test_distributed_sampling.py 39.5 KB
Newer Older
Jinjing Zhou's avatar
Jinjing Zhou committed
1
2
3
import dgl
import unittest
import os
4
import traceback
Jinjing Zhou's avatar
Jinjing Zhou committed
5
from dgl.data import CitationGraphDataset
6
7
from dgl.data import WN18Dataset
from dgl.distributed import sample_neighbors, sample_etype_neighbors
Jinjing Zhou's avatar
Jinjing Zhou committed
8
9
10
11
12
13
from dgl.distributed import partition_graph, load_partition, load_partition_book
import sys
import multiprocessing as mp
import numpy as np
import backend as F
import time
14
from utils import generate_ip_config, reset_envs
Jinjing Zhou's avatar
Jinjing Zhou committed
15
from pathlib import Path
16
import pytest
17
from scipy import sparse as spsp
18
import random
Jinjing Zhou's avatar
Jinjing Zhou committed
19
20
21
from dgl.distributed import DistGraphServer, DistGraph


22
23
def start_server(rank, tmpdir, disable_shared_mem, graph_name, graph_format=['csc', 'coo'],
                 keep_alive=False):
24
    g = DistGraphServer(rank, "rpc_ip_config.txt", 1, 1,
25
                        tmpdir / (graph_name + '.json'), disable_shared_mem=disable_shared_mem,
26
                        graph_format=graph_format, keep_alive=keep_alive)
Jinjing Zhou's avatar
Jinjing Zhou committed
27
28
29
    g.start()


30
def start_sample_client(rank, tmpdir, disable_shared_mem):
31
32
    gpb = None
    if disable_shared_mem:
33
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
34
    dgl.distributed.initialize("rpc_ip_config.txt")
35
    dist_graph = DistGraph("test_sampling", gpb=gpb)
36
37
38
    try:
        sampled_graph = sample_neighbors(dist_graph, [0, 10, 99, 66, 1024, 2008], 3)
    except Exception as e:
39
        print(traceback.format_exc())
40
        sampled_graph = None
41
    dgl.distributed.exit_client()
Jinjing Zhou's avatar
Jinjing Zhou committed
42
43
    return sampled_graph

44

45
46
def start_sample_client_shuffle(rank, tmpdir, disable_shared_mem, g, num_servers, group_id,
        orig_nid, orig_eid):
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    os.environ['DGL_GROUP_ID'] = str(group_id)
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_sampling", gpb=gpb)
    sampled_graph = sample_neighbors(dist_graph, [0, 10, 99, 66, 1024, 2008], 3)

    src, dst = sampled_graph.edges()
    src = orig_nid[src]
    dst = orig_nid[dst]
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    eids1 = orig_eid[sampled_graph.edata[dgl.EID]]
    assert np.array_equal(F.asnumpy(eids1), F.asnumpy(eids))

64
def start_find_edges_client(rank, tmpdir, disable_shared_mem, eids, etype=None):
65
66
    gpb = None
    if disable_shared_mem:
67
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_find_edges.json', rank)
68
    dgl.distributed.initialize("rpc_ip_config.txt")
69
    dist_graph = DistGraph("test_find_edges", gpb=gpb)
70
    try:
71
        u, v = dist_graph.find_edges(eids, etype=etype)
72
    except Exception as e:
73
        print(traceback.format_exc())
74
        u, v = None, None
75
76
    dgl.distributed.exit_client()
    return u, v
Jinjing Zhou's avatar
Jinjing Zhou committed
77

78
79
80
81
def start_get_degrees_client(rank, tmpdir, disable_shared_mem, nids=None):
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_get_degrees.json', rank)
82
    dgl.distributed.initialize("rpc_ip_config.txt")
83
84
85
86
87
88
89
    dist_graph = DistGraph("test_get_degrees", gpb=gpb)
    try:
        in_deg = dist_graph.in_degrees(nids)
        all_in_deg = dist_graph.in_degrees()
        out_deg = dist_graph.out_degrees(nids)
        all_out_deg = dist_graph.out_degrees()
    except Exception as e:
90
        print(traceback.format_exc())
91
92
93
94
        in_deg, out_deg, all_in_deg, all_out_deg = None, None, None, None
    dgl.distributed.exit_client()
    return in_deg, out_deg, all_in_deg, all_out_deg

95
def check_rpc_sampling(tmpdir, num_server):
96
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
Jinjing Zhou's avatar
Jinjing Zhou committed
97
98
99
100
101
102
103
104
105
106
107
108
109

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    print(g.idtype)
    num_parts = num_server
    num_hops = 1

    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=False)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
110
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
Jinjing Zhou's avatar
Jinjing Zhou committed
111
112
113
114
        p.start()
        time.sleep(1)
        pserver_list.append(p)

115
    sampled_graph = start_sample_client(0, tmpdir, num_server > 1)
Jinjing Zhou's avatar
Jinjing Zhou committed
116
117
118
119
120
121
122
123
124
125
126
    print("Done sampling")
    for p in pserver_list:
        p.join()

    src, dst = sampled_graph.edges()
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))

