"docs/vscode:/vscode.git/clone" did not exist on "c82756cd1571acde62916554446c5a6b324b5f20"
test_dist_graph_store.py 31.6 KB
Newer Older
1
2
3
4
5
6
import os
os.environ['OMP_NUM_THREADS'] = '1'
import dgl
import sys
import numpy as np
import time
7
import socket
8
9
10
11
from scipy import sparse as spsp
from numpy.testing import assert_array_equal
from multiprocessing import Process, Manager, Condition, Value
import multiprocessing as mp
12
from dgl.heterograph_index import create_unitgraph_from_coo
13
14
from dgl.data.utils import load_graphs, save_graphs
from dgl.distributed import DistGraphServer, DistGraph
15
from dgl.distributed import partition_graph, load_partition, load_partition_book, node_split, edge_split
16
from numpy.testing import assert_almost_equal
17
import backend as F
18
import math
19
20
import unittest
import pickle
21
from utils import reset_envs, generate_ip_config
22

23
24
25
26
if os.name != 'nt':
    import fcntl
    import struct

27
def create_random_graph(n):
28
    arr = (spsp.random(n, n, density=0.001, format='coo', random_state=100) != 0).astype(np.int64)
29
    return dgl.from_scipy(arr)
30

31
def run_server(graph_name, server_id, server_count, num_clients, shared_mem, keep_alive=False):
32
    g = DistGraphServer(server_id, "kv_ip_config.txt", server_count, num_clients,
33
                        '/tmp/dist_graph/{}.json'.format(graph_name),
34
                        disable_shared_mem=not shared_mem,
35
                        graph_format=['csc', 'coo'], keep_alive=keep_alive)
36
37
38
    print('start server', server_id)
    g.start()

39
40
41
def emb_init(shape, dtype):
    return F.zeros(shape, dtype, F.cpu())

42
def rand_init(shape, dtype):
43
    return F.tensor(np.random.normal(size=shape), F.float32)
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def check_dist_graph_empty(g, num_clients, num_nodes, num_edges):
    # Test API
    assert g.number_of_nodes() == num_nodes
    assert g.number_of_edges() == num_edges

    # Test init node data
    new_shape = (g.number_of_nodes(), 2)
    g.ndata['test1'] = dgl.distributed.DistTensor(new_shape, F.int32)
    nids = F.arange(0, int(g.number_of_nodes() / 2))
    feats = g.ndata['test1'][nids]
    assert np.all(F.asnumpy(feats) == 0)

    # create a tensor and destroy a tensor and create it again.
    test3 = dgl.distributed.DistTensor(new_shape, F.float32, 'test3', init_func=rand_init)
    del test3
    test3 = dgl.distributed.DistTensor((g.number_of_nodes(), 3), F.float32, 'test3')
    del test3

    # Test write data
    new_feats = F.ones((len(nids), 2), F.int32, F.cpu())
    g.ndata['test1'][nids] = new_feats
    feats = g.ndata['test1'][nids]
    assert np.all(F.asnumpy(feats) == 1)

    # Test metadata operations.
    assert g.node_attr_schemes()['test1'].dtype == F.int32

    print('end')

def run_client_empty(graph_name, part_id, server_count, num_clients, num_nodes, num_edges):
    os.environ['DGL_NUM_SERVER'] = str(server_count)
    dgl.distributed.initialize("kv_ip_config.txt")
    gpb, graph_name, _, _ = load_partition_book('/tmp/dist_graph/{}.json'.format(graph_name),
                                                part_id, None)
    g = DistGraph(graph_name, gpb=gpb)
    check_dist_graph_empty(g, num_clients, num_nodes, num_edges)

def check_server_client_empty(shared_mem, num_servers, num_clients):
83
    prepare_dist(num_servers)
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    g = create_random_graph(10000)

    # Partition the graph
    num_parts = 1
    graph_name = 'dist_graph_test_1'
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')

    # let's just test on one partition for now.
    # We cannot run multiple servers and clients on the same machine.
    serv_ps = []
    ctx = mp.get_context('spawn')
    for serv_id in range(num_servers):
        p = ctx.Process(target=run_server, args=(graph_name, serv_id, num_servers,
                                                 num_clients, shared_mem))
        serv_ps.append(p)
        p.start()

    cli_ps = []
    for cli_id in range(num_clients):
        print('start client', cli_id)
        p = ctx.Process(target=run_client_empty, args=(graph_name, 0, num_servers, num_clients,
                                                       g.number_of_nodes(), g.number_of_edges()))
        p.start()
        cli_ps.append(p)

    for p in cli_ps:
        p.join()

    for p in serv_ps:
        p.join()

    print('clients have terminated')

