test_dist_graph_store.py 21.4 KB
Newer Older
1
2
3
4
5
6
import os
os.environ['OMP_NUM_THREADS'] = '1'
import dgl
import sys
import numpy as np
import time
7
import socket
8
9
10
11
from scipy import sparse as spsp
from numpy.testing import assert_array_equal
from multiprocessing import Process, Manager, Condition, Value
import multiprocessing as mp
12
from dgl.heterograph_index import create_unitgraph_from_coo
13
14
from dgl.data.utils import load_graphs, save_graphs
from dgl.distributed import DistGraphServer, DistGraph
15
from dgl.distributed import partition_graph, load_partition, load_partition_book, node_split, edge_split
16
from dgl.distributed import SparseAdagrad, DistEmbedding
17
from numpy.testing import assert_almost_equal
18
import backend as F
19
import math
20
21
22
import unittest
import pickle

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
if os.name != 'nt':
    import fcntl
    import struct

def get_local_usable_addr():
    """Get local usable IP and port

    Returns
    -------
    str
        IP address, e.g., '192.168.8.12:50051'
    """
    sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    try:
        # doesn't even have to be reachable
        sock.connect(('10.255.255.255', 1))
        ip_addr = sock.getsockname()[0]
    except ValueError:
        ip_addr = '127.0.0.1'
    finally:
        sock.close()
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.bind(("", 0))
    sock.listen(1)
    port = sock.getsockname()[1]
    sock.close()

    return ip_addr + ' ' + str(port)

52
def create_random_graph(n):
53
    arr = (spsp.random(n, n, density=0.001, format='coo', random_state=100) != 0).astype(np.int64)
54
    return dgl.from_scipy(arr)
55

56
57
def run_server(graph_name, server_id, server_count, num_clients, shared_mem):
    g = DistGraphServer(server_id, "kv_ip_config.txt", num_clients, server_count,
58
59
                        '/tmp/dist_graph/{}.json'.format(graph_name),
                        disable_shared_mem=not shared_mem)
60
61
62
    print('start server', server_id)
    g.start()

63
64
65
def emb_init(shape, dtype):
    return F.zeros(shape, dtype, F.cpu())

66
def rand_init(shape, dtype):
67
    return F.tensor(np.random.normal(size=shape), F.float32)
68

69
def run_client(graph_name, part_id, server_count, num_clients, num_nodes, num_edges):
70
    time.sleep(5)
71
    dgl.distributed.initialize("kv_ip_config.txt", server_count)
72
73
    gpb, graph_name, _, _ = load_partition_book('/tmp/dist_graph/{}.json'.format(graph_name),
                                                part_id, None)
74
    g = DistGraph(graph_name, gpb=gpb)
75
    check_dist_graph(g, num_clients, num_nodes, num_edges)
76

77
def check_dist_graph(g, num_clients, num_nodes, num_edges):
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    # Test API
    assert g.number_of_nodes() == num_nodes
    assert g.number_of_edges() == num_edges

    # Test reading node data
    nids = F.arange(0, int(g.number_of_nodes() / 2))
    feats1 = g.ndata['features'][nids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == nids))

    # Test reading edge data
    eids = F.arange(0, int(g.number_of_edges() / 2))
    feats1 = g.edata['features'][eids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == eids))

    # Test init node data
    new_shape = (g.number_of_nodes(), 2)
96
    g.ndata['test1'] = dgl.distributed.DistTensor(new_shape, F.int32)
97
98
99
    feats = g.ndata['test1'][nids]
    assert np.all(F.asnumpy(feats) == 0)

100
    # reference to a one that exists
101
102
    test2 = dgl.distributed.DistTensor(new_shape, F.float32, 'test2', init_func=rand_init)
    test3 = dgl.distributed.DistTensor(new_shape, F.float32, 'test2')
103
104
105
    assert np.all(F.asnumpy(test2[nids]) == F.asnumpy(test3[nids]))

    # create a tensor and destroy a tensor and create it again.
106
    test3 = dgl.distributed.DistTensor(new_shape, F.float32, 'test3', init_func=rand_init)
107
    del test3
108
    test3 = dgl.distributed.DistTensor((g.number_of_nodes(), 3), F.float32, 'test3')
109
110
    del test3

