test_distributed_sampling.py 38 KB
Newer Older
Jinjing Zhou's avatar
Jinjing Zhou committed
1
2
3
4
import dgl
import unittest
import os
from dgl.data import CitationGraphDataset
5
6
from dgl.data import WN18Dataset
from dgl.distributed import sample_neighbors, sample_etype_neighbors
Jinjing Zhou's avatar
Jinjing Zhou committed
7
8
9
10
11
12
from dgl.distributed import partition_graph, load_partition, load_partition_book
import sys
import multiprocessing as mp
import numpy as np
import backend as F
import time
13
from utils import generate_ip_config, reset_envs
Jinjing Zhou's avatar
Jinjing Zhou committed
14
from pathlib import Path
15
import pytest
16
from scipy import sparse as spsp
17
import random
Jinjing Zhou's avatar
Jinjing Zhou committed
18
19
20
from dgl.distributed import DistGraphServer, DistGraph


21
22
def start_server(rank, tmpdir, disable_shared_mem, graph_name, graph_format=['csc', 'coo'],
                 keep_alive=False):
23
    g = DistGraphServer(rank, "rpc_ip_config.txt", 1, 1,
24
                        tmpdir / (graph_name + '.json'), disable_shared_mem=disable_shared_mem,
25
                        graph_format=graph_format, keep_alive=keep_alive)
Jinjing Zhou's avatar
Jinjing Zhou committed
26
27
28
    g.start()


29
def start_sample_client(rank, tmpdir, disable_shared_mem):
30
31
    gpb = None
    if disable_shared_mem:
32
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
33
    dgl.distributed.initialize("rpc_ip_config.txt")
34
    dist_graph = DistGraph("test_sampling", gpb=gpb)
35
36
37
38
39
    try:
        sampled_graph = sample_neighbors(dist_graph, [0, 10, 99, 66, 1024, 2008], 3)
    except Exception as e:
        print(e)
        sampled_graph = None
40
    dgl.distributed.exit_client()
Jinjing Zhou's avatar
Jinjing Zhou committed
41
42
    return sampled_graph

43

44
45
def start_sample_client_shuffle(rank, tmpdir, disable_shared_mem, g, num_servers, group_id,
        orig_nid, orig_eid):
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    os.environ['DGL_GROUP_ID'] = str(group_id)
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_sampling", gpb=gpb)
    sampled_graph = sample_neighbors(dist_graph, [0, 10, 99, 66, 1024, 2008], 3)

    src, dst = sampled_graph.edges()
    src = orig_nid[src]
    dst = orig_nid[dst]
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    eids1 = orig_eid[sampled_graph.edata[dgl.EID]]
    assert np.array_equal(F.asnumpy(eids1), F.asnumpy(eids))

63
def start_find_edges_client(rank, tmpdir, disable_shared_mem, eids, etype=None):
64
65
    gpb = None
    if disable_shared_mem:
66
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_find_edges.json', rank)
67
    dgl.distributed.initialize("rpc_ip_config.txt")
68
    dist_graph = DistGraph("test_find_edges", gpb=gpb)
69
    try:
70
        u, v = dist_graph.find_edges(eids, etype=etype)
71
72
73
    except Exception as e:
        print(e)
        u, v = None, None
74
75
    dgl.distributed.exit_client()
    return u, v
Jinjing Zhou's avatar
Jinjing Zhou committed
76

77
78
79
80
def start_get_degrees_client(rank, tmpdir, disable_shared_mem, nids=None):
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_get_degrees.json', rank)
81
    dgl.distributed.initialize("rpc_ip_config.txt")
82
83
84
85
86
87
88
89
90
91
92
93
    dist_graph = DistGraph("test_get_degrees", gpb=gpb)
    try:
        in_deg = dist_graph.in_degrees(nids)
        all_in_deg = dist_graph.in_degrees()
        out_deg = dist_graph.out_degrees(nids)
        all_out_deg = dist_graph.out_degrees()
    except Exception as e:
        print(e)
        in_deg, out_deg, all_in_deg, all_out_deg = None, None, None, None
    dgl.distributed.exit_client()
    return in_deg, out_deg, all_in_deg, all_out_deg