127
def check_rpc_find_edges_shuffle(tmpdir, num_server):
128
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
129
130
131
132
133

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server

134
135
136
    orig_nid, orig_eid = partition_graph(g, 'test_find_edges', num_parts, tmpdir,
                                         num_hops=1, part_method='metis',
                                         reshuffle=True, return_mapping=True)
137
138
139
140

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
141
142
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1,
                                                   'test_find_edges', ['csr', 'coo']))
143
144
145
146
147
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    eids = F.tensor(np.random.randint(g.number_of_edges(), size=100))
148
    u, v = g.find_edges(orig_eid[eids])
149
    du, dv = start_find_edges_client(0, tmpdir, num_server > 1, eids)
150
151
    du = orig_nid[du]
    dv = orig_nid[dv]
152
153
154
    assert F.array_equal(u, du)
    assert F.array_equal(v, dv)

155
156
157
def create_random_hetero(dense=False, empty=False):
    num_nodes = {'n1': 210, 'n2': 200, 'n3': 220} if dense else \
        {'n1': 1010, 'n2': 1000, 'n3': 1020}
158
159
160
    etypes = [('n1', 'r12', 'n2'),
              ('n1', 'r13', 'n3'),
              ('n2', 'r23', 'n3')]
161
    edges = {}
162
    random.seed(42)
163
164
    for etype in etypes:
        src_ntype, _, dst_ntype = etype
165
166
167
168
        arr = spsp.random(num_nodes[src_ntype] - 10 if empty else num_nodes[src_ntype],
                          num_nodes[dst_ntype] - 10 if empty else num_nodes[dst_ntype],
                          density=0.1 if dense else 0.001,
                          format='coo', random_state=100)
169
        edges[etype] = (arr.row, arr.col)
170
171
172
    g = dgl.heterograph(edges, num_nodes)
    g.nodes['n1'].data['feat'] = F.ones((g.number_of_nodes('n1'), 10), F.float32, F.cpu())
    return g
173
174

def check_rpc_hetero_find_edges_shuffle(tmpdir, num_server):
175
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

    g = create_random_hetero()
    num_parts = num_server

    orig_nid, orig_eid = partition_graph(g, 'test_find_edges', num_parts, tmpdir,
                                         num_hops=1, part_method='metis',
                                         reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1,
                                                   'test_find_edges', ['csr', 'coo']))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

193
194
195
196
197
198
199
200
201
202
203
204
    eids = F.tensor(np.random.randint(g.num_edges('r12'), size=100))
    expect_except = False
    try:
        _, _ = g.find_edges(orig_eid['r12'][eids], etype=('n1', 'r12'))
    except:
        expect_except = True
    assert expect_except
    u, v = g.find_edges(orig_eid['r12'][eids], etype='r12')
    u1, v1 = g.find_edges(orig_eid['r12'][eids], etype=('n1', 'r12', 'n2'))
    assert F.array_equal(u, u1)
    assert F.array_equal(v, v1)
    du, dv = start_find_edges_client(0, tmpdir, num_server > 1, eids, etype='r12')
205
206
207
208
209
    du = orig_nid['n1'][du]
    dv = orig_nid['n2'][dv]
    assert F.array_equal(u, du)
    assert F.array_equal(v, dv)

210
211
212
# Wait non shared memory graph store
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
213
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
214
215
@pytest.mark.parametrize("num_server", [1, 2])
def test_rpc_find_edges_shuffle(num_server):
216
    reset_envs()
217
218
219
    import tempfile
    os.environ['DGL_DIST_MODE'] = 'distributed'
    with tempfile.TemporaryDirectory() as tmpdirname:
220
        check_rpc_hetero_find_edges_shuffle(Path(tmpdirname), num_server)
221
222
223
        check_rpc_find_edges_shuffle(Path(tmpdirname), num_server)

def check_rpc_get_degree_shuffle(tmpdir, num_server):
224
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
225
226
227
228
229

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server

230
231
    orig_nid, _ = partition_graph(g, 'test_get_degrees', num_parts, tmpdir,
        num_hops=1, part_method='metis', reshuffle=True, return_mapping=True)
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_get_degrees'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    nids = F.tensor(np.random.randint(g.number_of_nodes(), size=100))
    in_degs, out_degs, all_in_degs, all_out_degs = start_get_degrees_client(0, tmpdir, num_server > 1, nids)

    print("Done get_degree")
    for p in pserver_list:
        p.join()

    print('check results')
    assert F.array_equal(g.in_degrees(orig_nid[nids]), in_degs)
    assert F.array_equal(g.in_degrees(orig_nid), all_in_degs)
    assert F.array_equal(g.out_degrees(orig_nid[nids]), out_degs)
    assert F.array_equal(g.out_degrees(orig_nid), all_out_degs)

# Wait non shared memory graph store
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
257
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
258
259
@pytest.mark.parametrize("num_server", [1, 2])
def test_rpc_get_degree_shuffle(num_server):
260
    reset_envs()
261
262
263
264
265
    import tempfile
    os.environ['DGL_DIST_MODE'] = 'distributed'
    with tempfile.TemporaryDirectory() as tmpdirname:
        check_rpc_get_degree_shuffle(Path(tmpdirname), num_server)