Da Zheng's avatar
Da Zheng committed
111
112
113
114
115
116
117
118
    # add tests for anonymous distributed tensor.
    test3 = dgl.distributed.DistTensor(new_shape, F.float32, init_func=rand_init)
    data = test3[0:10]
    test4 = dgl.distributed.DistTensor(new_shape, F.float32, init_func=rand_init)
    del test3
    test5 = dgl.distributed.DistTensor(new_shape, F.float32, init_func=rand_init)
    assert np.sum(F.asnumpy(test5[0:10] != data)) > 0

119
    # test a persistent tesnor
120
    test4 = dgl.distributed.DistTensor(new_shape, F.float32, 'test4', init_func=rand_init,
121
122
123
                                       persistent=True)
    del test4
    try:
124
        test4 = dgl.distributed.DistTensor((g.number_of_nodes(), 3), F.float32, 'test4')
125
126
127
        raise Exception('')
    except:
        pass
128

129
130
    # Test sparse emb
    try:
131
        emb = DistEmbedding(g.number_of_nodes(), 1, 'emb1', emb_init)
132
133
134
135
136
137
138
139
140
        lr = 0.001
        optimizer = SparseAdagrad([emb], lr=lr)
        with F.record_grad():
            feats = emb(nids)
            assert np.all(F.asnumpy(feats) == np.zeros((len(nids), 1)))
            loss = F.sum(feats + 1, 0)
        loss.backward()
        optimizer.step()
        feats = emb(nids)
141
142
        if num_clients == 1:
            assert_almost_equal(F.asnumpy(feats), np.ones((len(nids), 1)) * -lr)
143
144
145
146
147
        rest = np.setdiff1d(np.arange(g.number_of_nodes()), F.asnumpy(nids))
        feats1 = emb(rest)
        assert np.all(F.asnumpy(feats1) == np.zeros((len(rest), 1)))

        policy = dgl.distributed.PartitionPolicy('node', g.get_partition_book())
148
        grad_sum = dgl.distributed.DistTensor((g.number_of_nodes(),), F.float32,
149
                                              'emb1_sum', policy)
150
151
        if num_clients == 1:
            assert np.all(F.asnumpy(grad_sum[nids]) == np.ones((len(nids), 1)) * num_clients)
152
153
        assert np.all(F.asnumpy(grad_sum[rest]) == np.zeros((len(rest), 1)))

154
        emb = DistEmbedding(g.number_of_nodes(), 1, 'emb2', emb_init)
155
156
157
158
        with F.no_grad():
            feats1 = emb(nids)
        assert np.all(F.asnumpy(feats1) == 0)

159
160
161
162
163
164
165
166
167
        optimizer = SparseAdagrad([emb], lr=lr)
        with F.record_grad():
            feats1 = emb(nids)
            feats2 = emb(nids)
            feats = F.cat([feats1, feats2], 0)
            assert np.all(F.asnumpy(feats) == np.zeros((len(nids) * 2, 1)))
            loss = F.sum(feats + 1, 0)
        loss.backward()
        optimizer.step()
168
169
        with F.no_grad():
            feats = emb(nids)
170
171
        if num_clients == 1:
            assert_almost_equal(F.asnumpy(feats), np.ones((len(nids), 1)) * math.sqrt(2) * -lr)
172
173
174
175
176
177
        rest = np.setdiff1d(np.arange(g.number_of_nodes()), F.asnumpy(nids))
        feats1 = emb(rest)
        assert np.all(F.asnumpy(feats1) == np.zeros((len(rest), 1)))
    except NotImplementedError as e:
        pass

178
179
180
181
182
183
184
185
186
187
188
189
190
191
    # Test write data
    new_feats = F.ones((len(nids), 2), F.int32, F.cpu())
    g.ndata['test1'][nids] = new_feats
    feats = g.ndata['test1'][nids]
    assert np.all(F.asnumpy(feats) == 1)

    # Test metadata operations.
    assert len(g.ndata['features']) == g.number_of_nodes()
    assert g.ndata['features'].shape == (g.number_of_nodes(), 1)
    assert g.ndata['features'].dtype == F.int64
    assert g.node_attr_schemes()['features'].dtype == F.int64
    assert g.node_attr_schemes()['test1'].dtype == F.int32
    assert g.node_attr_schemes()['features'].shape == (1,)