94
def check_rpc_sampling(tmpdir, num_server):
95
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
Jinjing Zhou's avatar
Jinjing Zhou committed
96
97
98
99
100
101
102
103
104
105
106
107
108

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    print(g.idtype)
    num_parts = num_server
    num_hops = 1

    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=False)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
109
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
Jinjing Zhou's avatar
Jinjing Zhou committed
110
111
112
113
        p.start()
        time.sleep(1)
        pserver_list.append(p)

114
    sampled_graph = start_sample_client(0, tmpdir, num_server > 1)
Jinjing Zhou's avatar
Jinjing Zhou committed
115
116
117
118
119
120
121
122
123
124
125
    print("Done sampling")
    for p in pserver_list:
        p.join()

    src, dst = sampled_graph.edges()
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))

126
def check_rpc_find_edges_shuffle(tmpdir, num_server):
127
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
128
129
130
131
132

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server

133
134
135
    orig_nid, orig_eid = partition_graph(g, 'test_find_edges', num_parts, tmpdir,
                                         num_hops=1, part_method='metis',
                                         reshuffle=True, return_mapping=True)
136
137
138
139

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
140
141
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1,
                                                   'test_find_edges', ['csr', 'coo']))
142
143
144
145
146
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    eids = F.tensor(np.random.randint(g.number_of_edges(), size=100))
147
    u, v = g.find_edges(orig_eid[eids])
148
    du, dv = start_find_edges_client(0, tmpdir, num_server > 1, eids)
149
150
    du = orig_nid[du]
    dv = orig_nid[dv]
151
152
153
    assert F.array_equal(u, du)
    assert F.array_equal(v, dv)

154
155
156
def create_random_hetero(dense=False, empty=False):
    num_nodes = {'n1': 210, 'n2': 200, 'n3': 220} if dense else \
        {'n1': 1010, 'n2': 1000, 'n3': 1020}
157
158
159
    etypes = [('n1', 'r12', 'n2'),
              ('n1', 'r13', 'n3'),
              ('n2', 'r23', 'n3')]
160
    edges = {}
161
    random.seed(42)
162
163
    for etype in etypes:
        src_ntype, _, dst_ntype = etype
164
165
166
167
        arr = spsp.random(num_nodes[src_ntype] - 10 if empty else num_nodes[src_ntype],
                          num_nodes[dst_ntype] - 10 if empty else num_nodes[dst_ntype],
                          density=0.1 if dense else 0.001,
                          format='coo', random_state=100)
168
        edges[etype] = (arr.row, arr.col)
169
170
171
    g = dgl.heterograph(edges, num_nodes)
    g.nodes['n1'].data['feat'] = F.ones((g.number_of_nodes('n1'), 10), F.float32, F.cpu())
    return g
172
173

def check_rpc_hetero_find_edges_shuffle(tmpdir, num_server):
174
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

    g = create_random_hetero()
    num_parts = num_server

    orig_nid, orig_eid = partition_graph(g, 'test_find_edges', num_parts, tmpdir,
                                         num_hops=1, part_method='metis',
                                         reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1,
                                                   'test_find_edges', ['csr', 'coo']))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

192
193
194
195
196
197
198
199
200
201
202
203
    eids = F.tensor(np.random.randint(g.num_edges('r12'), size=100))
    expect_except = False
    try:
        _, _ = g.find_edges(orig_eid['r12'][eids], etype=('n1', 'r12'))
    except:
        expect_except = True
    assert expect_except
    u, v = g.find_edges(orig_eid['r12'][eids], etype='r12')
    u1, v1 = g.find_edges(orig_eid['r12'][eids], etype=('n1', 'r12', 'n2'))
    assert F.array_equal(u, u1)
    assert F.array_equal(v, v1)
    du, dv = start_find_edges_client(0, tmpdir, num_server > 1, eids, etype='r12')
204
205
206
207
208
    du = orig_nid['n1'][du]
    dv = orig_nid['n2'][dv]
    assert F.array_equal(u, du)
    assert F.array_equal(v, dv)