266
267
268
#@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
#@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
@unittest.skip('Only support partition with shuffle')
Jinjing Zhou's avatar
Jinjing Zhou committed
269
def test_rpc_sampling():
270
    reset_envs()
Jinjing Zhou's avatar
Jinjing Zhou committed
271
    import tempfile
272
    os.environ['DGL_DIST_MODE'] = 'distributed'
Jinjing Zhou's avatar
Jinjing Zhou committed
273
    with tempfile.TemporaryDirectory() as tmpdirname:
274
        check_rpc_sampling(Path(tmpdirname), 2)
Jinjing Zhou's avatar
Jinjing Zhou committed
275

276
def check_rpc_sampling_shuffle(tmpdir, num_server, num_groups=1):
277
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
278

Jinjing Zhou's avatar
Jinjing Zhou committed
279
280
281
282
283
    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server
    num_hops = 1

284
285
    orig_nids, orig_eids = partition_graph(g, 'test_sampling', num_parts, tmpdir,
        num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True)
Jinjing Zhou's avatar
Jinjing Zhou committed
286
287
288

    pserver_list = []
    ctx = mp.get_context('spawn')
289
    keep_alive = num_groups > 1
Jinjing Zhou's avatar
Jinjing Zhou committed
290
    for i in range(num_server):
291
292
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, 'test_sampling', ['csc', 'coo'], keep_alive))
Jinjing Zhou's avatar
Jinjing Zhou committed
293
294
295
296
        p.start()
        time.sleep(1)
        pserver_list.append(p)

297
298
299
300
    pclient_list = []
    num_clients = 1
    for client_id in range(num_clients):
        for group_id in range(num_groups):
301
302
303
            p = ctx.Process(target=start_sample_client_shuffle,
                args=(client_id, tmpdir, num_server > 1, g, num_server,
                    group_id, orig_nids, orig_eids))
304
            p.start()
305
            time.sleep(1) # avoid race condition when instantiating DistGraph
306
307
308
309
310
311
312
313
            pclient_list.append(p)
    for p in pclient_list:
        p.join()
    if keep_alive:
        for p in pserver_list:
            assert p.is_alive()
        # force shutdown server
        dgl.distributed.shutdown_servers("rpc_ip_config.txt", 1)
Jinjing Zhou's avatar
Jinjing Zhou committed
314
315
316
    for p in pserver_list:
        p.join()

317
def start_hetero_sample_client(rank, tmpdir, disable_shared_mem, nodes):
318
319
320
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
321
    dgl.distributed.initialize("rpc_ip_config.txt")
322
323
324
325
326
327
328
329
330
331
332
    dist_graph = DistGraph("test_sampling", gpb=gpb)
    assert 'feat' in dist_graph.nodes['n1'].data
    assert 'feat' not in dist_graph.nodes['n2'].data
    assert 'feat' not in dist_graph.nodes['n3'].data
    if gpb is None:
        gpb = dist_graph.get_partition_book()
    try:
        sampled_graph = sample_neighbors(dist_graph, nodes, 3)
        block = dgl.to_block(sampled_graph, nodes)
        block.edata[dgl.EID] = sampled_graph.edata[dgl.EID]
    except Exception as e:
333
        print(traceback.format_exc())
334
335
336
337
        block = None
    dgl.distributed.exit_client()
    return block, gpb

338
def start_hetero_etype_sample_client(rank, tmpdir, disable_shared_mem, fanout=3,
339
340
                                     nodes={'n3': [0, 10, 99, 66, 124, 208]},
                                     etype_sorted=False):
341
342
343
344
345
346
347
348
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_sampling", gpb=gpb)
    assert 'feat' in dist_graph.nodes['n1'].data
    assert 'feat' not in dist_graph.nodes['n2'].data
    assert 'feat' not in dist_graph.nodes['n3'].data
349
350
351
352
353
354
355
356
357
358
359

    if dist_graph.local_partition is not None:
        # Check whether etypes are sorted in dist_graph
        local_g = dist_graph.local_partition
        local_nids = np.arange(local_g.num_nodes())
        for lnid in local_nids:
            leids = local_g.in_edges(lnid, form='eid')
            letids = F.asnumpy(local_g.edata[dgl.ETYPE][leids])
            _, idices = np.unique(letids, return_index=True)
            assert np.all(idices[:-1] <= idices[1:])

360
361
362
    if gpb is None:
        gpb = dist_graph.get_partition_book()
    try:
363
364
        sampled_graph = sample_etype_neighbors(
                dist_graph, nodes, fanout, etype_sorted=etype_sorted)
365
366
367
        block = dgl.to_block(sampled_graph, nodes)
        block.edata[dgl.EID] = sampled_graph.edata[dgl.EID]
    except Exception as e:
368
        print(traceback.format_exc())
369
370
371
372
        block = None
    dgl.distributed.exit_client()
    return block, gpb

