test_distributed_sampling.py 9.69 KB
Newer Older
Jinjing Zhou's avatar
Jinjing Zhou committed
1
2
3
4
import dgl
import unittest
import os
from dgl.data import CitationGraphDataset
5
from dgl.distributed import sample_neighbors, find_edges
Jinjing Zhou's avatar
Jinjing Zhou committed
6
7
8
9
10
11
12
13
from dgl.distributed import partition_graph, load_partition, load_partition_book
import sys
import multiprocessing as mp
import numpy as np
import backend as F
import time
from utils import get_local_usable_addr
from pathlib import Path
14
import pytest
Jinjing Zhou's avatar
Jinjing Zhou committed
15
16
17
from dgl.distributed import DistGraphServer, DistGraph


18
def start_server(rank, tmpdir, disable_shared_mem, graph_name):
19
    g = DistGraphServer(rank, "rpc_ip_config.txt", 1,
20
                        tmpdir / (graph_name + '.json'), disable_shared_mem=disable_shared_mem)
Jinjing Zhou's avatar
Jinjing Zhou committed
21
22
23
    g.start()


24
def start_sample_client(rank, tmpdir, disable_shared_mem):
25
26
    gpb = None
    if disable_shared_mem:
27
        _, _, _, gpb, _ = load_partition(tmpdir / 'test_sampling.json', rank)
28
    dgl.distributed.initialize("rpc_ip_config.txt")
29
    dist_graph = DistGraph("rpc_ip_config.txt", "test_sampling", gpb=gpb)
Jinjing Zhou's avatar
Jinjing Zhou committed
30
    sampled_graph = sample_neighbors(dist_graph, [0, 10, 99, 66, 1024, 2008], 3)
31
    dgl.distributed.exit_client()
Jinjing Zhou's avatar
Jinjing Zhou committed
32
33
    return sampled_graph

34
35
36
37
38
39
40
41
def start_find_edges_client(rank, tmpdir, disable_shared_mem, eids):
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _ = load_partition(tmpdir / 'test_find_edges.json', rank)
    dist_graph = DistGraph("rpc_ip_config.txt", "test_find_edges", gpb=gpb)
    u, v = find_edges(dist_graph, eids)
    dgl.distributed.exit_client()
    return u, v
Jinjing Zhou's avatar
Jinjing Zhou committed
42

43
def check_rpc_sampling(tmpdir, num_server):
44
    ip_config = open("rpc_ip_config.txt", "w")
Jinjing Zhou's avatar
Jinjing Zhou committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    for _ in range(num_server):
        ip_config.write('{} 1\n'.format(get_local_usable_addr()))
    ip_config.close()

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    print(g.idtype)
    num_parts = num_server
    num_hops = 1

    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=False)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
61
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
Jinjing Zhou's avatar
Jinjing Zhou committed
62
63
64
65
66
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    time.sleep(3)
67
    sampled_graph = start_sample_client(0, tmpdir, num_server > 1)
Jinjing Zhou's avatar
Jinjing Zhou committed
68
69
70
71
72
73
74
75
76
77
78
    print("Done sampling")
    for p in pserver_list:
        p.join()

    src, dst = sampled_graph.edges()
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
def check_rpc_find_edges(tmpdir, num_server):
    ip_config = open("rpc_ip_config.txt", "w")
    for _ in range(num_server):
        ip_config.write('{} 1\n'.format(get_local_usable_addr()))
    ip_config.close()

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server

    partition_graph(g, 'test_find_edges', num_parts, tmpdir,
                    num_hops=1, part_method='metis', reshuffle=False)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_find_edges'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    time.sleep(3)
    eids = F.tensor(np.random.randint(g.number_of_edges(), size=100))
    u, v = g.find_edges(eids)
    du, dv = start_find_edges_client(0, tmpdir, num_server > 1, eids)
    assert F.array_equal(u, du)
    assert F.array_equal(v, dv)

Jinjing Zhou's avatar
Jinjing Zhou committed
107
108
109
110
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
def test_rpc_sampling():
    import tempfile
111
    os.environ['DGL_DIST_MODE'] = 'distributed'
Jinjing Zhou's avatar
Jinjing Zhou committed
112
    with tempfile.TemporaryDirectory() as tmpdirname:
113
        check_rpc_sampling(Path(tmpdirname), 2)
Jinjing Zhou's avatar
Jinjing Zhou committed
114

115
def check_rpc_sampling_shuffle(tmpdir, num_server):
116
    ip_config = open("rpc_ip_config.txt", "w")
Jinjing Zhou's avatar
Jinjing Zhou committed
117
118
119
    for _ in range(num_server):
        ip_config.write('{} 1\n'.format(get_local_usable_addr()))
    ip_config.close()
120

Jinjing Zhou's avatar
Jinjing Zhou committed
121
122
123
124
125
126
127
128
129
130
131
    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server
    num_hops = 1