117
def run_client(graph_name, part_id, server_count, num_clients, num_nodes, num_edges, group_id):
118
    os.environ['DGL_NUM_SERVER'] = str(server_count)
119
    os.environ['DGL_GROUP_ID'] = str(group_id)
120
    dgl.distributed.initialize("kv_ip_config.txt")
121
122
    gpb, graph_name, _, _ = load_partition_book('/tmp/dist_graph/{}.json'.format(graph_name),
                                                part_id, None)
123
    g = DistGraph(graph_name, gpb=gpb)
124
    check_dist_graph(g, num_clients, num_nodes, num_edges)
125

126
def run_emb_client(graph_name, part_id, server_count, num_clients, num_nodes, num_edges, group_id):
127
    os.environ['DGL_NUM_SERVER'] = str(server_count)
128
    os.environ['DGL_GROUP_ID'] = str(group_id)
129
130
131
132
133
134
    dgl.distributed.initialize("kv_ip_config.txt")
    gpb, graph_name, _, _ = load_partition_book('/tmp/dist_graph/{}.json'.format(graph_name),
                                                part_id, None)
    g = DistGraph(graph_name, gpb=gpb)
    check_dist_emb(g, num_clients, num_nodes, num_edges)

135
136
137
138
139
140
141
142
143
144
145
146
147
def run_client_hierarchy(graph_name, part_id, server_count, node_mask, edge_mask, return_dict):
    os.environ['DGL_NUM_SERVER'] = str(server_count)
    dgl.distributed.initialize("kv_ip_config.txt")
    gpb, graph_name, _, _ = load_partition_book('/tmp/dist_graph/{}.json'.format(graph_name),
                                                part_id, None)
    g = DistGraph(graph_name, gpb=gpb)
    node_mask = F.tensor(node_mask)
    edge_mask = F.tensor(edge_mask)
    nodes = node_split(node_mask, g.get_partition_book(), node_trainer_ids=g.ndata['trainer_id'])
    edges = edge_split(edge_mask, g.get_partition_book(), edge_trainer_ids=g.edata['trainer_id'])
    rank = g.rank()
    return_dict[rank] = (nodes, edges)

148
149
def check_dist_emb(g, num_clients, num_nodes, num_edges):
    from dgl.distributed.optim import SparseAdagrad
150
    from dgl.distributed import DistEmbedding
151
152
    # Test sparse emb
    try:
153
        emb = DistEmbedding(g.number_of_nodes(), 1, 'emb1', emb_init)
154
        nids = F.arange(0, int(g.number_of_nodes()))
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
        lr = 0.001
        optimizer = SparseAdagrad([emb], lr=lr)
        with F.record_grad():
            feats = emb(nids)
            assert np.all(F.asnumpy(feats) == np.zeros((len(nids), 1)))
            loss = F.sum(feats + 1, 0)
        loss.backward()
        optimizer.step()
        feats = emb(nids)
        if num_clients == 1:
            assert_almost_equal(F.asnumpy(feats), np.ones((len(nids), 1)) * -lr)
        rest = np.setdiff1d(np.arange(g.number_of_nodes()), F.asnumpy(nids))
        feats1 = emb(rest)
        assert np.all(F.asnumpy(feats1) == np.zeros((len(rest), 1)))

        policy = dgl.distributed.PartitionPolicy('node', g.get_partition_book())
171
        grad_sum = dgl.distributed.DistTensor((g.number_of_nodes(), 1), F.float32,
172
173
174
175
176
                                              'emb1_sum', policy)
        if num_clients == 1:
            assert np.all(F.asnumpy(grad_sum[nids]) == np.ones((len(nids), 1)) * num_clients)
        assert np.all(F.asnumpy(grad_sum[rest]) == np.zeros((len(rest), 1)))

177
        emb = DistEmbedding(g.number_of_nodes(), 1, 'emb2', emb_init)
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
        with F.no_grad():
            feats1 = emb(nids)
        assert np.all(F.asnumpy(feats1) == 0)

        optimizer = SparseAdagrad([emb], lr=lr)
        with F.record_grad():
            feats1 = emb(nids)
            feats2 = emb(nids)
            feats = F.cat([feats1, feats2], 0)
            assert np.all(F.asnumpy(feats) == np.zeros((len(nids) * 2, 1)))
            loss = F.sum(feats + 1, 0)
        loss.backward()
        optimizer.step()
        with F.no_grad():
            feats = emb(nids)
        if num_clients == 1:
194
            assert_almost_equal(F.asnumpy(feats), np.ones((len(nids), 1)) * 1 * -lr)
195
196
197
198
199
        rest = np.setdiff1d(np.arange(g.number_of_nodes()), F.asnumpy(nids))
        feats1 = emb(rest)
        assert np.all(F.asnumpy(feats1) == np.zeros((len(rest), 1)))
    except NotImplementedError as e:
        pass
200
201
202
    except Exception as e:
        print(e)
        sys.exit(-1)
203