373
def check_rpc_hetero_sampling_shuffle(tmpdir, num_server):
374
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
375
376
377
378
379

    g = create_random_hetero()
    num_parts = num_server
    num_hops = 1

380
381
    orig_nid_map, orig_eid_map = partition_graph(g, 'test_sampling', num_parts, tmpdir,
        num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True)
382
383
384
385
386
387
388
389
390

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

391
392
    block, gpb = start_hetero_sample_client(0, tmpdir, num_server > 1,
                                            nodes = {'n3': [0, 10, 99, 66, 124, 208]})
393
394
395
396
    print("Done sampling")
    for p in pserver_list:
        p.join()

397
398
399
400
401
402
403
404
405
406
    for src_type, etype, dst_type in block.canonical_etypes:
        src, dst = block.edges(etype=etype)
        # These are global Ids after shuffling.
        shuffled_src = F.gather_row(block.srcnodes[src_type].data[dgl.NID], src)
        shuffled_dst = F.gather_row(block.dstnodes[dst_type].data[dgl.NID], dst)
        shuffled_eid = block.edges[etype].data[dgl.EID]

        orig_src = F.asnumpy(F.gather_row(orig_nid_map[src_type], shuffled_src))
        orig_dst = F.asnumpy(F.gather_row(orig_nid_map[dst_type], shuffled_dst))
        orig_eid = F.asnumpy(F.gather_row(orig_eid_map[etype], shuffled_eid))
407
408

        # Check the node Ids and edge Ids.
409
410
411
        orig_src1, orig_dst1 = g.find_edges(orig_eid, etype=etype)
        assert np.all(F.asnumpy(orig_src1) == orig_src)
        assert np.all(F.asnumpy(orig_dst1) == orig_dst)
412

413
414
415
416
417
418
419
420
421
422
def get_degrees(g, nids, ntype):
    deg = F.zeros((len(nids),), dtype=F.int64)
    for srctype, etype, dsttype in g.canonical_etypes:
        if srctype == ntype:
            deg += g.out_degrees(u=nids, etype=etype)
        elif dsttype == ntype:
            deg += g.in_degrees(v=nids, etype=etype)
    return deg

def check_rpc_hetero_sampling_empty_shuffle(tmpdir, num_server):
423
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

    g = create_random_hetero(empty=True)
    num_parts = num_server
    num_hops = 1

    orig_nids, _ = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                   num_hops=num_hops, part_method='metis',
                                   reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    deg = get_degrees(g, orig_nids['n3'], 'n3')
    empty_nids = F.nonzero_1d(deg == 0)
    block, gpb = start_hetero_sample_client(0, tmpdir, num_server > 1,
                                            nodes = {'n3': empty_nids})
    print("Done sampling")
    for p in pserver_list:
        p.join()

    assert block.number_of_edges() == 0
    assert len(block.etypes) == len(g.etypes)

452
def check_rpc_hetero_etype_sampling_shuffle(tmpdir, num_server, graph_formats=None):
453
454
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

455
456
457
458
    g = create_random_hetero(dense=True)
    num_parts = num_server
    num_hops = 1

459
    orig_nid_map, orig_eid_map = partition_graph(g, 'test_sampling', num_parts, tmpdir,
460
461
        num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True,
        graph_formats=graph_formats)
462
463
464
465

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
466
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling', ['csc', 'coo']))
467
468
469
470
471
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    fanout = 3
472
473
474
    etype_sorted = False
    if graph_formats is not None:
        etype_sorted = 'csc' in graph_formats or 'csr' in graph_formats
475
    block, gpb = start_hetero_etype_sample_client(0, tmpdir, num_server > 1, fanout,
476
477
                                                  nodes={'n3': [0, 10, 99, 66, 124, 208]},
                                                  etype_sorted=etype_sorted)
478
479
480
481
    print("Done sampling")
    for p in pserver_list:
        p.join()

482
    src, dst = block.edges(etype=('n1', 'r13', 'n3'))
483
    assert len(src) == 18
484
    src, dst = block.edges(etype=('n2', 'r23', 'n3'))
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
    assert len(src) == 18

    for src_type, etype, dst_type in block.canonical_etypes:
        src, dst = block.edges(etype=etype)
        # These are global Ids after shuffling.
        shuffled_src = F.gather_row(block.srcnodes[src_type].data[dgl.NID], src)
        shuffled_dst = F.gather_row(block.dstnodes[dst_type].data[dgl.NID], dst)
        shuffled_eid = block.edges[etype].data[dgl.EID]

        orig_src = F.asnumpy(F.gather_row(orig_nid_map[src_type], shuffled_src))
        orig_dst = F.asnumpy(F.gather_row(orig_nid_map[dst_type], shuffled_dst))
        orig_eid = F.asnumpy(F.gather_row(orig_eid_map[etype], shuffled_eid))

        # Check the node Ids and edge Ids.
        orig_src1, orig_dst1 = g.find_edges(orig_eid, etype=etype)
        assert np.all(F.asnumpy(orig_src1) == orig_src)
        assert np.all(F.asnumpy(orig_dst1) == orig_dst)

