntl
    import struct

28
def create_random_graph(n):
29
    arr = (spsp.random(n, n, density=0.001, format='coo', random_state=100) != 0).astype(np.int64)
30
    return dgl.from_scipy(arr)
31

32
def run_server(graph_name, server_id, server_count, num_clients, shared_mem, keep_alive=False):
33
    g = DistGraphServer(server_id, "kv_ip_config.txt", server_count, num_clients,
34
                        '/tmp/dist_graph/{}.json'.format(graph_name),
35
                        disable_shared_mem=not shared_mem,
36
                        graph_format=['csc', 'coo'], keep_alive=keep_alive)
37
38
39
    print('start server', server_id)
    g.start()

40
41
42
def emb_init(shape, dtype):
    return F.zeros(shape, dtype, F.cpu())

43
def rand_init(shape, dtype):
44
    return F.tensor(np.random.normal(size=shape), F.float32)
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
def check_dist_graph_empty(g, num_clients, num_nodes, num_edges):
    # Test API
    assert g.number_of_nodes() == num_nodes
    assert g.number_of_edges() == num_edges

    # Test init node data
    new_shape = (g.number_of_nodes(), 2)
    g.ndata['test1'] = dgl.distributed.DistTensor(new_shape, F.int32)
    nids = F.arange(0, int(g.number_of_nodes() / 2))
    feats = g.ndata['test1'][nids]
    assert np.all(F.asnumpy(feats) == 0)

    # create a tensor and destroy a tensor and create it again.
    test3 = dgl.distributed.DistTensor(new_shape, F.float32, 'test3', init_func=rand_init)
    del test3
    test3 = dgl.distributed.DistTensor((g.number_of_nodes(), 3), F.float32, 'test3')
    del test3

    # Test write data
    new_feats = F.ones((len(nids), 2), F.int32, F.cpu())
    g.ndata['test1'][nids] = new_feats
    feats = g.ndata['test1'][nids]
    assert np.all(F.asnumpy(feats) == 1)

    # Test metadata operations.
    assert g.node_attr_schemes()['test1'].dtype == F.int32

    print('end')

def run_client_empty(graph_name, part_id, server_count, num_clients, num_nodes, num_edges):
    os.environ['DGL_NUM_SERVER'] = str(server_count)
    dgl.distributed.initialize("kv_ip_config.txt")
    gpb, graph_name, _, _ = load_partition_book('/tmp/dist_graph/{}.json'.format(graph_name),
                                                part_id, None)
    g = DistGraph(graph_name, gpb=gpb)
    check_dist_graph_empty(g, num_clients, num_nodes, num_edges)

def check_server_client_empty(shared_mem, num_servers, num_clients):
84
    prepare_dist(num_servers)
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    g = create_random_graph(10000)

    # Partition the graph
    num_parts = 1
    graph_name = 'dist_graph_test_1'
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')

    # let's just test on one partition for now.
    # We cannot run multiple servers and clients on the same machine.
    serv_ps = []
    ctx = mp.get_context('spawn')
    for serv_id in range(num_servers):
        p = ctx.Process(target=run_server, args=(graph_name, serv_id, num_servers,
                                                 num_clients, shared_mem))
        serv_ps.append(p)
        p.start()

    cli_ps = []
    for cli_id in range(num_clients):
        print('start client', cli_id)
        p = ctx.Process(target=run_client_empty, args=(graph_name, 0, num_servers, num_clients,
                                                       g.number_of_nodes(), g.number_of_edges()))
        p.start()
        cli_ps.append(p)

    for p in cli_ps:
        p.join()

    for p in serv_ps:
        p.join()

    print('clients have terminated')

118
def run_client(graph_name, part_id, server_count, num_clients, num_nodes, num_edges, group_id):
119
    os.environ['DGL_NUM_SERVER'] = str(server_count)
120
    os.environ['DGL_GROUP_ID'] = str(group_id)
121
    dgl.distributed.initialize("kv_ip_config.txt")
122
123
    gpb, graph_name, _, _ = load_partition_book('/tmp/dist_graph/{}.json'.format(graph_name),
                                                part_id, None)
124
    g = DistGraph(graph_name, gpb=gpb)
125
    check_dist_graph(g, num_clients, num_nodes, num_edges)
126