    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
132
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
Jinjing Zhou's avatar
Jinjing Zhou committed
133
134
135
136
137
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    time.sleep(3)
138
    sampled_graph = start_sample_client(0, tmpdir, num_server > 1)
Jinjing Zhou's avatar
Jinjing Zhou committed
139
140
141
142
143
144
145
    print("Done sampling")
    for p in pserver_list:
        p.join()

    orig_nid = F.zeros((g.number_of_nodes(),), dtype=F.int64)
    orig_eid = F.zeros((g.number_of_edges(),), dtype=F.int64)
    for i in range(num_server):
146
        part, _, _, _, _ = load_partition(tmpdir / 'test_sampling.json', i)
Jinjing Zhou's avatar
Jinjing Zhou committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
        orig_nid[part.ndata[dgl.NID]] = part.ndata['orig_id']
        orig_eid[part.edata[dgl.EID]] = part.edata['orig_id']

    src, dst = sampled_graph.edges()
    src = orig_nid[src]
    dst = orig_nid[dst]
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    eids1 = orig_eid[sampled_graph.edata[dgl.EID]]
    assert np.array_equal(F.asnumpy(eids1), F.asnumpy(eids))

# Wait non shared memory graph store
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
162
163
@pytest.mark.parametrize("num_server", [1, 2])
def test_rpc_sampling_shuffle(num_server):
Jinjing Zhou's avatar
Jinjing Zhou committed
164
    import tempfile
165
    os.environ['DGL_DIST_MODE'] = 'distributed'
Jinjing Zhou's avatar
Jinjing Zhou committed
166
    with tempfile.TemporaryDirectory() as tmpdirname:
167
        check_rpc_sampling_shuffle(Path(tmpdirname), num_server)
Jinjing Zhou's avatar
Jinjing Zhou committed
168

169
170
171
172
173
174
def check_standalone_sampling(tmpdir):
    g = CitationGraphDataset("cora")[0]
    num_parts = 1
    num_hops = 1
    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=False)
175
    os.environ['DGL_DIST_MODE'] = 'standalone'
176
    dist_graph = DistGraph(None, "test_sampling", part_config=tmpdir / 'test_sampling.json')
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    sampled_graph = sample_neighbors(dist_graph, [0, 10, 99, 66, 1024, 2008], 3)

    src, dst = sampled_graph.edges()
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
def test_standalone_sampling():
    import tempfile
    os.environ['DGL_DIST_MODE'] = 'standalone'
    with tempfile.TemporaryDirectory() as tmpdirname:
        check_standalone_sampling(Path(tmpdirname))

194
195
def start_in_subgraph_client(rank, tmpdir, disable_shared_mem, nodes):
    gpb = None
196
    dgl.distributed.initialize("rpc_ip_config.txt")
197
    if disable_shared_mem:
198
        _, _, _, gpb, _ = load_partition(tmpdir / 'test_in_subgraph.json', rank)
199
200
    dist_graph = DistGraph("rpc_ip_config.txt", "test_in_subgraph", gpb=gpb)
    sampled_graph = dgl.distributed.in_subgraph(dist_graph, nodes)
201
    dgl.distributed.exit_client()
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    return sampled_graph


def check_rpc_in_subgraph(tmpdir, num_server):
    ip_config = open("rpc_ip_config.txt", "w")
    for _ in range(num_server):
        ip_config.write('{} 1\n'.format(get_local_usable_addr()))
    ip_config.close()

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server

    partition_graph(g, 'test_in_subgraph', num_parts, tmpdir,
                    num_hops=1, part_method='metis', reshuffle=False)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_in_subgraph'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    nodes = [0, 10, 99, 66, 1024, 2008]
    time.sleep(3)
    sampled_graph = start_in_subgraph_client(0, tmpdir, num_server > 1, nodes)
    for p in pserver_list:
        p.join()

    src, dst = sampled_graph.edges()
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    subg1 = dgl.in_subgraph(g, nodes)
    src1, dst1 = subg1.edges()
    assert np.all(np.sort(F.asnumpy(src)) == np.sort(F.asnumpy(src1)))
    assert np.all(np.sort(F.asnumpy(dst)) == np.sort(F.asnumpy(dst1)))
    eids = g.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
def test_rpc_in_subgraph():
    import tempfile
246
    os.environ['DGL_DIST_MODE'] = 'distributed'
247
248
249
    with tempfile.TemporaryDirectory() as tmpdirname:
        check_rpc_in_subgraph(Path(tmpdirname), 2)

Jinjing Zhou's avatar
Jinjing Zhou committed
250
251
252
if __name__ == "__main__":
    import tempfile
    with tempfile.TemporaryDirectory() as tmpdirname:
253
254
255
        os.environ['DGL_DIST_MODE'] = 'standalone'
        check_standalone_sampling(Path(tmpdirname))
        os.environ['DGL_DIST_MODE'] = 'distributed'
256
        check_rpc_in_subgraph(Path(tmpdirname), 2)
257
258
259
260
        check_rpc_sampling_shuffle(Path(tmpdirname), 1)
        check_rpc_sampling_shuffle(Path(tmpdirname), 2)
        check_rpc_sampling(Path(tmpdirname), 2)
        check_rpc_sampling(Path(tmpdirname), 1)
261
262
        check_rpc_find_edges(Path(tmpdirname), 2)
        check_rpc_find_edges(Path(tmpdirname), 1)