503
def check_rpc_hetero_etype_sampling_empty_shuffle(tmpdir, num_server):
504
505
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
    g = create_random_hetero(dense=True, empty=True)
    num_parts = num_server
    num_hops = 1

    orig_nids, _ = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                   num_hops=num_hops, part_method='metis',
                                   reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    fanout = 3
    deg = get_degrees(g, orig_nids['n3'], 'n3')
    empty_nids = F.nonzero_1d(deg == 0)
    block, gpb = start_hetero_etype_sample_client(0, tmpdir, num_server > 1, fanout,
                                                  nodes={'n3': empty_nids})
    print("Done sampling")
    for p in pserver_list:
        p.join()

    assert block.number_of_edges() == 0
    assert len(block.etypes) == len(g.etypes)

534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

def create_random_bipartite():
    g = dgl.rand_bipartite('user', 'buys', 'game', 500, 1000, 1000)
    g.nodes['user'].data['feat'] = F.ones(
        (g.num_nodes('user'), 10), F.float32, F.cpu())
    g.nodes['game'].data['feat'] = F.ones(
        (g.num_nodes('game'), 10), F.float32, F.cpu())
    return g


def start_bipartite_sample_client(rank, tmpdir, disable_shared_mem, nodes):
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(
            tmpdir / 'test_sampling.json', rank)
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_sampling", gpb=gpb)
    assert 'feat' in dist_graph.nodes['user'].data
    assert 'feat' in dist_graph.nodes['game'].data
    if gpb is None:
        gpb = dist_graph.get_partition_book()
    sampled_graph = sample_neighbors(dist_graph, nodes, 3)
    block = dgl.to_block(sampled_graph, nodes)
    if sampled_graph.num_edges() > 0:
        block.edata[dgl.EID] = sampled_graph.edata[dgl.EID]
    dgl.distributed.exit_client()
    return block, gpb


def start_bipartite_etype_sample_client(rank, tmpdir, disable_shared_mem, fanout=3,
                                        nodes={}):
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(
            tmpdir / 'test_sampling.json', rank)
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_sampling", gpb=gpb)
    assert 'feat' in dist_graph.nodes['user'].data
    assert 'feat' in dist_graph.nodes['game'].data

    if dist_graph.local_partition is not None:
        # Check whether etypes are sorted in dist_graph
        local_g = dist_graph.local_partition
        local_nids = np.arange(local_g.num_nodes())
        for lnid in local_nids:
            leids = local_g.in_edges(lnid, form='eid')
            letids = F.asnumpy(local_g.edata[dgl.ETYPE][leids])
            _, idices = np.unique(letids, return_index=True)
            assert np.all(idices[:-1] <= idices[1:])

    if gpb is None:
        gpb = dist_graph.get_partition_book()
586
    sampled_graph = sample_etype_neighbors(dist_graph, nodes, fanout)
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
    block = dgl.to_block(sampled_graph, nodes)
    if sampled_graph.num_edges() > 0:
        block.edata[dgl.EID] = sampled_graph.edata[dgl.EID]
    dgl.distributed.exit_client()
    return block, gpb


def check_rpc_bipartite_sampling_empty(tmpdir, num_server):
    """sample on bipartite via sample_neighbors() which yields empty sample results"""
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

    g = create_random_bipartite()
    num_parts = num_server
    num_hops = 1

    orig_nids, _ = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                   num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    deg = get_degrees(g, orig_nids['game'], 'game')
    empty_nids = F.nonzero_1d(deg == 0)
    block, _ = start_bipartite_sample_client(0, tmpdir, num_server > 1,
                                             nodes={'game': empty_nids, 'user': [1]})

    print("Done sampling")
    for p in pserver_list:
        p.join()

    assert block.number_of_edges() == 0
    assert len(block.etypes) == len(g.etypes)


def check_rpc_bipartite_sampling_shuffle(tmpdir, num_server):
    """sample on bipartite via sample_neighbors() which yields non-empty sample results"""
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

    g = create_random_bipartite()
    num_parts = num_server
    num_hops = 1

635
636
    orig_nid_map, orig_eid_map = partition_graph(g, 'test_sampling', num_parts, tmpdir,
        num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True)
637
638
639
640
641
642
643
644
645
646

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

647
    deg = get_degrees(g, orig_nid_map['game'], 'game')
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
    nids = F.nonzero_1d(deg > 0)
    block, gpb = start_bipartite_sample_client(0, tmpdir, num_server > 1,
                                               nodes={'game': nids, 'user': [0]})
    print("Done sampling")
    for p in pserver_list:
        p.join()

    for src_type, etype, dst_type in block.canonical_etypes:
        src, dst = block.edges(etype=etype)
        # These are global Ids after shuffling.
        shuffled_src = F.gather_row(
            block.srcnodes[src_type].data[dgl.NID], src)
        shuffled_dst = F.gather_row(
            block.dstnodes[dst_type].data[dgl.NID], dst)
        shuffled_eid = block.edges[etype].data[dgl.EID]

        orig_src = F.asnumpy(F.gather_row(
            orig_nid_map[src_type], shuffled_src))
        orig_dst = F.asnumpy(F.gather_row(
            orig_nid_map[dst_type], shuffled_dst))
        orig_eid = F.asnumpy(F.gather_row(orig_eid_map[etype], shuffled_eid))