127
def run_emb_client(graph_name, part_id, server_count, num_clients, num_nodes, num_edges, group_id):
128
    os.environ['DGL_NUM_SERVER'] = str(server_count)
129
    os.environ['DGL_GROUP_ID'] = str(group_id)
130
131
132
133
134
135
    dgl.distributed.initialize("kv_ip_config.txt")
    gpb, graph_name, _, _ = load_partition_book('/tmp/dist_graph/{}.json'.format(graph_name),
                                                part_id, None)
    g = DistGraph(graph_name, gpb=gpb)
    check_dist_emb(g, num_clients, num_nodes, num_edges)

136
137
138
139
140
141
142
143
144
145
146
147
148
def run_client_hierarchy(graph_name, part_id, server_count, node_mask, edge_mask, return_dict):
    os.environ['DGL_NUM_SERVER'] = str(server_count)
    dgl.distributed.initialize("kv_ip_config.txt")
    gpb, graph_name, _, _ = load_partition_book('/tmp/dist_graph/{}.json'.format(graph_name),
                                                part_id, None)
    g = DistGraph(graph_name, gpb=gpb)
    node_mask = F.tensor(node_mask)
    edge_mask = F.tensor(edge_mask)
    nodes = node_split(node_mask, g.get_partition_book(), node_trainer_ids=g.ndata['trainer_id'])
    edges = edge_split(edge_mask, g.get_partition_book(), edge_trainer_ids=g.edata['trainer_id'])
    rank = g.rank()
    return_dict[rank] = (nodes, edges)

149
150
def check_dist_emb(g, num_clients, num_nodes, num_edges):
    from dgl.distributed.optim import SparseAdagrad
151
    from dgl.distributed import DistEmbedding
152
153
    # Test sparse emb
    try:
154
        emb = DistEmbedding(g.number_of_nodes(), 1, 'emb1', emb_init)
155
        nids = F.arange(0, int(g.number_of_nodes()))
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
        lr = 0.001
        optimizer = SparseAdagrad([emb], lr=lr)
        with F.record_grad():
            feats = emb(nids)
            assert np.all(F.asnumpy(feats) == np.zeros((len(nids), 1)))
            loss = F.sum(feats + 1, 0)
        loss.backward()
        optimizer.step()
        feats = emb(nids)
        if num_clients == 1:
            assert_almost_equal(F.asnumpy(feats), np.ones((len(nids), 1)) * -lr)
        rest = np.setdiff1d(np.arange(g.number_of_nodes()), F.asnumpy(nids))
        feats1 = emb(rest)
        assert np.all(F.asnumpy(feats1) == np.zeros((len(rest), 1)))

        policy = dgl.distributed.PartitionPolicy('node', g.get_partition_book())
172
        grad_sum = dgl.distributed.DistTensor((g.number_of_nodes(), 1), F.float32,
173
174
175
176
177
                                              'emb1_sum', policy)
        if num_clients == 1:
            assert np.all(F.asnumpy(grad_sum[nids]) == np.ones((len(nids), 1)) * num_clients)
        assert np.all(F.asnumpy(grad_sum[rest]) == np.zeros((len(rest), 1)))

178
        emb = DistEmbedding(g.number_of_nodes(), 1, 'emb2', emb_init)
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
        with F.no_grad():
            feats1 = emb(nids)
        assert np.all(F.asnumpy(feats1) == 0)

        optimizer = SparseAdagrad([emb], lr=lr)
        with F.record_grad():
            feats1 = emb(nids)
            feats2 = emb(nids)
            feats = F.cat([feats1, feats2], 0)
            assert np.all(F.asnumpy(feats) == np.zeros((len(nids) * 2, 1)))
            loss = F.sum(feats + 1, 0)
        loss.backward()
        optimizer.step()
        with F.no_grad():
            feats = emb(nids)
        if num_clients == 1:
195
            assert_almost_equal(F.asnumpy(feats), np.ones((len(nids), 1)) * 1 * -lr)
196
197
198
199
200
        rest = np.setdiff1d(np.arange(g.number_of_nodes()), F.asnumpy(nids))
        feats1 = emb(rest)
        assert np.all(F.asnumpy(feats1) == np.zeros((len(rest), 1)))
    except NotImplementedError as e:
        pass
201
202
203
    except Exception as e:
        print(e)
        sys.exit(-1)
204

205
def check_dist_graph(g, num_clients, num_nodes, num_edges):
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    # Test API
    assert g.number_of_nodes() == num_nodes
    assert g.number_of_edges() == num_edges

    # Test reading node data
    nids = F.arange(0, int(g.number_of_nodes() / 2))
    feats1 = g.ndata['features'][nids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == nids))

    # Test reading edge data
    eids = F.arange(0, int(g.number_of_edges() / 2))
    feats1 = g.edata['features'][eids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == eids))