204
def check_dist_graph(g, num_clients, num_nodes, num_edges):
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    # Test API
    assert g.number_of_nodes() == num_nodes
    assert g.number_of_edges() == num_edges

    # Test reading node data
    nids = F.arange(0, int(g.number_of_nodes() / 2))
    feats1 = g.ndata['features'][nids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == nids))

    # Test reading edge data
    eids = F.arange(0, int(g.number_of_edges() / 2))
    feats1 = g.edata['features'][eids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == eids))

    # Test init node data
    new_shape = (g.number_of_nodes(), 2)
223
224
    test1 = dgl.distributed.DistTensor(new_shape, F.int32)
    g.ndata['test1'] = test1
225
226
    feats = g.ndata['test1'][nids]
    assert np.all(F.asnumpy(feats) == 0)
227
    assert test1.count_nonzero() == 0
228

229
    # reference to a one that exists
230
231
    test2 = dgl.distributed.DistTensor(new_shape, F.float32, 'test2', init_func=rand_init)
    test3 = dgl.distributed.DistTensor(new_shape, F.float32, 'test2')
232
233
234
    assert np.all(F.asnumpy(test2[nids]) == F.asnumpy(test3[nids]))

    # create a tensor and destroy a tensor and create it again.
235
    test3 = dgl.distributed.DistTensor(new_shape, F.float32, 'test3', init_func=rand_init)
236
    del test3
237
    test3 = dgl.distributed.DistTensor((g.number_of_nodes(), 3), F.float32, 'test3')
238
239
    del test3

Da Zheng's avatar
Da Zheng committed
240
241
242
243
244
245
246
247
    # add tests for anonymous distributed tensor.
    test3 = dgl.distributed.DistTensor(new_shape, F.float32, init_func=rand_init)
    data = test3[0:10]
    test4 = dgl.distributed.DistTensor(new_shape, F.float32, init_func=rand_init)
    del test3
    test5 = dgl.distributed.DistTensor(new_shape, F.float32, init_func=rand_init)
    assert np.sum(F.asnumpy(test5[0:10] != data)) > 0

248
    # test a persistent tesnor
249
    test4 = dgl.distributed.DistTensor(new_shape, F.float32, 'test4', init_func=rand_init,
250
251
252
                                       persistent=True)
    del test4
    try:
253
        test4 = dgl.distributed.DistTensor((g.number_of_nodes(), 3), F.float32, 'test4')
254
255
256
        raise Exception('')
    except:
        pass
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

    # Test write data
    new_feats = F.ones((len(nids), 2), F.int32, F.cpu())
    g.ndata['test1'][nids] = new_feats
    feats = g.ndata['test1'][nids]
    assert np.all(F.asnumpy(feats) == 1)

    # Test metadata operations.
    assert len(g.ndata['features']) == g.number_of_nodes()
    assert g.ndata['features'].shape == (g.number_of_nodes(), 1)
    assert g.ndata['features'].dtype == F.int64
    assert g.node_attr_schemes()['features'].dtype == F.int64
    assert g.node_attr_schemes()['test1'].dtype == F.int32
    assert g.node_attr_schemes()['features'].shape == (1,)

272
273
    selected_nodes = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    # Test node split
274
    nodes = node_split(selected_nodes, g.get_partition_book())
275
276
277
278
279
280
    nodes = F.asnumpy(nodes)
    # We only have one partition, so the local nodes are basically all nodes in the graph.
    local_nids = np.arange(g.number_of_nodes())
    for n in nodes:
        assert n in local_nids

281
282
    print('end')

283
def check_dist_emb_server_client(shared_mem, num_servers, num_clients, num_groups=1):
284
    prepare_dist(num_servers)
285
286
287
288
    g = create_random_graph(10000)

    # Partition the graph
    num_parts = 1
289
    graph_name = f'check_dist_emb_{shared_mem}_{num_servers}_{num_clients}_{num_groups}'
290
291
292
293
294
295
296
297
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')