209
210
211
# Wait non shared memory graph store
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
212
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
213
214
@pytest.mark.parametrize("num_server", [1, 2])
def test_rpc_find_edges_shuffle(num_server):
215
    reset_envs()
216
217
218
    import tempfile
    os.environ['DGL_DIST_MODE'] = 'distributed'
    with tempfile.TemporaryDirectory() as tmpdirname:
219
        check_rpc_hetero_find_edges_shuffle(Path(tmpdirname), num_server)
220
221
222
        check_rpc_find_edges_shuffle(Path(tmpdirname), num_server)

def check_rpc_get_degree_shuffle(tmpdir, num_server):
223
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
224
225
226
227
228

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server

229
230
    orig_nid, _ = partition_graph(g, 'test_get_degrees', num_parts, tmpdir,
        num_hops=1, part_method='metis', reshuffle=True, return_mapping=True)
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_get_degrees'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    nids = F.tensor(np.random.randint(g.number_of_nodes(), size=100))
    in_degs, out_degs, all_in_degs, all_out_degs = start_get_degrees_client(0, tmpdir, num_server > 1, nids)

    print("Done get_degree")
    for p in pserver_list:
        p.join()

    print('check results')
    assert F.array_equal(g.in_degrees(orig_nid[nids]), in_degs)
    assert F.array_equal(g.in_degrees(orig_nid), all_in_degs)
    assert F.array_equal(g.out_degrees(orig_nid[nids]), out_degs)
    assert F.array_equal(g.out_degrees(orig_nid), all_out_degs)

# Wait non shared memory graph store
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
256
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
257
258
@pytest.mark.parametrize("num_server", [1, 2])
def test_rpc_get_degree_shuffle(num_server):
259
    reset_envs()
260
261
262
263
264
    import tempfile
    os.environ['DGL_DIST_MODE'] = 'distributed'
    with tempfile.TemporaryDirectory() as tmpdirname:
        check_rpc_get_degree_shuffle(Path(tmpdirname), num_server)

265
266
267
#@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
#@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
@unittest.skip('Only support partition with shuffle')
Jinjing Zhou's avatar
Jinjing Zhou committed
268
def test_rpc_sampling():
269
    reset_envs()
Jinjing Zhou's avatar
Jinjing Zhou committed
270
    import tempfile
271
    os.environ['DGL_DIST_MODE'] = 'distributed'
Jinjing Zhou's avatar
Jinjing Zhou committed
272
    with tempfile.TemporaryDirectory() as tmpdirname:
273
        check_rpc_sampling(Path(tmpdirname), 2)
Jinjing Zhou's avatar
Jinjing Zhou committed
274

275
def check_rpc_sampling_shuffle(tmpdir, num_server, num_groups=1):
276
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
277

Jinjing Zhou's avatar
Jinjing Zhou committed
278
279
280
281
282
    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server
    num_hops = 1

283
284
    orig_nids, orig_eids = partition_graph(g, 'test_sampling', num_parts, tmpdir,
        num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True)
Jinjing Zhou's avatar
Jinjing Zhou committed
285
286
287

    pserver_list = []
    ctx = mp.get_context('spawn')
288
    keep_alive = num_groups > 1
Jinjing Zhou's avatar
Jinjing Zhou committed
289
    for i in range(num_server):
290
291
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, 'test_sampling', ['csc', 'coo'], keep_alive))
Jinjing Zhou's avatar
Jinjing Zhou committed
292
293
294
295
        p.start()
        time.sleep(1)
        pserver_list.append(p)

296
297
298
299
    pclient_list = []
    num_clients = 1
    for client_id in range(num_clients):
        for group_id in range(num_groups):
300
301
302
            p = ctx.Process(target=start_sample_client_shuffle,
                args=(client_id, tmpdir, num_server > 1, g, num_server,
                    group_id, orig_nids, orig_eids))
303
            p.start()
304
            time.sleep(1) # avoid race condition when instantiating DistGraph
305
306
307
308
309
310
311
312
            pclient_list.append(p)
    for p in pclient_list:
        p.join()
    if keep_alive:
        for p in pserver_list:
            assert p.is_alive()
        # force shutdown server
        dgl.distributed.shutdown_servers("rpc_ip_config.txt", 1)
Jinjing Zhou's avatar
Jinjing Zhou committed
313
314
315
    for p in pserver_list:
        p.join()