    # Test init node data
    new_shape = (g.number_of_nodes(), 2)
224
225
    test1 = dgl.distributed.DistTensor(new_shape, F.int32)
    g.ndata['test1'] = test1
226
227
    feats = g.ndata['test1'][nids]
    assert np.all(F.asnumpy(feats) == 0)
228
    assert test1.count_nonzero() == 0
229

230
    # reference to a one that exists
231
232
    test2 = dgl.distributed.DistTensor(new_shape, F.float32, 'test2', init_func=rand_init)
    test3 = dgl.distributed.DistTensor(new_shape, F.float32, 'test2')
233
234
235
    assert np.all(F.asnumpy(test2[nids]) == F.asnumpy(test3[nids]))

    # create a tensor and destroy a tensor and create it again.
236
    test3 = dgl.distributed.DistTensor(new_shape, F.float32, 'test3', init_func=rand_init)
237
    del test3
238
    test3 = dgl.distributed.DistTensor((g.number_of_nodes(), 3), F.float32, 'test3')
239
240
    del test3

Da Zheng's avatar
Da Zheng committed
241
242
243
244
245
246
247
248
    # add tests for anonymous distributed tensor.
    test3 = dgl.distributed.DistTensor(new_shape, F.float32, init_func=rand_init)
    data = test3[0:10]
    test4 = dgl.distributed.DistTensor(new_shape, F.float32, init_func=rand_init)
    del test3
    test5 = dgl.distributed.DistTensor(new_shape, F.float32, init_func=rand_init)
    assert np.sum(F.asnumpy(test5[0:10] != data)) > 0

249
    # test a persistent tesnor
250
    test4 = dgl.distributed.DistTensor(new_shape, F.float32, 'test4', init_func=rand_init,
251
252
253
                                       persistent=True)
    del test4
    try:
254
        test4 = dgl.distributed.DistTensor((g.number_of_nodes(), 3), F.float32, 'test4')
255
256
257
        raise Exception('')
    except:
        pass
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

    # Test write data
    new_feats = F.ones((len(nids), 2), F.int32, F.cpu())
    g.ndata['test1'][nids] = new_feats
    feats = g.ndata['test1'][nids]
    assert np.all(F.asnumpy(feats) == 1)

    # Test metadata operations.
    assert len(g.ndata['features']) == g.number_of_nodes()
    assert g.ndata['features'].shape == (g.number_of_nodes(), 1)
    assert g.ndata['features'].dtype == F.int64
    assert g.node_attr_schemes()['features'].dtype == F.int64
    assert g.node_attr_schemes()['test1'].dtype == F.int32
    assert g.node_attr_schemes()['features'].shape == (1,)

273
274
    selected_nodes = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    # Test node split
275
    nodes = node_split(selected_nodes, g.get_partition_book())
276
277
278
279
280
281
    nodes = F.asnumpy(nodes)
    # We only have one partition, so the local nodes are basically all nodes in the graph.
    local_nids = np.arange(g.number_of_nodes())
    for n in nodes:
        assert n in local_nids

282
283
    print('end')

284
def check_dist_emb_server_client(shared_mem, num_servers, num_clients, num_groups=1):
285
    prepare_dist(num_servers)
286
287
288
289
    g = create_random_graph(10000)

    # Partition the graph
    num_parts = 1
290
    graph_name = f'check_dist_emb_{shared_mem}_{num_servers}_{num_clients}_{num_groups}'
291
292
293
294
295
296
297
298
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')

    # let's just test on one partition for now.
    # We cannot run multiple servers and clients on the same machine.
    serv_ps = []
    ctx = mp.get_context('spawn')
299
    keep_alive = num_groups > 1
300
301
    for serv_id in range(num_servers):
        p = ctx.Process(target=run_server, args=(graph_name, serv_id, num_servers,
302
                                                 num_clients, shared_mem, keep_alive))
303
304
305
306
307
        serv_ps.append(p)
        p.start()

    cli_ps = []
    for cli_id in range(num_clients):
308
309
310
311
312
313
314
        for group_id in range(num_groups):
            print('start client[{}] for group[{}]'.format(cli_id, group_id))
            p = ctx.Process(target=run_emb_client, args=(graph_name, 0, num_servers, num_clients,
                                                        g.number_of_nodes(),
                                                        g.number_of_edges(),
                                                        group_id))
            p.start()
315
            time.sleep(1) # avoid race condition when instantiating DistGraph
316
            cli_ps.append(p)
317
318
319

    for p in cli_ps:
        p.join()
320
        assert p.exitcode == 0
321

322
323
324
325
326
    if keep_alive:
        for p in serv_ps:
            assert p.is_alive()
        # force shutdown server
        dgl.distributed.shutdown_servers("kv_ip_config.txt", num_servers)
327
328
329
330
331
    for p in serv_ps:
        p.join()

    print('clients have terminated')