    # let's just test on one partition for now.
    # We cannot run multiple servers and clients on the same machine.
    serv_ps = []
    ctx = mp.get_context('spawn')
298
    keep_alive = num_groups > 1
299
300
    for serv_id in range(num_servers):
        p = ctx.Process(target=run_server, args=(graph_name, serv_id, num_servers,
301
                                                 num_clients, shared_mem, keep_alive))
302
303
304
305
306
        serv_ps.append(p)
        p.start()

    cli_ps = []
    for cli_id in range(num_clients):
307
308
309
310
311
312
313
        for group_id in range(num_groups):
            print('start client[{}] for group[{}]'.format(cli_id, group_id))
            p = ctx.Process(target=run_emb_client, args=(graph_name, 0, num_servers, num_clients,
                                                        g.number_of_nodes(),
                                                        g.number_of_edges(),
                                                        group_id))
            p.start()
314
            time.sleep(1) # avoid race condition when instantiating DistGraph
315
            cli_ps.append(p)
316
317
318

    for p in cli_ps:
        p.join()
319
        assert p.exitcode == 0
320

321
322
323
324
325
    if keep_alive:
        for p in serv_ps:
            assert p.is_alive()
        # force shutdown server
        dgl.distributed.shutdown_servers("kv_ip_config.txt", num_servers)
326
327
328
329
330
    for p in serv_ps:
        p.join()

    print('clients have terminated')

331
def check_server_client(shared_mem, num_servers, num_clients, num_groups=1):
332
    prepare_dist(num_servers)
333
334
335
336
    g = create_random_graph(10000)

    # Partition the graph
    num_parts = 1
337
    graph_name = f'check_server_client_{shared_mem}_{num_servers}_{num_clients}_{num_groups}'
338
339
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
340
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')
341
342
343
344

    # let's just test on one partition for now.
    # We cannot run multiple servers and clients on the same machine.
    serv_ps = []
345
    ctx = mp.get_context('spawn')
346
    keep_alive = num_groups > 1
347
    for serv_id in range(num_servers):
348
        p = ctx.Process(target=run_server, args=(graph_name, serv_id, num_servers,
349
                                                 num_clients, shared_mem, keep_alive))
350
351
352
        serv_ps.append(p)
        p.start()

353
    # launch different client groups simultaneously
354
    cli_ps = []
355
    for cli_id in range(num_clients):
356
357
358
359
360
        for group_id in range(num_groups):
            print('start client[{}] for group[{}]'.format(cli_id, group_id))
            p = ctx.Process(target=run_client, args=(graph_name, 0, num_servers, num_clients, g.number_of_nodes(),
                                                    g.number_of_edges(), group_id))
            p.start()
361
            time.sleep(1) # avoid race condition when instantiating DistGraph
362
            cli_ps.append(p)
363
364
    for p in cli_ps:
        p.join()
365

366
367
368
369
370
    if keep_alive:
        for p in serv_ps:
            assert p.is_alive()
        # force shutdown server
        dgl.distributed.shutdown_servers("kv_ip_config.txt", num_servers)
371
372
373
    for p in serv_ps:
        p.join()

374
375
    print('clients have terminated')

376
def check_server_client_hierarchy(shared_mem, num_servers, num_clients):
377
    prepare_dist(num_servers)
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    g = create_random_graph(10000)

    # Partition the graph
    num_parts = 1
    graph_name = 'dist_graph_test_2'
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph', num_trainers_per_machine=num_clients)

    # let's just test on one partition for now.
    # We cannot run multiple servers and clients on the same machine.
    serv_ps = []
    ctx = mp.get_context('spawn')
    for serv_id in range(num_servers):
        p = ctx.Process(target=run_server, args=(graph_name, serv_id, num_servers,
                                                 num_clients, shared_mem))
        serv_ps.append(p)
        p.start()

    cli_ps = []
    manager = mp.Manager()
    return_dict = manager.dict()
    node_mask = np.zeros((g.number_of_nodes(),), np.int32)
    edge_mask = np.zeros((g.number_of_edges(),), np.int32)
    nodes = np.random.choice(g.number_of_nodes(), g.number_of_nodes() // 10, replace=False)
    edges = np.random.choice(g.number_of_edges(), g.number_of_edges() // 10, replace=False)
    node_mask[nodes] = 1
    edge_mask[edges] = 1
    nodes = np.sort(nodes)
    edges = np.sort(edges)
    for cli_id in range(num_clients):
        print('start client', cli_id)
        p = ctx.Process(target=run_client_hierarchy, args=(graph_name, 0, num_servers,
                                                           node_mask, edge_mask, return_dict))
        p.start()
        cli_ps.append(p)

    for p in cli_ps:
        p.join()
    for p in serv_ps:
        p.join()

    nodes1 = []
    edges1 = []
    for n, e in return_dict.values():
        nodes1.append(n)
        edges1.append(e)
    nodes1, _ = F.sort_1d(F.cat(nodes1, 0))
    edges1, _ = F.sort_1d(F.cat(edges1, 0))
    assert np.all(F.asnumpy(nodes1) == nodes)
    assert np.all(F.asnumpy(edges1) == edges)

    print('clients have terminated')