316
def start_hetero_sample_client(rank, tmpdir, disable_shared_mem, nodes):
317
318
319
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
320
    dgl.distributed.initialize("rpc_ip_config.txt")
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    dist_graph = DistGraph("test_sampling", gpb=gpb)
    assert 'feat' in dist_graph.nodes['n1'].data
    assert 'feat' not in dist_graph.nodes['n2'].data
    assert 'feat' not in dist_graph.nodes['n3'].data
    if gpb is None:
        gpb = dist_graph.get_partition_book()
    try:
        sampled_graph = sample_neighbors(dist_graph, nodes, 3)
        block = dgl.to_block(sampled_graph, nodes)
        block.edata[dgl.EID] = sampled_graph.edata[dgl.EID]
    except Exception as e:
        print(e)
        block = None
    dgl.distributed.exit_client()
    return block, gpb

337
def start_hetero_etype_sample_client(rank, tmpdir, disable_shared_mem, fanout=3,
338
339
                                     nodes={'n3': [0, 10, 99, 66, 124, 208]},
                                     etype_sorted=False):
340
341
342
343
344
345
346
347
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_sampling", gpb=gpb)
    assert 'feat' in dist_graph.nodes['n1'].data
    assert 'feat' not in dist_graph.nodes['n2'].data
    assert 'feat' not in dist_graph.nodes['n3'].data
348
349
350
351
352
353
354
355
356
357
358

    if dist_graph.local_partition is not None:
        # Check whether etypes are sorted in dist_graph
        local_g = dist_graph.local_partition
        local_nids = np.arange(local_g.num_nodes())
        for lnid in local_nids:
            leids = local_g.in_edges(lnid, form='eid')
            letids = F.asnumpy(local_g.edata[dgl.ETYPE][leids])
            _, idices = np.unique(letids, return_index=True)
            assert np.all(idices[:-1] <= idices[1:])

359
360
361
    if gpb is None:
        gpb = dist_graph.get_partition_book()
    try:
362
        sampled_graph = sample_etype_neighbors(dist_graph, nodes, dgl.ETYPE, fanout, etype_sorted=etype_sorted)
363
364
365
366
367
368
369
370
        block = dgl.to_block(sampled_graph, nodes)
        block.edata[dgl.EID] = sampled_graph.edata[dgl.EID]
    except Exception as e:
        print(e)
        block = None
    dgl.distributed.exit_client()
    return block, gpb

371
def check_rpc_hetero_sampling_shuffle(tmpdir, num_server):
372
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
373
374
375
376
377

    g = create_random_hetero()
    num_parts = num_server
    num_hops = 1

378
379
    orig_nid_map, orig_eid_map = partition_graph(g, 'test_sampling', num_parts, tmpdir,
        num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True)
380
381
382
383
384
385
386
387
388

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

389
390
    block, gpb = start_hetero_sample_client(0, tmpdir, num_server > 1,
                                            nodes = {'n3': [0, 10, 99, 66, 124, 208]})
391
392
393
394
    print("Done sampling")
    for p in pserver_list:
        p.join()

395
396
397
398
399
400
401
402
403
404
    for src_type, etype, dst_type in block.canonical_etypes:
        src, dst = block.edges(etype=etype)
        # These are global Ids after shuffling.
        shuffled_src = F.gather_row(block.srcnodes[src_type].data[dgl.NID], src)
        shuffled_dst = F.gather_row(block.dstnodes[dst_type].data[dgl.NID], dst)
        shuffled_eid = block.edges[etype].data[dgl.EID]

        orig_src = F.asnumpy(F.gather_row(orig_nid_map[src_type], shuffled_src))
        orig_dst = F.asnumpy(F.gather_row(orig_nid_map[dst_type], shuffled_dst))
        orig_eid = F.asnumpy(F.gather_row(orig_eid_map[etype], shuffled_eid))
405
406

        # Check the node Ids and edge Ids.
407
408
409
        orig_src1, orig_dst1 = g.find_edges(orig_eid, etype=etype)
        assert np.all(F.asnumpy(orig_src1) == orig_src)
        assert np.all(F.asnumpy(orig_dst1) == orig_dst)
410