332
def check_server_client(shared_mem, num_servers, num_clients, num_groups=1):
333
    prepare_dist(num_servers)
334
335
336
337
    g = create_random_graph(10000)

    # Partition the graph
    num_parts = 1
338
    graph_name = f'check_server_client_{shared_mem}_{num_servers}_{num_clients}_{num_groups}'
339
340
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
341
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')
342
343
344
345

    # let's just test on one partition for now.
    # We cannot run multiple servers and clients on the same machine.
    serv_ps = []
346
    ctx = mp.get_context('spawn')
347
    keep_alive = num_groups > 1
348
    for serv_id in range(num_servers):
349
        p = ctx.Process(target=run_server, args=(graph_name, serv_id, num_servers,
350
                                                 num_clients, shared_mem, keep_alive))
351
352
353
        serv_ps.append(p)
        p.start()

354
    # launch different client groups simultaneously
355
    cli_ps = []
356
    for cli_id in range(num_clients):
357
358
359
360
361
        for group_id in range(num_groups):
            print('start client[{}] for group[{}]'.format(cli_id, group_id))
            p = ctx.Process(target=run_client, args=(graph_name, 0, num_servers, num_clients, g.number_of_nodes(),
                                                    g.number_of_edges(), group_id))
            p.start()
362
            time.sleep(1) # avoid race condition when instantiating DistGraph
363
            cli_ps.append(p)
364
365
    for p in cli_ps:
        p.join()
366

367
368
369
370
371
    if keep_alive:
        for p in serv_ps:
            assert p.is_alive()
        # force shutdown server
        dgl.distributed.shutdown_servers("kv_ip_config.txt", num_servers)
372
373
374
    for p in serv_ps:
        p.join()

375
376
    print('clients have terminated')

377
def check_server_client_hierarchy(shared_mem, num_servers, num_clients):
378
    prepare_dist(num_servers)
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
    g = create_random_graph(10000)

    # Partition the graph
    num_parts = 1
    graph_name = 'dist_graph_test_2'
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph', num_trainers_per_machine=num_clients)

    # let's just test on one partition for now.
    # We cannot run multiple servers and clients on the same machine.
    serv_ps = []
    ctx = mp.get_context('spawn')
    for serv_id in range(num_servers):
        p = ctx.Process(target=run_server, args=(graph_name, serv_id, num_servers,
                                                 num_clients, shared_mem))
        serv_ps.append(p)
        p.start()

    cli_ps = []
    manager = mp.Manager()
    return_dict = manager.dict()
    node_mask = np.zeros((g.number_of_nodes(),), np.int32)
    edge_mask = np.zeros((g.number_of_edges(),), np.int32)
    nodes = np.random.choice(g.number_of_nodes(), g.number_of_nodes() // 10, replace=False)
    edges = np.random.choice(g.number_of_edges(), g.number_of_edges() // 10, replace=False)
    node_mask[nodes] = 1
    edge_mask[edges] = 1
    nodes = np.sort(nodes)
    edges = np.sort(edges)
    for cli_id in range(num_clients):
        print('start client', cli_id)
        p = ctx.Process(target=run_client_hierarchy, args=(graph_name, 0, num_servers,
                                                           node_mask, edge_mask, return_dict))
        p.start()
        cli_ps.append(p)

    for p in cli_ps:
        p.join()
    for p in serv_ps:
        p.join()

    nodes1 = []
    edges1 = []
    for n, e in return_dict.values():
        nodes1.append(n)
        edges1.append(e)
    nodes1, _ = F.sort_1d(F.cat(nodes1, 0))
    edges1, _ = F.sort_1d(F.cat(edges1, 0))
    assert np.all(F.asnumpy(nodes1) == nodes)
    assert np.all(F.asnumpy(edges1) == edges)

    print('clients have terminated')