432
433

def run_client_hetero(graph_name, part_id, server_count, num_clients, num_nodes, num_edges):
434
435
    os.environ['DGL_NUM_SERVER'] = str(server_count)
    dgl.distributed.initialize("kv_ip_config.txt")
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
    gpb, graph_name, _, _ = load_partition_book('/tmp/dist_graph/{}.json'.format(graph_name),
                                                part_id, None)
    g = DistGraph(graph_name, gpb=gpb)
    check_dist_graph_hetero(g, num_clients, num_nodes, num_edges)

def create_random_hetero():
    num_nodes = {'n1': 10000, 'n2': 10010, 'n3': 10020}
    etypes = [('n1', 'r1', 'n2'),
              ('n1', 'r2', 'n3'),
              ('n2', 'r3', 'n3')]
    edges = {}
    for etype in etypes:
        src_ntype, _, dst_ntype = etype
        arr = spsp.random(num_nodes[src_ntype], num_nodes[dst_ntype], density=0.001, format='coo',
                          random_state=100)
        edges[etype] = (arr.row, arr.col)
    g = dgl.heterograph(edges, num_nodes)
    g.nodes['n1'].data['feat'] = F.unsqueeze(F.arange(0, g.number_of_nodes('n1')), 1)
    g.edges['r1'].data['feat'] = F.unsqueeze(F.arange(0, g.number_of_edges('r1')), 1)
    return g

def check_dist_graph_hetero(g, num_clients, num_nodes, num_edges):
    # Test API
    for ntype in num_nodes:
        assert ntype in g.ntypes
        assert num_nodes[ntype] == g.number_of_nodes(ntype)
    for etype in num_edges:
        assert etype in g.etypes
        assert num_edges[etype] == g.number_of_edges(etype)
465
466
467
468
469
470
471
    etypes = [('n1', 'r1', 'n2'),
              ('n1', 'r2', 'n3'),
              ('n2', 'r3', 'n3')]
    for i, etype in enumerate(g.canonical_etypes):
        assert etype[0] == etypes[i][0]
        assert etype[1] == etypes[i][1]
        assert etype[2] == etypes[i][2]
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
    assert g.number_of_nodes() == sum([num_nodes[ntype] for ntype in num_nodes])
    assert g.number_of_edges() == sum([num_edges[etype] for etype in num_edges])

    # Test reading node data
    nids = F.arange(0, int(g.number_of_nodes('n1') / 2))
    feats1 = g.nodes['n1'].data['feat'][nids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == nids))

    # Test reading edge data
    eids = F.arange(0, int(g.number_of_edges('r1') / 2))
    feats1 = g.edges['r1'].data['feat'][eids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == eids))

    # Test init node data
    new_shape = (g.number_of_nodes('n1'), 2)
    g.nodes['n1'].data['test1'] = dgl.distributed.DistTensor(new_shape, F.int32)
    feats = g.nodes['n1'].data['test1'][nids]
    assert np.all(F.asnumpy(feats) == 0)

    # create a tensor and destroy a tensor and create it again.
    test3 = dgl.distributed.DistTensor(new_shape, F.float32, 'test3', init_func=rand_init)
    del test3
    test3 = dgl.distributed.DistTensor((g.number_of_nodes('n1'), 3), F.float32, 'test3')
    del test3

    # add tests for anonymous distributed tensor.
    test3 = dgl.distributed.DistTensor(new_shape, F.float32, init_func=rand_init)
    data = test3[0:10]
    test4 = dgl.distributed.DistTensor(new_shape, F.float32, init_func=rand_init)
    del test3
    test5 = dgl.distributed.DistTensor(new_shape, F.float32, init_func=rand_init)
    assert np.sum(F.asnumpy(test5[0:10] != data)) > 0

    # test a persistent tesnor
    test4 = dgl.distributed.DistTensor(new_shape, F.float32, 'test4', init_func=rand_init,
                                       persistent=True)
    del test4
    try:
        test4 = dgl.distributed.DistTensor((g.number_of_nodes('n1'), 3), F.float32, 'test4')
        raise Exception('')
    except:
        pass