411
412
413
414
415
416
417
418
419
420
def get_degrees(g, nids, ntype):
    deg = F.zeros((len(nids),), dtype=F.int64)
    for srctype, etype, dsttype in g.canonical_etypes:
        if srctype == ntype:
            deg += g.out_degrees(u=nids, etype=etype)
        elif dsttype == ntype:
            deg += g.in_degrees(v=nids, etype=etype)
    return deg

def check_rpc_hetero_sampling_empty_shuffle(tmpdir, num_server):
421
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

    g = create_random_hetero(empty=True)
    num_parts = num_server
    num_hops = 1

    orig_nids, _ = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                   num_hops=num_hops, part_method='metis',
                                   reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    deg = get_degrees(g, orig_nids['n3'], 'n3')
    empty_nids = F.nonzero_1d(deg == 0)
    block, gpb = start_hetero_sample_client(0, tmpdir, num_server > 1,
                                            nodes = {'n3': empty_nids})
    print("Done sampling")
    for p in pserver_list:
        p.join()

    assert block.number_of_edges() == 0
    assert len(block.etypes) == len(g.etypes)

450
def check_rpc_hetero_etype_sampling_shuffle(tmpdir, num_server, etype_sorted=False):
451
452
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

453
454
455
456
    g = create_random_hetero(dense=True)
    num_parts = num_server
    num_hops = 1

457
458
    orig_nid_map, orig_eid_map = partition_graph(g, 'test_sampling', num_parts, tmpdir,
        num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True)
459
460
461
462

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
463
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling', ['csc', 'coo']))
464
465
466
467
468
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    fanout = 3
469
    block, gpb = start_hetero_etype_sample_client(0, tmpdir, num_server > 1, fanout,
470
471
                                                  nodes={'n3': [0, 10, 99, 66, 124, 208]},
                                                  etype_sorted=etype_sorted)
472
473
474
475
    print("Done sampling")
    for p in pserver_list:
        p.join()

476
    src, dst = block.edges(etype=('n1', 'r13', 'n3'))
477
    assert len(src) == 18
478
    src, dst = block.edges(etype=('n2', 'r23', 'n3'))
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
    assert len(src) == 18

    for src_type, etype, dst_type in block.canonical_etypes:
        src, dst = block.edges(etype=etype)
        # These are global Ids after shuffling.
        shuffled_src = F.gather_row(block.srcnodes[src_type].data[dgl.NID], src)
        shuffled_dst = F.gather_row(block.dstnodes[dst_type].data[dgl.NID], dst)
        shuffled_eid = block.edges[etype].data[dgl.EID]

        orig_src = F.asnumpy(F.gather_row(orig_nid_map[src_type], shuffled_src))
        orig_dst = F.asnumpy(F.gather_row(orig_nid_map[dst_type], shuffled_dst))
        orig_eid = F.asnumpy(F.gather_row(orig_eid_map[etype], shuffled_eid))

        # Check the node Ids and edge Ids.
        orig_src1, orig_dst1 = g.find_edges(orig_eid, etype=etype)
        assert np.all(F.asnumpy(orig_src1) == orig_src)
        assert np.all(F.asnumpy(orig_dst1) == orig_dst)

497
def check_rpc_hetero_etype_sampling_empty_shuffle(tmpdir, num_server):
498
499
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
    g = create_random_hetero(dense=True, empty=True)
    num_parts = num_server
    num_hops = 1

    orig_nids, _ = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                   num_hops=num_hops, part_method='metis',
                                   reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    fanout = 3
    deg = get_degrees(g, orig_nids['n3'], 'n3')
    empty_nids = F.nonzero_1d(deg == 0)
    block, gpb = start_hetero_etype_sample_client(0, tmpdir, num_server > 1, fanout,
                                                  nodes={'n3': empty_nids})
    print("Done sampling")
    for p in pserver_list:
        p.join()

    assert block.number_of_edges() == 0
    assert len(block.etypes) == len(g.etypes)