433
434

def run_client_hetero(graph_name, part_id, server_count, num_clients, num_nodes, num_edges):
435
436
    os.environ['DGL_NUM_SERVER'] = str(server_count)
    dgl.distributed.initialize("kv_ip_config.txt")
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
    gpb, graph_name, _, _ = load_partition_book('/tmp/dist_graph/{}.json'.format(graph_name),
                                                part_id, None)
    g = DistGraph(graph_name, gpb=gpb)
    check_dist_graph_hetero(g, num_clients, num_nodes, num_edges)

def create_random_hetero():
    num_nodes = {'n1': 10000, 'n2': 10010, 'n3': 10020}
    etypes = [('n1', 'r1', 'n2'),
              ('n1', 'r2', 'n3'),
              ('n2', 'r3', 'n3')]
    edges = {}
    for etype in etypes:
        src_ntype, _, dst_ntype = etype
        arr = spsp.random(num_nodes[src_ntype], num_nodes[dst_ntype], density=0.001, format='coo',
                          random_state=100)
        edges[etype] = (arr.row, arr.col)
    g = dgl.heterograph(edges, num_nodes)
    g.nodes['n1'].data['feat'] = F.unsqueeze(F.arange(0, g.number_of_nodes('n1')), 1)
    g.edges['r1'].data['feat'] = F.unsqueeze(F.arange(0, g.number_of_edges('r1')), 1)
    return g

def check_dist_graph_hetero(g, num_clients, num_nodes, num_edges):
    # Test API
    for ntype in num_nodes:
        assert ntype in g.ntypes
        assert num_nodes[ntype] == g.number_of_nodes(ntype)
    for etype in num_edges:
        assert etype in g.etypes
        assert num_edges[etype] == g.number_of_edges(etype)
466
467
468
469
470
471
472
    etypes = [('n1', 'r1', 'n2'),
              ('n1', 'r2', 'n3'),
              ('n2', 'r3', 'n3')]
    for i, etype in enumerate(g.canonical_etypes):
        assert etype[0] == etypes[i][0]
        assert etype[1] == etypes[i][1]
        assert etype[2] == etypes[i][2]
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
    assert g.number_of_nodes() == sum([num_nodes[ntype] for ntype in num_nodes])
    assert g.number_of_edges() == sum([num_edges[etype] for etype in num_edges])

    # Test reading node data
    nids = F.arange(0, int(g.number_of_nodes('n1') / 2))
    feats1 = g.nodes['n1'].data['feat'][nids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == nids))

    # Test reading edge data
    eids = F.arange(0, int(g.number_of_edges('r1') / 2))
    feats1 = g.edges['r1'].data['feat'][eids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == eids))

    # Test init node data
    new_shape = (g.number_of_nodes('n1'), 2)
    g.nodes['n1'].data['test1'] = dgl.distributed.DistTensor(new_shape, F.int32)
    feats = g.nodes['n1'].data['test1'][nids]
    assert np.all(F.asnumpy(feats) == 0)

    # create a tensor and destroy a tensor and create it again.
    test3 = dgl.distributed.DistTensor(new_shape, F.float32, 'test3', init_func=rand_init)
    del test3
    test3 = dgl.distributed.DistTensor((g.number_of_nodes('n1'), 3), F.float32, 'test3')
    del test3

    # add tests for anonymous distributed tensor.
    test3 = dgl.distributed.DistTensor(new_shape, F.float32, init_func=rand_init)
    data = test3[0:10]
    test4 = dgl.distributed.DistTensor(new_shape, F.float32, init_func=rand_init)
    del test3
    test5 = dgl.distributed.DistTensor(new_shape, F.float32, init_func=rand_init)
    assert np.sum(F.asnumpy(test5[0:10] != data)) > 0

    # test a persistent tesnor
    test4 = dgl.distributed.DistTensor(new_shape, F.float32, 'test4', init_func=rand_init,
                                       persistent=True)
    del test4
    try:
        test4 = dgl.distributed.DistTensor((g.number_of_nodes('n1'), 3), F.float32, 'test4')
        raise Exception('')
    except:
        pass

    # Test write data
    new_feats = F.ones((len(nids), 2), F.int32, F.cpu())
    g.nodes['n1'].data['test1'][nids] = new_feats
    feats = g.nodes['n1'].data['test1'][nids]
    assert np.all(F.asnumpy(feats) == 1)

    # Test metadata operations.
    assert len(g.nodes['n1'].data['feat']) == g.number_of_nodes('n1')
    assert g.nodes['n1'].data['feat'].shape == (g.number_of_nodes('n1'), 1)
    assert g.nodes['n1'].data['feat'].dtype == F.int64

    selected_nodes = np.random.randint(0, 100, size=g.number_of_nodes('n1')) > 30
    # Test node split
    nodes = node_split(selected_nodes, g.get_partition_book(), ntype='n1')
    nodes = F.asnumpy(nodes)
    # We only have one partition, so the local nodes are basically all nodes in the graph.
    local_nids = np.arange(g.number_of_nodes('n1'))
    for n in nodes:
        assert n in local_nids

    print('end')

def check_server_client_hetero(shared_mem, num_servers, num_clients):
541
    prepare_dist(num_servers)
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
    g = create_random_hetero()