192
193
    selected_nodes = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    # Test node split
194
    nodes = node_split(selected_nodes, g.get_partition_book())
195
196
197
198
199
200
    nodes = F.asnumpy(nodes)
    # We only have one partition, so the local nodes are basically all nodes in the graph.
    local_nids = np.arange(g.number_of_nodes())
    for n in nodes:
        assert n in local_nids

201
202
    print('end')

203
def check_server_client(shared_mem, num_servers, num_clients):
204
    prepare_dist()
205
206
207
208
    g = create_random_graph(10000)

    # Partition the graph
    num_parts = 1
209
    graph_name = 'dist_graph_test_2'
210
211
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
212
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')
213
214
215
216

    # let's just test on one partition for now.
    # We cannot run multiple servers and clients on the same machine.
    serv_ps = []
217
    ctx = mp.get_context('spawn')
218
    for serv_id in range(num_servers):
219
        p = ctx.Process(target=run_server, args=(graph_name, serv_id, num_servers,
220
                                                 num_clients, shared_mem))
221
222
223
224
        serv_ps.append(p)
        p.start()

    cli_ps = []
225
    for cli_id in range(num_clients):
226
        print('start client', cli_id)
227
        p = ctx.Process(target=run_client, args=(graph_name, 0, num_servers, num_clients, g.number_of_nodes(),
228
                                                 g.number_of_edges()))
229
230
231
232
233
        p.start()
        cli_ps.append(p)

    for p in cli_ps:
        p.join()
234
235
236
237

    for p in serv_ps:
        p.join()

238
239
    print('clients have terminated')

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

def run_client_hetero(graph_name, part_id, server_count, num_clients, num_nodes, num_edges):
    time.sleep(5)
    dgl.distributed.initialize("kv_ip_config.txt", server_count)
    gpb, graph_name, _, _ = load_partition_book('/tmp/dist_graph/{}.json'.format(graph_name),
                                                part_id, None)
    g = DistGraph(graph_name, gpb=gpb)
    check_dist_graph_hetero(g, num_clients, num_nodes, num_edges)

def create_random_hetero():
    num_nodes = {'n1': 10000, 'n2': 10010, 'n3': 10020}
    etypes = [('n1', 'r1', 'n2'),
              ('n1', 'r2', 'n3'),
              ('n2', 'r3', 'n3')]
    edges = {}
    for etype in etypes:
        src_ntype, _, dst_ntype = etype
        arr = spsp.random(num_nodes[src_ntype], num_nodes[dst_ntype], density=0.001, format='coo',
                          random_state=100)
        edges[etype] = (arr.row, arr.col)
    g = dgl.heterograph(edges, num_nodes)
    g.nodes['n1'].data['feat'] = F.unsqueeze(F.arange(0, g.number_of_nodes('n1')), 1)
    g.edges['r1'].data['feat'] = F.unsqueeze(F.arange(0, g.number_of_edges('r1')), 1)
    return g

def check_dist_graph_hetero(g, num_clients, num_nodes, num_edges):
    # Test API
    for ntype in num_nodes:
        assert ntype in g.ntypes
        assert num_nodes[ntype] == g.number_of_nodes(ntype)
    for etype in num_edges:
        assert etype in g.etypes
        assert num_edges[etype] == g.number_of_edges(etype)
    assert g.number_of_nodes() == sum([num_nodes[ntype] for ntype in num_nodes])
    assert g.number_of_edges() == sum([num_edges[etype] for etype in num_edges])

    # Test reading node data
    nids = F.arange(0, int(g.number_of_nodes('n1') / 2))
    feats1 = g.nodes['n1'].data['feat'][nids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == nids))

    # Test reading edge data
    eids = F.arange(0, int(g.number_of_edges('r1') / 2))
    feats1 = g.edges['r1'].data['feat'][eids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == eids))

    # Test init node data
    new_shape = (g.number_of_nodes('n1'), 2)
    g.nodes['n1'].data['test1'] = dgl.distributed.DistTensor(new_shape, F.int32)
    feats = g.nodes['n1'].data['test1'][nids]
    assert np.all(F.asnumpy(feats) == 0)

    # create a tensor and destroy a tensor and create it again.
    test3 = dgl.distributed.DistTensor(new_shape, F.float32, 'test3', init_func=rand_init)
    del test3
    test3 = dgl.distributed.DistTensor((g.number_of_nodes('n1'), 3), F.float32, 'test3')
    del test3