528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629

def create_random_bipartite():
    g = dgl.rand_bipartite('user', 'buys', 'game', 500, 1000, 1000)
    g.nodes['user'].data['feat'] = F.ones(
        (g.num_nodes('user'), 10), F.float32, F.cpu())
    g.nodes['game'].data['feat'] = F.ones(
        (g.num_nodes('game'), 10), F.float32, F.cpu())
    return g


def start_bipartite_sample_client(rank, tmpdir, disable_shared_mem, nodes):
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(
            tmpdir / 'test_sampling.json', rank)
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_sampling", gpb=gpb)
    assert 'feat' in dist_graph.nodes['user'].data
    assert 'feat' in dist_graph.nodes['game'].data
    if gpb is None:
        gpb = dist_graph.get_partition_book()
    sampled_graph = sample_neighbors(dist_graph, nodes, 3)
    block = dgl.to_block(sampled_graph, nodes)
    if sampled_graph.num_edges() > 0:
        block.edata[dgl.EID] = sampled_graph.edata[dgl.EID]
    dgl.distributed.exit_client()
    return block, gpb


def start_bipartite_etype_sample_client(rank, tmpdir, disable_shared_mem, fanout=3,
                                        nodes={}):
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(
            tmpdir / 'test_sampling.json', rank)
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_sampling", gpb=gpb)
    assert 'feat' in dist_graph.nodes['user'].data
    assert 'feat' in dist_graph.nodes['game'].data

    if dist_graph.local_partition is not None:
        # Check whether etypes are sorted in dist_graph
        local_g = dist_graph.local_partition
        local_nids = np.arange(local_g.num_nodes())
        for lnid in local_nids:
            leids = local_g.in_edges(lnid, form='eid')
            letids = F.asnumpy(local_g.edata[dgl.ETYPE][leids])
            _, idices = np.unique(letids, return_index=True)
            assert np.all(idices[:-1] <= idices[1:])

    if gpb is None:
        gpb = dist_graph.get_partition_book()
    sampled_graph = sample_etype_neighbors(
        dist_graph, nodes, dgl.ETYPE, fanout)
    block = dgl.to_block(sampled_graph, nodes)
    if sampled_graph.num_edges() > 0:
        block.edata[dgl.EID] = sampled_graph.edata[dgl.EID]
    dgl.distributed.exit_client()
    return block, gpb


def check_rpc_bipartite_sampling_empty(tmpdir, num_server):
    """sample on bipartite via sample_neighbors() which yields empty sample results"""
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

    g = create_random_bipartite()
    num_parts = num_server
    num_hops = 1

    orig_nids, _ = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                   num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    deg = get_degrees(g, orig_nids['game'], 'game')
    empty_nids = F.nonzero_1d(deg == 0)
    block, _ = start_bipartite_sample_client(0, tmpdir, num_server > 1,
                                             nodes={'game': empty_nids, 'user': [1]})

    print("Done sampling")
    for p in pserver_list:
        p.join()

    assert block.number_of_edges() == 0
    assert len(block.etypes) == len(g.etypes)


def check_rpc_bipartite_sampling_shuffle(tmpdir, num_server):
    """sample on bipartite via sample_neighbors() which yields non-empty sample results"""
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

    g = create_random_bipartite()
    num_parts = num_server
    num_hops = 1

630
631
    orig_nid_map, orig_eid_map = partition_graph(g, 'test_sampling', num_parts, tmpdir,
        num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True)
632
633
634
635
636
637
638
639
640
641

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

642
    deg = get_degrees(g, orig_nid_map['game'], 'game')
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
    nids = F.nonzero_1d(deg > 0)
    block, gpb = start_bipartite_sample_client(0, tmpdir, num_server > 1,
                                               nodes={'game': nids, 'user': [0]})
    print("Done sampling")
    for p in pserver_list:
        p.join()

    for src_type, etype, dst_type in block.canonical_etypes:
        src, dst = block.edges(etype=etype)
        # These are global Ids after shuffling.
        shuffled_src = F.gather_row(
            block.srcnodes[src_type].data[dgl.NID], src)
        shuffled_dst = F.gather_row(
            block.dstnodes[dst_type].data[dgl.NID], dst)
        shuffled_eid = block.edges[etype].data[dgl.EID]

        orig_src = F.asnumpy(F.gather_row(
            orig_nid_map[src_type], shuffled_src))
        orig_dst = F.asnumpy(F.gather_row(
            orig_nid_map[dst_type], shuffled_dst))
        orig_eid = F.asnumpy(F.gather_row(orig_eid_map[etype], shuffled_eid))