    # Partition the graph
    num_parts = 1
    graph_name = 'dist_graph_test_3'
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')

    # let's just test on one partition for now.
    # We cannot run multiple servers and clients on the same machine.
    serv_ps = []
    ctx = mp.get_context('spawn')
    for serv_id in range(num_servers):
        p = ctx.Process(target=run_server, args=(graph_name, serv_id, num_servers,
                                                 num_clients, shared_mem))
        serv_ps.append(p)
        p.start()

    cli_ps = []
    num_nodes = {ntype: g.number_of_nodes(ntype) for ntype in g.ntypes}
    num_edges = {etype: g.number_of_edges(etype) for etype in g.etypes}
    for cli_id in range(num_clients):
        print('start client', cli_id)
        p = ctx.Process(target=run_client_hetero, args=(graph_name, 0, num_servers, num_clients, num_nodes,
                                                        num_edges))
        p.start()
        cli_ps.append(p)

    for p in cli_ps:
        p.join()

    for p in serv_ps:
        p.join()

    print('clients have terminated')

577
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
578
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support some of operations in DistGraph")
579
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
580
def test_server_client():
581
    reset_envs()
582
    os.environ['DGL_DIST_MODE'] = 'distributed'
583
    check_server_client_hierarchy(False, 1, 4)
584
    check_server_client_empty(True, 1, 1)
585
586
    check_server_client_hetero(True, 1, 1)
    check_server_client_hetero(False, 1, 1)
587
588
589
    check_server_client(True, 1, 1)
    check_server_client(False, 1, 1)
    check_server_client(True, 2, 2)
590
591
592
    check_server_client(True, 1, 1, 2)
    check_server_client(False, 1, 1, 2)
    check_server_client(True, 2, 2, 2)
593

594
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
595
596
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support distributed DistEmbedding")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Mxnet doesn't support distributed DistEmbedding")
597
def test_dist_emb_server_client():
598
    reset_envs()
599
600
601
602
    os.environ['DGL_DIST_MODE'] = 'distributed'
    check_dist_emb_server_client(True, 1, 1)
    check_dist_emb_server_client(False, 1, 1)
    check_dist_emb_server_client(True, 2, 2)
603
604
605
    check_dist_emb_server_client(True, 1, 1, 2)
    check_dist_emb_server_client(False, 1, 1, 2)
    check_dist_emb_server_client(True, 2, 2, 2)
606

607
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support some of operations in DistGraph")
608
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
609
def test_standalone():
610
    reset_envs()
611
    os.environ['DGL_DIST_MODE'] = 'standalone'
Da Zheng's avatar
Da Zheng committed
612

613
614
615
616
617
618
619
    g = create_random_graph(10000)
    # Partition the graph
    num_parts = 1
    graph_name = 'dist_graph_test_3'
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')
620
621

    dgl.distributed.initialize("kv_ip_config.txt")
622
    dist_g = DistGraph(graph_name, part_config='/tmp/dist_graph/{}.json'.format(graph_name))
623
    check_dist_graph(dist_g, 1, g.number_of_nodes(), g.number_of_edges())
624
    dgl.distributed.exit_client() # this is needed since there's two test here in one process
625

626
627
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support distributed DistEmbedding")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Mxnet doesn't support distributed DistEmbedding")
628
def test_standalone_node_emb():
629
    reset_envs()
630
631
632
633
634
635
636
637
638
639
640
641
    os.environ['DGL_DIST_MODE'] = 'standalone'

    g = create_random_graph(10000)
    # Partition the graph
    num_parts = 1
    graph_name = 'dist_graph_test_3'
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')

    dgl.distributed.initialize("kv_ip_config.txt")
    dist_g = DistGraph(graph_name, part_config='/tmp/dist_graph/{}.json'.format(graph_name))
642
    check_dist_emb(dist_g, 1, g.number_of_nodes(), g.number_of_edges())
643
644
    dgl.distributed.exit_client() # this is needed since there's two test here in one process