    # add tests for anonymous distributed tensor.
    test3 = dgl.distributed.DistTensor(new_shape, F.float32, init_func=rand_init)
    data = test3[0:10]
    test4 = dgl.distributed.DistTensor(new_shape, F.float32, init_func=rand_init)
    del test3
    test5 = dgl.distributed.DistTensor(new_shape, F.float32, init_func=rand_init)
    assert np.sum(F.asnumpy(test5[0:10] != data)) > 0

    # test a persistent tesnor
    test4 = dgl.distributed.DistTensor(new_shape, F.float32, 'test4', init_func=rand_init,
                                       persistent=True)
    del test4
    try:
        test4 = dgl.distributed.DistTensor((g.number_of_nodes('n1'), 3), F.float32, 'test4')
        raise Exception('')
    except:
        pass

    # Test write data
    new_feats = F.ones((len(nids), 2), F.int32, F.cpu())
    g.nodes['n1'].data['test1'][nids] = new_feats
    feats = g.nodes['n1'].data['test1'][nids]
    assert np.all(F.asnumpy(feats) == 1)

    # Test metadata operations.
    assert len(g.nodes['n1'].data['feat']) == g.number_of_nodes('n1')
    assert g.nodes['n1'].data['feat'].shape == (g.number_of_nodes('n1'), 1)
    assert g.nodes['n1'].data['feat'].dtype == F.int64

    selected_nodes = np.random.randint(0, 100, size=g.number_of_nodes('n1')) > 30
    # Test node split
    nodes = node_split(selected_nodes, g.get_partition_book(), ntype='n1')
    nodes = F.asnumpy(nodes)
    # We only have one partition, so the local nodes are basically all nodes in the graph.
    local_nids = np.arange(g.number_of_nodes('n1'))
    for n in nodes:
        assert n in local_nids

    print('end')

def check_server_client_hetero(shared_mem, num_servers, num_clients):
    prepare_dist()
    g = create_random_hetero()

    # Partition the graph
    num_parts = 1
    graph_name = 'dist_graph_test_3'
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')

    # let's just test on one partition for now.
    # We cannot run multiple servers and clients on the same machine.
    serv_ps = []
    ctx = mp.get_context('spawn')
    for serv_id in range(num_servers):
        p = ctx.Process(target=run_server, args=(graph_name, serv_id, num_servers,
                                                 num_clients, shared_mem))
        serv_ps.append(p)
        p.start()

    cli_ps = []
    num_nodes = {ntype: g.number_of_nodes(ntype) for ntype in g.ntypes}
    num_edges = {etype: g.number_of_edges(etype) for etype in g.etypes}
    for cli_id in range(num_clients):
        print('start client', cli_id)
        p = ctx.Process(target=run_client_hetero, args=(graph_name, 0, num_servers, num_clients, num_nodes,
                                                        num_edges))
        p.start()
        cli_ps.append(p)

    for p in cli_ps:
        p.join()

    for p in serv_ps:
        p.join()

    print('clients have terminated')

377
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
378
379
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support some of operations in DistGraph")
def test_server_client():
380
    os.environ['DGL_DIST_MODE'] = 'distributed'
381
382
    check_server_client_hetero(True, 1, 1)
    check_server_client_hetero(False, 1, 1)
383
384
385
386
    check_server_client(True, 1, 1)
    check_server_client(False, 1, 1)
    check_server_client(True, 2, 2)
    check_server_client(False, 2, 2)
387

388
389
390
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support some of operations in DistGraph")
def test_standalone():
    os.environ['DGL_DIST_MODE'] = 'standalone'
Da Zheng's avatar
Da Zheng committed
391

392
393
394
395
396
397
398
    g = create_random_graph(10000)
    # Partition the graph
    num_parts = 1
    graph_name = 'dist_graph_test_3'
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')
399
400

    dgl.distributed.initialize("kv_ip_config.txt")
401
    dist_g = DistGraph(graph_name, part_config='/tmp/dist_graph/{}.json'.format(graph_name))
402
403
404
405
    try:
        check_dist_graph(dist_g, 1, g.number_of_nodes(), g.number_of_edges())
    except Exception as e:
        print(e)
406
    dgl.distributed.exit_client() # this is needed since there's two test here in one process
407

