"src/vscode:/vscode.git/clone" did not exist on "4397f59a37012054212603a8dc8ba9db58f8a56c"
test_distributed_sampling.py 9.83 KB
Newer Older
Jinjing Zhou's avatar
Jinjing Zhou committed
1
2
3
4
import dgl
import unittest
import os
from dgl.data import CitationGraphDataset
5
from dgl.distributed import sample_neighbors, find_edges
Jinjing Zhou's avatar
Jinjing Zhou committed
6
7
8
9
10
11
12
13
from dgl.distributed import partition_graph, load_partition, load_partition_book
import sys
import multiprocessing as mp
import numpy as np
import backend as F
import time
from utils import get_local_usable_addr
from pathlib import Path
14
import pytest
Jinjing Zhou's avatar
Jinjing Zhou committed
15
16
17
from dgl.distributed import DistGraphServer, DistGraph


18
def start_server(rank, tmpdir, disable_shared_mem, graph_name):
19
    g = DistGraphServer(rank, "rpc_ip_config.txt", 1, 1,
20
                        tmpdir / (graph_name + '.json'), disable_shared_mem=disable_shared_mem)
Jinjing Zhou's avatar
Jinjing Zhou committed
21
22
23
    g.start()


24
def start_sample_client(rank, tmpdir, disable_shared_mem):
25
26
    gpb = None
    if disable_shared_mem:
27
        _, _, _, gpb, _ = load_partition(tmpdir / 'test_sampling.json', rank)
28
    dgl.distributed.initialize("rpc_ip_config.txt", 1)
29
    dist_graph = DistGraph("rpc_ip_config.txt", "test_sampling", gpb=gpb)
Jinjing Zhou's avatar
Jinjing Zhou committed
30
    sampled_graph = sample_neighbors(dist_graph, [0, 10, 99, 66, 1024, 2008], 3)
31
    dgl.distributed.exit_client()
Jinjing Zhou's avatar
Jinjing Zhou committed
32
33
    return sampled_graph

34
35
36
37
def start_find_edges_client(rank, tmpdir, disable_shared_mem, eids):
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _ = load_partition(tmpdir / 'test_find_edges.json', rank)
38
    dgl.distributed.initialize("rpc_ip_config.txt", 1)
39
40
41
42
    dist_graph = DistGraph("rpc_ip_config.txt", "test_find_edges", gpb=gpb)
    u, v = find_edges(dist_graph, eids)
    dgl.distributed.exit_client()
    return u, v
Jinjing Zhou's avatar
Jinjing Zhou committed
43

44
def check_rpc_sampling(tmpdir, num_server):
45
    ip_config = open("rpc_ip_config.txt", "w")
Jinjing Zhou's avatar
Jinjing Zhou committed
46
    for _ in range(num_server):
47
        ip_config.write('{}\n'.format(get_local_usable_addr()))
Jinjing Zhou's avatar
Jinjing Zhou committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    ip_config.close()

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    print(g.idtype)
    num_parts = num_server
    num_hops = 1

    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=False)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
62
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
Jinjing Zhou's avatar
Jinjing Zhou committed
63
64
65
66
67
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    time.sleep(3)
68
    sampled_graph = start_sample_client(0, tmpdir, num_server > 1)
Jinjing Zhou's avatar
Jinjing Zhou committed
69
70
71
72
73
74
75
76
77
78
79
    print("Done sampling")
    for p in pserver_list:
        p.join()

    src, dst = sampled_graph.edges()
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))

80
81
82
def check_rpc_find_edges(tmpdir, num_server):
    ip_config = open("rpc_ip_config.txt", "w")
    for _ in range(num_server):
83
        ip_config.write('{}\n'.format(get_local_usable_addr()))
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    ip_config.close()

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server

    partition_graph(g, 'test_find_edges', num_parts, tmpdir,
                    num_hops=1, part_method='metis', reshuffle=False)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_find_edges'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    time.sleep(3)
    eids = F.tensor(np.random.randint(g.number_of_edges(), size=100))
    u, v = g.find_edges(eids)
    du, dv = start_find_edges_client(0, tmpdir, num_server > 1, eids)
    assert F.array_equal(u, du)
    assert F.array_equal(v, dv)

Jinjing Zhou's avatar
Jinjing Zhou committed
108
109
110
111
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
def test_rpc_sampling():
    import tempfile
112
    os.environ['DGL_DIST_MODE'] = 'distributed'
Jinjing Zhou's avatar
Jinjing Zhou committed
113
    with tempfile.TemporaryDirectory() as tmpdirname:
114
        check_rpc_sampling(Path(tmpdirname), 2)
Jinjing Zhou's avatar
Jinjing Zhou committed
115

116
def check_rpc_sampling_shuffle(tmpdir, num_server):
117
    ip_config = open("rpc_ip_config.txt", "w")
Jinjing Zhou's avatar
Jinjing Zhou committed
118
    for _ in range(num_server):
119
        ip_config.write('{}\n'.format(get_local_usable_addr()))
Jinjing Zhou's avatar
Jinjing Zhou committed
120
    ip_config.close()
121

Jinjing Zhou's avatar
Jinjing Zhou committed
122
123
124
125
126
127
128
129
130
131
132
    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server
    num_hops = 1