645
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
646
647
648
649
650
651
652
653
654
655
@pytest.mark.parametrize("hetero", [True, False])
def test_split(hetero):
    if hetero:
        g = create_random_hetero()
        ntype = 'n1'
        etype = 'r1'
    else:
        g = create_random_graph(10000)
        ntype = '_N'
        etype = '_E'
656
657
    num_parts = 4
    num_hops = 2
658
    partition_graph(g, 'dist_graph_test', num_parts, '/tmp/dist_graph', num_hops=num_hops, part_method='metis')
659

660
661
    node_mask = np.random.randint(0, 100, size=g.number_of_nodes(ntype)) > 30
    edge_mask = np.random.randint(0, 100, size=g.number_of_edges(etype)) > 30
662
663
    selected_nodes = np.nonzero(node_mask)[0]
    selected_edges = np.nonzero(edge_mask)[0]
Da Zheng's avatar
Da Zheng committed
664
665
666
667
668
669
670
671
672

    # The code now collects the roles of all client processes and use the information
    # to determine how to split the workloads. Here is to simulate the multi-client
    # use case.
    def set_roles(num_clients):
        dgl.distributed.role.CUR_ROLE = 'default'
        dgl.distributed.role.GLOBAL_RANK = {i:i for i in range(num_clients)}
        dgl.distributed.role.PER_ROLE_RANK['default'] = {i:i for i in range(num_clients)}

673
    for i in range(num_parts):
Da Zheng's avatar
Da Zheng committed
674
        set_roles(num_parts)
675
        part_g, node_feats, edge_feats, gpb, _, _, _ = load_partition('/tmp/dist_graph/dist_graph_test.json', i)
Da Zheng's avatar
Da Zheng committed
676
        local_nids = F.nonzero_1d(part_g.ndata['inner_node'])
677
        local_nids = F.gather_row(part_g.ndata[dgl.NID], local_nids)
678
679
680
681
682
683
684
        if hetero:
            ntype_ids, nids = gpb.map_to_per_ntype(local_nids)
            local_nids = F.asnumpy(nids)[F.asnumpy(ntype_ids) == 0]
        else:
            local_nids = F.asnumpy(local_nids)
        nodes1 = np.intersect1d(selected_nodes, local_nids)
        nodes2 = node_split(node_mask, gpb, ntype=ntype, rank=i, force_even=False)
685
        assert np.all(np.sort(nodes1) == np.sort(F.asnumpy(nodes2)))
686
        for n in F.asnumpy(nodes2):
687
688
            assert n in local_nids

Da Zheng's avatar
Da Zheng committed
689
        set_roles(num_parts * 2)
690
691
        nodes3 = node_split(node_mask, gpb, ntype=ntype, rank=i * 2, force_even=False)
        nodes4 = node_split(node_mask, gpb, ntype=ntype, rank=i * 2 + 1, force_even=False)
692
693
694
        nodes5 = F.cat([nodes3, nodes4], 0)
        assert np.all(np.sort(nodes1) == np.sort(F.asnumpy(nodes5)))

Da Zheng's avatar
Da Zheng committed
695
        set_roles(num_parts)
Da Zheng's avatar
Da Zheng committed
696
        local_eids = F.nonzero_1d(part_g.edata['inner_edge'])
697
        local_eids = F.gather_row(part_g.edata[dgl.EID], local_eids)
698
699
700
701
702
703
704
        if hetero:
            etype_ids, eids = gpb.map_to_per_etype(local_eids)
            local_eids = F.asnumpy(eids)[F.asnumpy(etype_ids) == 0]
        else:
            local_eids = F.asnumpy(local_eids)
        edges1 = np.intersect1d(selected_edges, local_eids)
        edges2 = edge_split(edge_mask, gpb, etype=etype, rank=i, force_even=False)
705
        assert np.all(np.sort(edges1) == np.sort(F.asnumpy(edges2)))
706
        for e in F.asnumpy(edges2):
707
708
            assert e in local_eids

Da Zheng's avatar
Da Zheng committed
709
        set_roles(num_parts * 2)
710
711
        edges3 = edge_split(edge_mask, gpb, etype=etype, rank=i * 2, force_even=False)
        edges4 = edge_split(edge_mask, gpb, etype=etype, rank=i * 2 + 1, force_even=False)
712
713
714
        edges5 = F.cat([edges3, edges4], 0)
        assert np.all(np.sort(edges1) == np.sort(F.asnumpy(edges5)))