408
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
409
def test_split():
410
    #prepare_dist()
411
412
413
    g = create_random_graph(10000)
    num_parts = 4
    num_hops = 2
414
    partition_graph(g, 'dist_graph_test', num_parts, '/tmp/dist_graph', num_hops=num_hops, part_method='metis')
415
416
417
418
419

    node_mask = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    edge_mask = np.random.randint(0, 100, size=g.number_of_edges()) > 30
    selected_nodes = np.nonzero(node_mask)[0]
    selected_edges = np.nonzero(edge_mask)[0]
Da Zheng's avatar
Da Zheng committed
420
421
422
423
424
425
426
427
428

    # The code now collects the roles of all client processes and use the information
    # to determine how to split the workloads. Here is to simulate the multi-client
    # use case.
    def set_roles(num_clients):
        dgl.distributed.role.CUR_ROLE = 'default'
        dgl.distributed.role.GLOBAL_RANK = {i:i for i in range(num_clients)}
        dgl.distributed.role.PER_ROLE_RANK['default'] = {i:i for i in range(num_clients)}

429
    for i in range(num_parts):
Da Zheng's avatar
Da Zheng committed
430
        set_roles(num_parts)
431
        part_g, node_feats, edge_feats, gpb, _, _, _ = load_partition('/tmp/dist_graph/dist_graph_test.json', i)
Da Zheng's avatar
Da Zheng committed
432
        local_nids = F.nonzero_1d(part_g.ndata['inner_node'])
433
434
        local_nids = F.gather_row(part_g.ndata[dgl.NID], local_nids)
        nodes1 = np.intersect1d(selected_nodes, F.asnumpy(local_nids))
435
        nodes2 = node_split(node_mask, gpb, rank=i, force_even=False)
436
437
438
439
440
        assert np.all(np.sort(nodes1) == np.sort(F.asnumpy(nodes2)))
        local_nids = F.asnumpy(local_nids)
        for n in nodes1:
            assert n in local_nids

Da Zheng's avatar
Da Zheng committed
441
        set_roles(num_parts * 2)
442
443
        nodes3 = node_split(node_mask, gpb, rank=i * 2, force_even=False)
        nodes4 = node_split(node_mask, gpb, rank=i * 2 + 1, force_even=False)
444
445
446
        nodes5 = F.cat([nodes3, nodes4], 0)
        assert np.all(np.sort(nodes1) == np.sort(F.asnumpy(nodes5)))

Da Zheng's avatar
Da Zheng committed
447
        set_roles(num_parts)
Da Zheng's avatar
Da Zheng committed
448
        local_eids = F.nonzero_1d(part_g.edata['inner_edge'])
449
450
        local_eids = F.gather_row(part_g.edata[dgl.EID], local_eids)
        edges1 = np.intersect1d(selected_edges, F.asnumpy(local_eids))
451
        edges2 = edge_split(edge_mask, gpb, rank=i, force_even=False)
452
453
454
455
456
        assert np.all(np.sort(edges1) == np.sort(F.asnumpy(edges2)))
        local_eids = F.asnumpy(local_eids)
        for e in edges1:
            assert e in local_eids

Da Zheng's avatar
Da Zheng committed
457
        set_roles(num_parts * 2)
458
459
        edges3 = edge_split(edge_mask, gpb, rank=i * 2, force_even=False)
        edges4 = edge_split(edge_mask, gpb, rank=i * 2 + 1, force_even=False)
460
461
462
        edges5 = F.cat([edges3, edges4], 0)
        assert np.all(np.sort(edges1) == np.sort(F.asnumpy(edges5)))

463
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
464
def test_split_even():
465
    #prepare_dist(1)
466
467
468
469
470
471
472
473
474
475
476
477
478
    g = create_random_graph(10000)
    num_parts = 4
    num_hops = 2
    partition_graph(g, 'dist_graph_test', num_parts, '/tmp/dist_graph', num_hops=num_hops, part_method='metis')

    node_mask = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    edge_mask = np.random.randint(0, 100, size=g.number_of_edges()) > 30
    selected_nodes = np.nonzero(node_mask)[0]
    selected_edges = np.nonzero(edge_mask)[0]
    all_nodes1 = []
    all_nodes2 = []
    all_edges1 = []
    all_edges2 = []
Da Zheng's avatar
Da Zheng committed
479
480
481
482
483
484
485
486
487