        # Check the node Ids and edge Ids.
        orig_src1, orig_dst1 = g.find_edges(orig_eid, etype=etype)
        assert np.all(F.asnumpy(orig_src1) == orig_src)
        assert np.all(F.asnumpy(orig_dst1) == orig_dst)


def check_rpc_bipartite_etype_sampling_empty(tmpdir, num_server):
    """sample on bipartite via sample_etype_neighbors() which yields empty sample results"""
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

    g = create_random_bipartite()
    num_parts = num_server
    num_hops = 1

    orig_nids, _ = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                   num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    deg = get_degrees(g, orig_nids['game'], 'game')
    empty_nids = F.nonzero_1d(deg == 0)
    block, gpb = start_bipartite_etype_sample_client(0, tmpdir, num_server > 1,
                                                     nodes={'game': empty_nids, 'user': [1]})

    print("Done sampling")
    for p in pserver_list:
        p.join()

    assert block is not None
    assert block.number_of_edges() == 0
    assert len(block.etypes) == len(g.etypes)


def check_rpc_bipartite_etype_sampling_shuffle(tmpdir, num_server):
    """sample on bipartite via sample_etype_neighbors() which yields non-empty sample results"""
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

    g = create_random_bipartite()
    num_parts = num_server
    num_hops = 1

713
714
    orig_nid_map, orig_eid_map = partition_graph(g, 'test_sampling', num_parts, tmpdir,
        num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True)
715
716
717
718
719
720
721
722
723
724
725

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    fanout = 3
726
    deg = get_degrees(g, orig_nid_map['game'], 'game')
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
    nids = F.nonzero_1d(deg > 0)
    block, gpb = start_bipartite_etype_sample_client(0, tmpdir, num_server > 1, fanout,
                                                     nodes={'game': nids, 'user': [0]})
    print("Done sampling")
    for p in pserver_list:
        p.join()

    for src_type, etype, dst_type in block.canonical_etypes:
        src, dst = block.edges(etype=etype)
        # These are global Ids after shuffling.
        shuffled_src = F.gather_row(
            block.srcnodes[src_type].data[dgl.NID], src)
        shuffled_dst = F.gather_row(
            block.dstnodes[dst_type].data[dgl.NID], dst)
        shuffled_eid = block.edges[etype].data[dgl.EID]

        orig_src = F.asnumpy(F.gather_row(
            orig_nid_map[src_type], shuffled_src))
        orig_dst = F.asnumpy(F.gather_row(
            orig_nid_map[dst_type], shuffled_dst))
        orig_eid = F.asnumpy(F.gather_row(orig_eid_map[etype], shuffled_eid))

        # Check the node Ids and edge Ids.
        orig_src1, orig_dst1 = g.find_edges(orig_eid, etype=etype)
        assert np.all(F.asnumpy(orig_src1) == orig_src)
        assert np.all(F.asnumpy(orig_dst1) == orig_dst)

Jinjing Zhou's avatar
Jinjing Zhou committed
754
755
756
# Wait non shared memory graph store
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
757
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
758
759
@pytest.mark.parametrize("num_server", [1, 2])
def test_rpc_sampling_shuffle(num_server):
760
    reset_envs()
Jinjing Zhou's avatar
Jinjing Zhou committed
761
    import tempfile
762
    os.environ['DGL_DIST_MODE'] = 'distributed'
Jinjing Zhou's avatar
Jinjing Zhou committed
763
    with tempfile.TemporaryDirectory() as tmpdirname:
764
        check_rpc_sampling_shuffle(Path(tmpdirname), num_server)
765
766
767
        # [TODO][Rhett] Tests for multiple groups may fail sometimes and
        # root cause is unknown. Let's disable them for now.
        #check_rpc_sampling_shuffle(Path(tmpdirname), num_server, num_groups=2)
768
        check_rpc_hetero_sampling_shuffle(Path(tmpdirname), num_server)
769
        check_rpc_hetero_sampling_empty_shuffle(Path(tmpdirname), num_server)
770
        check_rpc_hetero_etype_sampling_shuffle(Path(tmpdirname), num_server)
771
        check_rpc_hetero_etype_sampling_shuffle(Path(tmpdirname), num_server, etype_sorted=True)
772
        check_rpc_hetero_etype_sampling_empty_shuffle(Path(tmpdirname), num_server)
773
774
775
776
        check_rpc_bipartite_sampling_empty(Path(tmpdirname), num_server)
        check_rpc_bipartite_sampling_shuffle(Path(tmpdirname), num_server)
        check_rpc_bipartite_etype_sampling_empty(Path(tmpdirname), num_server)
        check_rpc_bipartite_etype_sampling_shuffle(Path(tmpdirname), num_server)
Jinjing Zhou's avatar
Jinjing Zhou committed
777