        # Check the node Ids and edge Ids.
        orig_src1, orig_dst1 = g.find_edges(orig_eid, etype=etype)
        assert np.all(F.asnumpy(orig_src1) == orig_src)
        assert np.all(F.asnumpy(orig_dst1) == orig_dst)


def check_rpc_bipartite_etype_sampling_empty(tmpdir, num_server):
    """sample on bipartite via sample_etype_neighbors() which yields empty sample results"""
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

    g = create_random_bipartite()
    num_parts = num_server
    num_hops = 1

    orig_nids, _ = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                   num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    deg = get_degrees(g, orig_nids['game'], 'game')
    empty_nids = F.nonzero_1d(deg == 0)
    block, gpb = start_bipartite_etype_sample_client(0, tmpdir, num_server > 1,
                                                     nodes={'game': empty_nids, 'user': [1]})

    print("Done sampling")
    for p in pserver_list:
        p.join()

    assert block is not None
    assert block.number_of_edges() == 0
    assert len(block.etypes) == len(g.etypes)


def check_rpc_bipartite_etype_sampling_shuffle(tmpdir, num_server):
    """sample on bipartite via sample_etype_neighbors() which yields non-empty sample results"""
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

    g = create_random_bipartite()
    num_parts = num_server
    num_hops = 1

718
719
    orig_nid_map, orig_eid_map = partition_graph(g, 'test_sampling', num_parts, tmpdir,
        num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True)
720
721
722
723
724
725
726
727
728
729
730

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    fanout = 3
731
    deg = get_degrees(g, orig_nid_map['game'], 'game')
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
    nids = F.nonzero_1d(deg > 0)
    block, gpb = start_bipartite_etype_sample_client(0, tmpdir, num_server > 1, fanout,
                                                     nodes={'game': nids, 'user': [0]})
    print("Done sampling")
    for p in pserver_list:
        p.join()

    for src_type, etype, dst_type in block.canonical_etypes:
        src, dst = block.edges(etype=etype)
        # These are global Ids after shuffling.
        shuffled_src = F.gather_row(
            block.srcnodes[src_type].data[dgl.NID], src)
        shuffled_dst = F.gather_row(
            block.dstnodes[dst_type].data[dgl.NID], dst)
        shuffled_eid = block.edges[etype].data[dgl.EID]

        orig_src = F.asnumpy(F.gather_row(
            orig_nid_map[src_type], shuffled_src))
        orig_dst = F.asnumpy(F.gather_row(
            orig_nid_map[dst_type], shuffled_dst))
        orig_eid = F.asnumpy(F.gather_row(orig_eid_map[etype], shuffled_eid))

        # Check the node Ids and edge Ids.
        orig_src1, orig_dst1 = g.find_edges(orig_eid, etype=etype)
        assert np.all(F.asnumpy(orig_src1) == orig_src)
        assert np.all(F.asnumpy(orig_dst1) == orig_dst)

Jinjing Zhou's avatar
Jinjing Zhou committed
759
760
761
# Wait non shared memory graph store
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
762
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
763
764
@pytest.mark.parametrize("num_server", [1, 2])
def test_rpc_sampling_shuffle(num_server):
765
    reset_envs()
Jinjing Zhou's avatar
Jinjing Zhou committed
766
    import tempfile
767
    os.environ['DGL_DIST_MODE'] = 'distributed'
Jinjing Zhou's avatar
Jinjing Zhou committed
768
    with tempfile.TemporaryDirectory() as tmpdirname:
769
        check_rpc_sampling_shuffle(Path(tmpdirname), num_server)
770
771
772
        # [TODO][Rhett] Tests for multiple groups may fail sometimes and
        # root cause is unknown. Let's disable them for now.
        #check_rpc_sampling_shuffle(Path(tmpdirname), num_server, num_groups=2)
773
        check_rpc_hetero_sampling_shuffle(Path(tmpdirname), num_server)
774
        check_rpc_hetero_sampling_empty_shuffle(Path(tmpdirname), num_server)
775
        check_rpc_hetero_etype_sampling_shuffle(Path(tmpdirname), num_server)
776
777
778
        check_rpc_hetero_etype_sampling_shuffle(Path(tmpdirname), num_server, ['csc'])
        check_rpc_hetero_etype_sampling_shuffle(Path(tmpdirname), num_server, ['csr'])
        check_rpc_hetero_etype_sampling_shuffle(Path(tmpdirname), num_server, ['csc', 'coo'])
779
        check_rpc_hetero_etype_sampling_empty_shuffle(Path(tmpdirname), num_server)
780
781
782
783
        check_rpc_bipartite_sampling_empty(Path(tmpdirname), num_server)
        check_rpc_bipartite_sampling_shuffle(Path(tmpdirname), num_server)
        check_rpc_bipartite_etype_sampling_empty(Path(tmpdirname), num_server)
        check_rpc_bipartite_etype_sampling_shuffle(Path(tmpdirname), num_server)
Jinjing Zhou's avatar
Jinjing Zhou committed
784