    # Test write data
    new_feats = F.ones((len(nids), 2), F.int32, F.cpu())
    g.nodes['n1'].data['test1'][nids] = new_feats
    feats = g.nodes['n1'].data['test1'][nids]
    assert np.all(F.asnumpy(feats) == 1)

    # Test metadata operations.
    assert len(g.nodes['n1'].data['feat']) == g.number_of_nodes('n1')
    assert g.nodes['n1'].data['feat'].shape == (g.number_of_nodes('n1'), 1)
    assert g.nodes['n1'].data['feat'].dtype == F.int64

    selected_nodes = np.random.randint(0, 100, size=g.number_of_nodes('n1')) > 30
    # Test node split
    nodes = node_split(selected_nodes, g.get_partition_book(), ntype='n1')
    nodes = F.asnumpy(nodes)
    # We only have one partition, so the local nodes are basically all nodes in the graph.
    local_nids = np.arange(g.number_of_nodes('n1'))
    for n in nodes:
        assert n in local_nids

    print('end')

def check_server_client_hetero(shared_mem, num_servers, num_clients):
540
    prepare_dist(num_servers)
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
    g = create_random_hetero()

    # Partition the graph
    num_parts = 1
    graph_name = 'dist_graph_test_3'
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')

    # let's just test on one partition for now.
    # We cannot run multiple servers and clients on the same machine.
    serv_ps = []
    ctx = mp.get_context('spawn')
    for serv_id in range(num_servers):
        p = ctx.Process(target=run_server, args=(graph_name, serv_id, num_servers,
                                                 num_clients, shared_mem))
        serv_ps.append(p)
        p.start()

    cli_ps = []
    num_nodes = {ntype: g.number_of_nodes(ntype) for ntype in g.ntypes}
    num_edges = {etype: g.number_of_edges(etype) for etype in g.etypes}
    for cli_id in range(num_clients):
        print('start client', cli_id)
        p = ctx.Process(target=run_client_hetero, args=(graph_name, 0, num_servers, num_clients, num_nodes,
                                                        num_edges))
        p.start()
        cli_ps.append(p)

    for p in cli_ps:
        p.join()

    for p in serv_ps:
        p.join()

    print('clients have terminated')

576
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
577
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support some of operations in DistGraph")
578
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
579
def test_server_client():
580
    reset_envs()
581
    os.environ['DGL_DIST_MODE'] = 'distributed'
582
    check_server_client_hierarchy(False, 1, 4)
583
    check_server_client_empty(True, 1, 1)
584
585
    check_server_client_hetero(True, 1, 1)
    check_server_client_hetero(False, 1, 1)
586
587
588
    check_server_client(True, 1, 1)
    check_server_client(False, 1, 1)
    check_server_client(True, 2, 2)
589
590
591
    check_server_client(True, 1, 1, 2)
    check_server_client(False, 1, 1, 2)
    check_server_client(True, 2, 2, 2)
592

593
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
594
595
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support distributed DistEmbedding")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Mxnet doesn't support distributed DistEmbedding")
596
def test_dist_emb_server_client():
597
    reset_envs()
598
599
600
601
    os.environ['DGL_DIST_MODE'] = 'distributed'
    check_dist_emb_server_client(True, 1, 1)
    check_dist_emb_server_client(False, 1, 1)
    check_dist_emb_server_client(True, 2, 2)
602
603
604
    check_dist_emb_server_client(True, 1, 1, 2)
    check_dist_emb_server_client(False, 1, 1, 2)
    check_dist_emb_server_client(True, 2, 2, 2)
605

606
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support some of operations in DistGraph")
607
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
608
def test_standalone():
609
    reset_envs()
610
    os.environ['DGL_DIST_MODE'] = 'standalone'
Da Zheng's avatar
Da Zheng committed
611

612
613
614
615
616
617
618
    g = create_random_graph(10000)
    # Partition the graph
    num_parts = 1
    graph_name = 'dist_graph_test_3'
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')
619
620

    dgl.distributed.initialize("kv_ip_config.txt")
621
    dist_g = DistGraph(graph_name, part_config='/tmp/dist_graph/{}.json'.format(graph_name))
622
    check_dist_graph(dist_g, 1, g.number_of_nodes(), g.number_of_edges())
623
    dgl.distributed.exit_client() # this is needed since there's two test here in one process
624

