test_dist_graph_store.py 5.86 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
import os
os.environ['OMP_NUM_THREADS'] = '1'
import dgl
import sys
import numpy as np
import time
from scipy import sparse as spsp
from numpy.testing import assert_array_equal
from multiprocessing import Process, Manager, Condition, Value
import multiprocessing as mp
from dgl.graph_index import create_graph_index
from dgl.data.utils import load_graphs, save_graphs
from dgl.distributed import DistGraphServer, DistGraph
14
from dgl.distributed import partition_graph, load_partition, GraphPartitionBook, node_split, edge_split
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import backend as F
import unittest
import pickle

server_namebook = {0: [0, '127.0.0.1', 30000, 1]}

def create_random_graph(n):
    arr = (spsp.random(n, n, density=0.001, format='coo') != 0).astype(np.int64)
    ig = create_graph_index(arr, readonly=True)
    return dgl.DGLGraph(ig)

def run_server(graph_name, server_id, num_clients, barrier):
    g = DistGraphServer(server_id, server_namebook, num_clients, graph_name,
                        '/tmp/{}.json'.format(graph_name))
    barrier.wait()
    print('start server', server_id)
    g.start()

def run_client(graph_name, barrier, num_nodes, num_edges):
    barrier.wait()
    g = DistGraph(server_namebook, graph_name)

    # Test API
    assert g.number_of_nodes() == num_nodes
    assert g.number_of_edges() == num_edges

    # Test reading node data
    nids = F.arange(0, int(g.number_of_nodes() / 2))
    feats1 = g.ndata['features'][nids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == nids))

    # Test reading edge data
    eids = F.arange(0, int(g.number_of_edges() / 2))
    feats1 = g.edata['features'][eids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == eids))

    # Test init node data
    new_shape = (g.number_of_nodes(), 2)
    g.init_ndata('test1', new_shape, F.int32)
    feats = g.ndata['test1'][nids]
    assert np.all(F.asnumpy(feats) == 0)

    # Test init edge data
    new_shape = (g.number_of_edges(), 2)
    g.init_edata('test1', new_shape, F.int32)
    feats = g.edata['test1'][eids]
    assert np.all(F.asnumpy(feats) == 0)

    # Test write data
    new_feats = F.ones((len(nids), 2), F.int32, F.cpu())
    g.ndata['test1'][nids] = new_feats
    feats = g.ndata['test1'][nids]
    assert np.all(F.asnumpy(feats) == 1)

    # Test metadata operations.
    assert len(g.ndata['features']) == g.number_of_nodes()
    assert g.ndata['features'].shape == (g.number_of_nodes(), 1)
    assert g.ndata['features'].dtype == F.int64
    assert g.node_attr_schemes()['features'].dtype == F.int64
    assert g.node_attr_schemes()['test1'].dtype == F.int32
    assert g.node_attr_schemes()['features'].shape == (1,)

79
80
81
82
83
84
85
86
87
    selected_nodes = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    # Test node split
    nodes = node_split(selected_nodes, g.get_partition_book(), g.rank())
    nodes = F.asnumpy(nodes)
    # We only have one partition, so the local nodes are basically all nodes in the graph.
    local_nids = np.arange(g.number_of_nodes())
    for n in nodes:
        assert n in local_nids

88
89
90
    g.shut_down()
    print('end')

91
92
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support some of operations in DistGraph")
def test_server_client():
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    g = create_random_graph(10000)

    # Partition the graph
    num_parts = 1
    graph_name = 'test'
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
    partition_graph(g, graph_name, num_parts, '/tmp')

    # let's just test on one partition for now.
    # We cannot run multiple servers and clients on the same machine.
    barrier = mp.Barrier(2)
    serv_ps = []
    for serv_id in range(1):
        p = Process(target=run_server, args=(graph_name, serv_id, 1, barrier))
        serv_ps.append(p)
        p.start()

    cli_ps = []
    for cli_id in range(1):
        print('start client', cli_id)
        p = Process(target=run_client, args=(graph_name, barrier, g.number_of_nodes(),
                                             g.number_of_edges()))
        p.start()
        cli_ps.append(p)

    for p in cli_ps:
        p.join()
    print('clients have terminated')

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
def test_split():
    g = create_random_graph(10000)
    num_parts = 4
    num_hops = 2
    partition_graph(g, 'test', num_parts, '/tmp', num_hops=num_hops, part_method='metis')

    node_mask = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    edge_mask = np.random.randint(0, 100, size=g.number_of_edges()) > 30
    selected_nodes = np.nonzero(node_mask)[0]
    selected_edges = np.nonzero(edge_mask)[0]
    for i in range(num_parts):
        part_g, node_feats, edge_feats, meta = load_partition('/tmp/test.json', i)
        num_nodes, num_edges, node_map, edge_map, num_partitions = meta
        gpb = GraphPartitionBook(part_id=i,
                                 num_parts=num_partitions,
                                 node_map=node_map,
                                 edge_map=edge_map,
                                 part_graph=part_g)
        local_nids = F.nonzero_1d(part_g.ndata['local_node'])
        local_nids = F.gather_row(part_g.ndata[dgl.NID], local_nids)
        nodes1 = np.intersect1d(selected_nodes, F.asnumpy(local_nids))
        nodes2 = node_split(node_mask, gpb, i)
        assert np.all(np.sort(nodes1) == np.sort(F.asnumpy(nodes2)))
        local_nids = F.asnumpy(local_nids)
        for n in nodes1:
            assert n in local_nids

        local_eids = F.nonzero_1d(part_g.edata['local_edge'])
        local_eids = F.gather_row(part_g.edata[dgl.EID], local_eids)
        edges1 = np.intersect1d(selected_edges, F.asnumpy(local_eids))
        edges2 = edge_split(edge_mask, gpb, i)
        assert np.all(np.sort(edges1) == np.sort(F.asnumpy(edges2)))
        local_eids = F.asnumpy(local_eids)
        for e in edges1:
            assert e in local_eids

159
if __name__ == '__main__':
160
161
    test_split()
    test_server_client()