785
def check_standalone_sampling(tmpdir, reshuffle):
786
    g = CitationGraphDataset("cora")[0]
787
788
789
790
    prob = np.maximum(np.random.randn(g.num_edges()), 0)
    mask = (prob > 0)
    g.edata['prob'] = F.tensor(prob)
    g.edata['mask'] = F.tensor(mask)
791
792
793
    num_parts = 1
    num_hops = 1
    partition_graph(g, 'test_sampling', num_parts, tmpdir,
794
                    num_hops=num_hops, part_method='metis', reshuffle=reshuffle)
795

796
    os.environ['DGL_DIST_MODE'] = 'standalone'
797
    dgl.distributed.initialize("rpc_ip_config.txt")
798
    dist_graph = DistGraph("test_sampling", part_config=tmpdir / 'test_sampling.json')
799
800
801
802
803
804
805
806
    sampled_graph = sample_neighbors(dist_graph, [0, 10, 99, 66, 1024, 2008], 3)

    src, dst = sampled_graph.edges()
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))
807
808
809
810
811
812
813
814
815
816

    sampled_graph = sample_neighbors(
            dist_graph, [0, 10, 99, 66, 1024, 2008], 3, prob='mask')
    eid = F.asnumpy(sampled_graph.edata[dgl.EID])
    assert mask[eid].all()

    sampled_graph = sample_neighbors(
            dist_graph, [0, 10, 99, 66, 1024, 2008], 3, prob='prob')
    eid = F.asnumpy(sampled_graph.edata[dgl.EID])
    assert (prob[eid] > 0).all()
817
    dgl.distributed.exit_client()
818

819
820
def check_standalone_etype_sampling(tmpdir, reshuffle):
    hg = CitationGraphDataset('cora')[0]
821
822
823
824
    prob = np.maximum(np.random.randn(hg.num_edges()), 0)
    mask = (prob > 0)
    hg.edata['prob'] = F.tensor(prob)
    hg.edata['mask'] = F.tensor(mask)
825
826
827
828
829
830
831
832
    num_parts = 1
    num_hops = 1

    partition_graph(hg, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=reshuffle)
    os.environ['DGL_DIST_MODE'] = 'standalone'
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_sampling", part_config=tmpdir / 'test_sampling.json')
833
    sampled_graph = sample_etype_neighbors(dist_graph, [0, 10, 99, 66, 1023], 3)
834
835
836
837
838
839
840

    src, dst = sampled_graph.edges()
    assert sampled_graph.number_of_nodes() == hg.number_of_nodes()
    assert np.all(F.asnumpy(hg.has_edges_between(src, dst)))
    eids = hg.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))
841
842
843
844
845
846
847
848
849
850

    sampled_graph = sample_etype_neighbors(
            dist_graph, [0, 10, 99, 66, 1023], 3, prob='mask')
    eid = F.asnumpy(sampled_graph.edata[dgl.EID])
    assert mask[eid].all()

    sampled_graph = sample_etype_neighbors(
            dist_graph, [0, 10, 99, 66, 1023], 3, prob='prob')
    eid = F.asnumpy(sampled_graph.edata[dgl.EID])
    assert (prob[eid] > 0).all()
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
    dgl.distributed.exit_client()

def check_standalone_etype_sampling_heterograph(tmpdir, reshuffle):
    hg = CitationGraphDataset('cora')[0]
    num_parts = 1
    num_hops = 1
    src, dst = hg.edges()
    new_hg = dgl.heterograph({('paper', 'cite', 'paper'): (src, dst),
                              ('paper', 'cite-by', 'paper'): (dst, src)},
                              {'paper': hg.number_of_nodes()})
    partition_graph(new_hg, 'test_hetero_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=reshuffle)
    os.environ['DGL_DIST_MODE'] = 'standalone'
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_hetero_sampling", part_config=tmpdir / 'test_hetero_sampling.json')
866
867
    sampled_graph = sample_etype_neighbors(
            dist_graph, [0, 1, 2, 10, 99, 66, 1023, 1024, 2700, 2701], 1)
868
869
870
871
872
873
874
    src, dst = sampled_graph.edges(etype=('paper', 'cite', 'paper'))
    assert len(src) == 10
    src, dst = sampled_graph.edges(etype=('paper', 'cite-by', 'paper'))
    assert len(src) == 10
    assert sampled_graph.number_of_nodes() == new_hg.number_of_nodes()
    dgl.distributed.exit_client()

875
876
877
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
def test_standalone_sampling():
878
    reset_envs()
879
880
881
    import tempfile
    os.environ['DGL_DIST_MODE'] = 'standalone'
    with tempfile.TemporaryDirectory() as tmpdirname:
882
883
        check_standalone_sampling(Path(tmpdirname), False)
        check_standalone_sampling(Path(tmpdirname), True)
884