625
626
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support distributed DistEmbedding")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Mxnet doesn't support distributed DistEmbedding")
627
def test_standalone_node_emb():
628
    reset_envs()
629
630
631
632
633
634
635
636
637
638
639
640
    os.environ['DGL_DIST_MODE'] = 'standalone'

    g = create_random_graph(10000)
    # Partition the graph
    num_parts = 1
    graph_name = 'dist_graph_test_3'
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')

    dgl.distributed.initialize("kv_ip_config.txt")
    dist_g = DistGraph(graph_name, part_config='/tmp/dist_graph/{}.json'.format(graph_name))
641
    check_dist_emb(dist_g, 1, g.number_of_nodes(), g.number_of_edges())
642
643
    dgl.distributed.exit_client() # this is needed since there's two test here in one process

644
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
645
646
647
648
def test_split():
    g = create_random_graph(10000)
    num_parts = 4
    num_hops = 2
649
    partition_graph(g, 'dist_graph_test', num_parts, '/tmp/dist_graph', num_hops=num_hops, part_method='metis')
650
651
652
653
654

    node_mask = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    edge_mask = np.random.randint(0, 100, size=g.number_of_edges()) > 30
    selected_nodes = np.nonzero(node_mask)[0]
    selected_edges = np.nonzero(edge_mask)[0]
Da Zheng's avatar
Da Zheng committed
655
656
657
658
659
660
661
662
663

    # The code now collects the roles of all client processes and use the information
    # to determine how to split the workloads. Here is to simulate the multi-client
    # use case.
    def set_roles(num_clients):
        dgl.distributed.role.CUR_ROLE = 'default'
        dgl.distributed.role.GLOBAL_RANK = {i:i for i in range(num_clients)}
        dgl.distributed.role.PER_ROLE_RANK['default'] = {i:i for i in range(num_clients)}

664
    for i in range(num_parts):
Da Zheng's avatar
Da Zheng committed
665
        set_roles(num_parts)
666
        part_g, node_feats, edge_feats, gpb, _, _, _ = load_partition('/tmp/dist_graph/dist_graph_test.json', i)
Da Zheng's avatar
Da Zheng committed
667
        local_nids = F.nonzero_1d(part_g.ndata['inner_node'])
668
669
        local_nids = F.gather_row(part_g.ndata[dgl.NID], local_nids)
        nodes1 = np.intersect1d(selected_nodes, F.asnumpy(local_nids))
670
        nodes2 = node_split(node_mask, gpb, rank=i, force_even=False)
671
672
673
674
675
        assert np.all(np.sort(nodes1) == np.sort(F.asnumpy(nodes2)))
        local_nids = F.asnumpy(local_nids)
        for n in nodes1:
            assert n in local_nids

Da Zheng's avatar
Da Zheng committed
676
        set_roles(num_parts * 2)
677
678
        nodes3 = node_split(node_mask, gpb, rank=i * 2, force_even=False)
        nodes4 = node_split(node_mask, gpb, rank=i * 2 + 1, force_even=False)
679
680
681
        nodes5 = F.cat([nodes3, nodes4], 0)
        assert np.all(np.sort(nodes1) == np.sort(F.asnumpy(nodes5)))

Da Zheng's avatar
Da Zheng committed
682
        set_roles(num_parts)
Da Zheng's avatar
Da Zheng committed
683
        local_eids = F.nonzero_1d(part_g.edata['inner_edge'])
684
685
        local_eids = F.gather_row(part_g.edata[dgl.EID], local_eids)
        edges1 = np.intersect1d(selected_edges, F.asnumpy(local_eids))
686
        edges2 = edge_split(edge_mask, gpb, rank=i, force_even=False)
687
688
689
690
691
        assert np.all(np.sort(edges1) == np.sort(F.asnumpy(edges2)))
        local_eids = F.asnumpy(local_eids)
        for e in edges1:
            assert e in local_eids

Da Zheng's avatar
Da Zheng committed
692
        set_roles(num_parts * 2)
693
694
        edges3 = edge_split(edge_mask, gpb, rank=i * 2, force_even=False)
        edges4 = edge_split(edge_mask, gpb, rank=i * 2 + 1, force_even=False)
695
696
697
        edges5 = F.cat([edges3, edges4], 0)
        assert np.all(np.sort(edges1) == np.sort(F.asnumpy(edges5)))