715
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
716
717
718
719
720
721
722
723
724
725
726
727
728
729
def test_split_even():
    g = create_random_graph(10000)
    num_parts = 4
    num_hops = 2
    partition_graph(g, 'dist_graph_test', num_parts, '/tmp/dist_graph', num_hops=num_hops, part_method='metis')

    node_mask = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    edge_mask = np.random.randint(0, 100, size=g.number_of_edges()) > 30
    selected_nodes = np.nonzero(node_mask)[0]
    selected_edges = np.nonzero(edge_mask)[0]
    all_nodes1 = []
    all_nodes2 = []
    all_edges1 = []
    all_edges2 = []
Da Zheng's avatar
Da Zheng committed
730
731
732
733
734
735
736
737
738

    # The code now collects the roles of all client processes and use the information
    # to determine how to split the workloads. Here is to simulate the multi-client
    # use case.
    def set_roles(num_clients):
        dgl.distributed.role.CUR_ROLE = 'default'
        dgl.distributed.role.GLOBAL_RANK = {i:i for i in range(num_clients)}
        dgl.distributed.role.PER_ROLE_RANK['default'] = {i:i for i in range(num_clients)}

739
    for i in range(num_parts):
Da Zheng's avatar
Da Zheng committed
740
        set_roles(num_parts)
741
        part_g, node_feats, edge_feats, gpb, _, _, _ = load_partition('/tmp/dist_graph/dist_graph_test.json', i)
742
743
        local_nids = F.nonzero_1d(part_g.ndata['inner_node'])
        local_nids = F.gather_row(part_g.ndata[dgl.NID], local_nids)
744
        nodes = node_split(node_mask, gpb, rank=i, force_even=True)
745
746
747
748
        all_nodes1.append(nodes)
        subset = np.intersect1d(F.asnumpy(nodes), F.asnumpy(local_nids))
        print('part {} get {} nodes and {} are in the partition'.format(i, len(nodes), len(subset)))

Da Zheng's avatar
Da Zheng committed
749
        set_roles(num_parts * 2)
750
751
752
        nodes1 = node_split(node_mask, gpb, rank=i * 2, force_even=True)
        nodes2 = node_split(node_mask, gpb, rank=i * 2 + 1, force_even=True)
        nodes3, _ = F.sort_1d(F.cat([nodes1, nodes2], 0))
753
754
755
756
        all_nodes2.append(nodes3)
        subset = np.intersect1d(F.asnumpy(nodes), F.asnumpy(nodes3))
        print('intersection has', len(subset))

Da Zheng's avatar
Da Zheng committed
757
        set_roles(num_parts)
758
759
        local_eids = F.nonzero_1d(part_g.edata['inner_edge'])
        local_eids = F.gather_row(part_g.edata[dgl.EID], local_eids)
760
        edges = edge_split(edge_mask, gpb, rank=i, force_even=True)
761
762
763
764
        all_edges1.append(edges)
        subset = np.intersect1d(F.asnumpy(edges), F.asnumpy(local_eids))
        print('part {} get {} edges and {} are in the partition'.format(i, len(edges), len(subset)))

Da Zheng's avatar
Da Zheng committed
765
        set_roles(num_parts * 2)
766
767
768
        edges1 = edge_split(edge_mask, gpb, rank=i * 2, force_even=True)
        edges2 = edge_split(edge_mask, gpb, rank=i * 2 + 1, force_even=True)
        edges3, _ = F.sort_1d(F.cat([edges1, edges2], 0))
769
770
771
772
773
774
775
776
777
778
779
780
781
782
        all_edges2.append(edges3)
        subset = np.intersect1d(F.asnumpy(edges), F.asnumpy(edges3))
        print('intersection has', len(subset))
    all_nodes1 = F.cat(all_nodes1, 0)
    all_edges1 = F.cat(all_edges1, 0)
    all_nodes2 = F.cat(all_nodes2, 0)
    all_edges2 = F.cat(all_edges2, 0)
    all_nodes = np.nonzero(node_mask)[0]
    all_edges = np.nonzero(edge_mask)[0]
    assert np.all(all_nodes == F.asnumpy(all_nodes1))
    assert np.all(all_edges == F.asnumpy(all_edges1))
    assert np.all(all_nodes == F.asnumpy(all_nodes2))
    assert np.all(all_edges == F.asnumpy(all_edges2))

783
784
def prepare_dist(num_servers=1):
    generate_ip_config("kv_ip_config.txt", 1, num_servers=num_servers)
785

786
if __name__ == '__main__':
Da Zheng's avatar
Da Zheng committed
787
    os.makedirs('/tmp/dist_graph', exist_ok=True)
788
    test_dist_emb_server_client()
789
    test_server_client()
790
791
    test_split(True)
    test_split(False)
792
    test_split_even()
793
    test_standalone()
794
    test_standalone_node_emb()