885
886
def start_in_subgraph_client(rank, tmpdir, disable_shared_mem, nodes):
    gpb = None
887
    dgl.distributed.initialize("rpc_ip_config.txt")
888
    if disable_shared_mem:
889
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_in_subgraph.json', rank)
890
    dist_graph = DistGraph("test_in_subgraph", gpb=gpb)
891
892
893
    try:
        sampled_graph = dgl.distributed.in_subgraph(dist_graph, nodes)
    except Exception as e:
894
        print(traceback.format_exc())
895
        sampled_graph = None
896
    dgl.distributed.exit_client()
897
898
899
    return sampled_graph


900
def check_rpc_in_subgraph_shuffle(tmpdir, num_server):
901
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
902
903
904
905
906

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server

907
908
    orig_nid, orig_eid = partition_graph(g, 'test_in_subgraph', num_parts, tmpdir,
        num_hops=1, part_method='metis', reshuffle=True, return_mapping=True)
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_in_subgraph'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    nodes = [0, 10, 99, 66, 1024, 2008]
    sampled_graph = start_in_subgraph_client(0, tmpdir, num_server > 1, nodes)
    for p in pserver_list:
        p.join()

    src, dst = sampled_graph.edges()
924
925
    src = orig_nid[src]
    dst = orig_nid[dst]
926
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
927
928
929
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))

    subg1 = dgl.in_subgraph(g, orig_nid[nodes])
930
931
932
933
    src1, dst1 = subg1.edges()
    assert np.all(np.sort(F.asnumpy(src)) == np.sort(F.asnumpy(src1)))
    assert np.all(np.sort(F.asnumpy(dst)) == np.sort(F.asnumpy(dst1)))
    eids = g.edge_ids(src, dst)
934
935
    eids1 = orig_eid[sampled_graph.edata[dgl.EID]]
    assert np.array_equal(F.asnumpy(eids1), F.asnumpy(eids))
936
937
938
939

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
def test_rpc_in_subgraph():
940
    reset_envs()
941
    import tempfile
942
    os.environ['DGL_DIST_MODE'] = 'distributed'
943
    with tempfile.TemporaryDirectory() as tmpdirname:
944
        check_rpc_in_subgraph_shuffle(Path(tmpdirname), 2)
945

946
947
948
949
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
def test_standalone_etype_sampling():
950
    reset_envs()
951
952
953
954
955
956
957
958
    import tempfile
    with tempfile.TemporaryDirectory() as tmpdirname:
        os.environ['DGL_DIST_MODE'] = 'standalone'
        check_standalone_etype_sampling_heterograph(Path(tmpdirname), True)
    with tempfile.TemporaryDirectory() as tmpdirname:
        os.environ['DGL_DIST_MODE'] = 'standalone'
        check_standalone_etype_sampling(Path(tmpdirname), True)

Jinjing Zhou's avatar
Jinjing Zhou committed
959
960
961
if __name__ == "__main__":
    import tempfile
    with tempfile.TemporaryDirectory() as tmpdirname:
962
        os.environ['DGL_DIST_MODE'] = 'standalone'
963
964
965
966
967
968
        check_standalone_etype_sampling_heterograph(Path(tmpdirname), True)

    with tempfile.TemporaryDirectory() as tmpdirname:
        os.environ['DGL_DIST_MODE'] = 'standalone'
        check_standalone_etype_sampling(Path(tmpdirname), True)
        check_standalone_etype_sampling(Path(tmpdirname), False)
969
970
        check_standalone_sampling(Path(tmpdirname), True)
        check_standalone_sampling(Path(tmpdirname), False)
971
        os.environ['DGL_DIST_MODE'] = 'distributed'
972
973
        check_rpc_sampling(Path(tmpdirname), 2)
        check_rpc_sampling(Path(tmpdirname), 1)
974
975
        check_rpc_get_degree_shuffle(Path(tmpdirname), 1)
        check_rpc_get_degree_shuffle(Path(tmpdirname), 2)
976
977
        check_rpc_find_edges_shuffle(Path(tmpdirname), 2)
        check_rpc_find_edges_shuffle(Path(tmpdirname), 1)
978
979
        check_rpc_hetero_find_edges_shuffle(Path(tmpdirname), 1)
        check_rpc_hetero_find_edges_shuffle(Path(tmpdirname), 2)
980
981
982
983
        check_rpc_in_subgraph_shuffle(Path(tmpdirname), 2)
        check_rpc_sampling_shuffle(Path(tmpdirname), 1)
        check_rpc_hetero_sampling_shuffle(Path(tmpdirname), 1)
        check_rpc_hetero_sampling_shuffle(Path(tmpdirname), 2)
984
985
986
987
        check_rpc_hetero_sampling_empty_shuffle(Path(tmpdirname), 1)
        check_rpc_hetero_etype_sampling_shuffle(Path(tmpdirname), 1)
        check_rpc_hetero_etype_sampling_shuffle(Path(tmpdirname), 2)
        check_rpc_hetero_etype_sampling_empty_shuffle(Path(tmpdirname), 1)