698
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
699
700
701
702
703
704
705
706
707
708
709
710
711
712
def test_split_even():
    g = create_random_graph(10000)
    num_parts = 4
    num_hops = 2
    partition_graph(g, 'dist_graph_test', num_parts, '/tmp/dist_graph', num_hops=num_hops, part_method='metis')

    node_mask = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    edge_mask = np.random.randint(0, 100, size=g.number_of_edges()) > 30
    selected_nodes = np.nonzero(node_mask)[0]
    selected_edges = np.nonzero(edge_mask)[0]
    all_nodes1 = []
    all_nodes2 = []
    all_edges1 = []
    all_edges2 = []
Da Zheng's avatar
Da Zheng committed
713
714
715
716
717
718
719
720
721

    # The code now collects the roles of all client processes and use the information
    # to determine how to split the workloads. Here is to simulate the multi-client
    # use case.
    def set_roles(num_clients):
        dgl.distributed.role.CUR_ROLE = 'default'
        dgl.distributed.role.GLOBAL_RANK = {i:i for i in range(num_clients)}
        dgl.distributed.role.PER_ROLE_RANK['default'] = {i:i for i in range(num_clients)}

722
    for i in range(num_parts):
Da Zheng's avatar
Da Zheng committed
723
        set_roles(num_parts)
724
        part_g, node_feats, edge_feats, gpb, _, _, _ = load_partition('/tmp/dist_graph/dist_graph_test.json', i)
725
726
        local_nids = F.nonzero_1d(part_g.ndata['inner_node'])
        local_nids = F.gather_row(part_g.ndata[dgl.NID], local_nids)
727
        nodes = node_split(node_mask, gpb, rank=i, force_even=True)
728
729
730
731
        all_nodes1.append(nodes)
        subset = np.intersect1d(F.asnumpy(nodes), F.asnumpy(local_nids))
        print('part {} get {} nodes and {} are in the partition'.format(i, len(nodes), len(subset)))

Da Zheng's avatar
Da Zheng committed
732
        set_roles(num_parts * 2)
733
734
735
        nodes1 = node_split(node_mask, gpb, rank=i * 2, force_even=True)
        nodes2 = node_split(node_mask, gpb, rank=i * 2 + 1, force_even=True)
        nodes3, _ = F.sort_1d(F.cat([nodes1, nodes2], 0))
736
737
738
739
        all_nodes2.append(nodes3)
        subset = np.intersect1d(F.asnumpy(nodes), F.asnumpy(nodes3))
        print('intersection has', len(subset))

Da Zheng's avatar
Da Zheng committed
740
        set_roles(num_parts)
741
742
        local_eids = F.nonzero_1d(part_g.edata['inner_edge'])
        local_eids = F.gather_row(part_g.edata[dgl.EID], local_eids)
743
        edges = edge_split(edge_mask, gpb, rank=i, force_even=True)
744
745
746
747
        all_edges1.append(edges)
        subset = np.intersect1d(F.asnumpy(edges), F.asnumpy(local_eids))
        print('part {} get {} edges and {} are in the partition'.format(i, len(edges), len(subset)))

Da Zheng's avatar
Da Zheng committed
748
        set_roles(num_parts * 2)
749
750
751
        edges1 = edge_split(edge_mask, gpb, rank=i * 2, force_even=True)
        edges2 = edge_split(edge_mask, gpb, rank=i * 2 + 1, force_even=True)
        edges3, _ = F.sort_1d(F.cat([edges1, edges2], 0))
752
753
754
755
756
757
758
759
760
761
762
763
764
765
        all_edges2.append(edges3)
        subset = np.intersect1d(F.asnumpy(edges), F.asnumpy(edges3))
        print('intersection has', len(subset))
    all_nodes1 = F.cat(all_nodes1, 0)
    all_edges1 = F.cat(all_edges1, 0)
    all_nodes2 = F.cat(all_nodes2, 0)
    all_edges2 = F.cat(all_edges2, 0)
    all_nodes = np.nonzero(node_mask)[0]
    all_edges = np.nonzero(edge_mask)[0]
    assert np.all(all_nodes == F.asnumpy(all_nodes1))
    assert np.all(all_edges == F.asnumpy(all_edges1))
    assert np.all(all_nodes == F.asnumpy(all_nodes2))
    assert np.all(all_edges == F.asnumpy(all_edges2))

766
767
def prepare_dist(num_servers=1):
    generate_ip_config("kv_ip_config.txt", 1, num_servers=num_servers)
768

769
if __name__ == '__main__':
Da Zheng's avatar
Da Zheng committed
770
    os.makedirs('/tmp/dist_graph', exist_ok=True)
771
    test_dist_emb_server_client()
772
    test_server_client()
773
774
    test_split()
    test_split_even()
775
    test_standalone()
776
    test_standalone_node_emb()