    # The code now collects the roles of all client processes and use the information
    # to determine how to split the workloads. Here is to simulate the multi-client
    # use case.
    def set_roles(num_clients):
        dgl.distributed.role.CUR_ROLE = 'default'
        dgl.distributed.role.GLOBAL_RANK = {i:i for i in range(num_clients)}
        dgl.distributed.role.PER_ROLE_RANK['default'] = {i:i for i in range(num_clients)}

488
    for i in range(num_parts):
Da Zheng's avatar
Da Zheng committed
489
        set_roles(num_parts)
490
        part_g, node_feats, edge_feats, gpb, _, _, _ = load_partition('/tmp/dist_graph/dist_graph_test.json', i)
491
492
        local_nids = F.nonzero_1d(part_g.ndata['inner_node'])
        local_nids = F.gather_row(part_g.ndata[dgl.NID], local_nids)
493
        nodes = node_split(node_mask, gpb, rank=i, force_even=True)
494
495
496
497
        all_nodes1.append(nodes)
        subset = np.intersect1d(F.asnumpy(nodes), F.asnumpy(local_nids))
        print('part {} get {} nodes and {} are in the partition'.format(i, len(nodes), len(subset)))

Da Zheng's avatar
Da Zheng committed
498
        set_roles(num_parts * 2)
499
500
501
        nodes1 = node_split(node_mask, gpb, rank=i * 2, force_even=True)
        nodes2 = node_split(node_mask, gpb, rank=i * 2 + 1, force_even=True)
        nodes3, _ = F.sort_1d(F.cat([nodes1, nodes2], 0))
502
503
504
505
        all_nodes2.append(nodes3)
        subset = np.intersect1d(F.asnumpy(nodes), F.asnumpy(nodes3))
        print('intersection has', len(subset))

Da Zheng's avatar
Da Zheng committed
506
        set_roles(num_parts)
507
508
        local_eids = F.nonzero_1d(part_g.edata['inner_edge'])
        local_eids = F.gather_row(part_g.edata[dgl.EID], local_eids)
509
        edges = edge_split(edge_mask, gpb, rank=i, force_even=True)
510
511
512
513
        all_edges1.append(edges)
        subset = np.intersect1d(F.asnumpy(edges), F.asnumpy(local_eids))
        print('part {} get {} edges and {} are in the partition'.format(i, len(edges), len(subset)))

Da Zheng's avatar
Da Zheng committed
514
        set_roles(num_parts * 2)
515
516
517
        edges1 = edge_split(edge_mask, gpb, rank=i * 2, force_even=True)
        edges2 = edge_split(edge_mask, gpb, rank=i * 2 + 1, force_even=True)
        edges3, _ = F.sort_1d(F.cat([edges1, edges2], 0))
518
519
520
521
522
523
524
525
526
527
528
529
530
531
        all_edges2.append(edges3)
        subset = np.intersect1d(F.asnumpy(edges), F.asnumpy(edges3))
        print('intersection has', len(subset))
    all_nodes1 = F.cat(all_nodes1, 0)
    all_edges1 = F.cat(all_edges1, 0)
    all_nodes2 = F.cat(all_nodes2, 0)
    all_edges2 = F.cat(all_edges2, 0)
    all_nodes = np.nonzero(node_mask)[0]
    all_edges = np.nonzero(edge_mask)[0]
    assert np.all(all_nodes == F.asnumpy(all_nodes1))
    assert np.all(all_edges == F.asnumpy(all_edges1))
    assert np.all(all_nodes == F.asnumpy(all_nodes2))
    assert np.all(all_edges == F.asnumpy(all_edges2))

532
def prepare_dist():
533
    ip_config = open("kv_ip_config.txt", "w")
534
    ip_addr = get_local_usable_addr()
535
    ip_config.write('{}\n'.format(ip_addr))
536
537
    ip_config.close()

538
if __name__ == '__main__':
Da Zheng's avatar
Da Zheng committed
539
    os.makedirs('/tmp/dist_graph', exist_ok=True)
540
541
    test_split()
    test_split_even()
Da Zheng's avatar
Da Zheng committed
542
    test_server_client()
543
    test_standalone()