    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
133
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
Jinjing Zhou's avatar
Jinjing Zhou committed
134
135
136
137
138
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    time.sleep(3)
139
    sampled_graph = start_sample_client(0, tmpdir, num_server > 1)
Jinjing Zhou's avatar
Jinjing Zhou committed
140
141
142
143
144
145
146
    print("Done sampling")
    for p in pserver_list:
        p.join()

    orig_nid = F.zeros((g.number_of_nodes(),), dtype=F.int64)
    orig_eid = F.zeros((g.number_of_edges(),), dtype=F.int64)
    for i in range(num_server):
147
        part, _, _, _, _ = load_partition(tmpdir / 'test_sampling.json', i)
Jinjing Zhou's avatar
Jinjing Zhou committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        orig_nid[part.ndata[dgl.NID]] = part.ndata['orig_id']
        orig_eid[part.edata[dgl.EID]] = part.edata['orig_id']

    src, dst = sampled_graph.edges()
    src = orig_nid[src]
    dst = orig_nid[dst]
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    eids1 = orig_eid[sampled_graph.edata[dgl.EID]]
    assert np.array_equal(F.asnumpy(eids1), F.asnumpy(eids))

# Wait non shared memory graph store
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
163
164
@pytest.mark.parametrize("num_server", [1, 2])
def test_rpc_sampling_shuffle(num_server):
Jinjing Zhou's avatar
Jinjing Zhou committed
165
    import tempfile
166
    os.environ['DGL_DIST_MODE'] = 'distributed'
Jinjing Zhou's avatar
Jinjing Zhou committed
167
    with tempfile.TemporaryDirectory() as tmpdirname:
168
        check_rpc_sampling_shuffle(Path(tmpdirname), num_server)
Jinjing Zhou's avatar
Jinjing Zhou committed
169

170
171
172
173
174
175
def check_standalone_sampling(tmpdir):
    g = CitationGraphDataset("cora")[0]
    num_parts = 1
    num_hops = 1
    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=False)
176

177
    os.environ['DGL_DIST_MODE'] = 'standalone'
178
    dgl.distributed.initialize("rpc_ip_config.txt", 1)
179
    dist_graph = DistGraph(None, "test_sampling", part_config=tmpdir / 'test_sampling.json')
180
181
182
183
184
185
186
187
    sampled_graph = sample_neighbors(dist_graph, [0, 10, 99, 66, 1024, 2008], 3)

    src, dst = sampled_graph.edges()
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))
188
    dgl.distributed.exit_client()
189
190
191
192
193
194
195
196
197

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
def test_standalone_sampling():
    import tempfile
    os.environ['DGL_DIST_MODE'] = 'standalone'
    with tempfile.TemporaryDirectory() as tmpdirname:
        check_standalone_sampling(Path(tmpdirname))

198
199
def start_in_subgraph_client(rank, tmpdir, disable_shared_mem, nodes):
    gpb = None
200
    dgl.distributed.initialize("rpc_ip_config.txt", 1)
201
    if disable_shared_mem:
202
        _, _, _, gpb, _ = load_partition(tmpdir / 'test_in_subgraph.json', rank)
203
204
    dist_graph = DistGraph("rpc_ip_config.txt", "test_in_subgraph", gpb=gpb)
    sampled_graph = dgl.distributed.in_subgraph(dist_graph, nodes)
205
    dgl.distributed.exit_client()
206
207
208
209
210
211
    return sampled_graph


def check_rpc_in_subgraph(tmpdir, num_server):
    ip_config = open("rpc_ip_config.txt", "w")
    for _ in range(num_server):
212
        ip_config.write('{}\n'.format(get_local_usable_addr()))
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    ip_config.close()

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server

    partition_graph(g, 'test_in_subgraph', num_parts, tmpdir,
                    num_hops=1, part_method='metis', reshuffle=False)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_in_subgraph'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    nodes = [0, 10, 99, 66, 1024, 2008]
    time.sleep(3)
    sampled_graph = start_in_subgraph_client(0, tmpdir, num_server > 1, nodes)
    for p in pserver_list:
        p.join()

    src, dst = sampled_graph.edges()
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    subg1 = dgl.in_subgraph(g, nodes)
    src1, dst1 = subg1.edges()
    assert np.all(np.sort(F.asnumpy(src)) == np.sort(F.asnumpy(src1)))
    assert np.all(np.sort(F.asnumpy(dst)) == np.sort(F.asnumpy(dst1)))
    eids = g.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
def test_rpc_in_subgraph():
    import tempfile
250
    os.environ['DGL_DIST_MODE'] = 'distributed'
251
252
253
    with tempfile.TemporaryDirectory() as tmpdirname:
        check_rpc_in_subgraph(Path(tmpdirname), 2)

Jinjing Zhou's avatar
Jinjing Zhou committed
254
255
256
if __name__ == "__main__":
    import tempfile
    with tempfile.TemporaryDirectory() as tmpdirname:
257
258
259
        os.environ['DGL_DIST_MODE'] = 'standalone'
        check_standalone_sampling(Path(tmpdirname))
        os.environ['DGL_DIST_MODE'] = 'distributed'
260
        check_rpc_in_subgraph(Path(tmpdirname), 2)
261
262
263
264
        check_rpc_sampling_shuffle(Path(tmpdirname), 1)
        check_rpc_sampling_shuffle(Path(tmpdirname), 2)
        check_rpc_sampling(Path(tmpdirname), 2)
        check_rpc_sampling(Path(tmpdirname), 1)
265
        check_rpc_find_edges(Path(tmpdirname), 2)
266
        check_rpc_find_edges(Path(tmpdirname), 1)