778
def check_standalone_sampling(tmpdir, reshuffle):
779
780
781
782
    g = CitationGraphDataset("cora")[0]
    num_parts = 1
    num_hops = 1
    partition_graph(g, 'test_sampling', num_parts, tmpdir,
783
                    num_hops=num_hops, part_method='metis', reshuffle=reshuffle)
784

785
    os.environ['DGL_DIST_MODE'] = 'standalone'
786
    dgl.distributed.initialize("rpc_ip_config.txt")
787
    dist_graph = DistGraph("test_sampling", part_config=tmpdir / 'test_sampling.json')
788
789
790
791
792
793
794
795
    sampled_graph = sample_neighbors(dist_graph, [0, 10, 99, 66, 1024, 2008], 3)

    src, dst = sampled_graph.edges()
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))
796
    dgl.distributed.exit_client()
797

798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
def check_standalone_etype_sampling(tmpdir, reshuffle):
    hg = CitationGraphDataset('cora')[0]
    num_parts = 1
    num_hops = 1

    partition_graph(hg, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=reshuffle)
    os.environ['DGL_DIST_MODE'] = 'standalone'
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_sampling", part_config=tmpdir / 'test_sampling.json')
    sampled_graph = sample_etype_neighbors(dist_graph, [0, 10, 99, 66, 1023], dgl.ETYPE, 3)

    src, dst = sampled_graph.edges()
    assert sampled_graph.number_of_nodes() == hg.number_of_nodes()
    assert np.all(F.asnumpy(hg.has_edges_between(src, dst)))
    eids = hg.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))
    dgl.distributed.exit_client()

def check_standalone_etype_sampling_heterograph(tmpdir, reshuffle):
    hg = CitationGraphDataset('cora')[0]
    num_parts = 1
    num_hops = 1
    src, dst = hg.edges()
    new_hg = dgl.heterograph({('paper', 'cite', 'paper'): (src, dst),
                              ('paper', 'cite-by', 'paper'): (dst, src)},
                              {'paper': hg.number_of_nodes()})
    partition_graph(new_hg, 'test_hetero_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=reshuffle)
    os.environ['DGL_DIST_MODE'] = 'standalone'
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_hetero_sampling", part_config=tmpdir / 'test_hetero_sampling.json')
    sampled_graph = sample_etype_neighbors(dist_graph, [0, 1, 2, 10, 99, 66, 1023, 1024, 2700, 2701], dgl.ETYPE, 1)
    src, dst = sampled_graph.edges(etype=('paper', 'cite', 'paper'))
    assert len(src) == 10
    src, dst = sampled_graph.edges(etype=('paper', 'cite-by', 'paper'))
    assert len(src) == 10
    assert sampled_graph.number_of_nodes() == new_hg.number_of_nodes()
    dgl.distributed.exit_client()

839
840
841
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
def test_standalone_sampling():
842
    reset_envs()
843
844
845
    import tempfile
    os.environ['DGL_DIST_MODE'] = 'standalone'
    with tempfile.TemporaryDirectory() as tmpdirname:
846
847
        check_standalone_sampling(Path(tmpdirname), False)
        check_standalone_sampling(Path(tmpdirname), True)
848

849
850
def start_in_subgraph_client(rank, tmpdir, disable_shared_mem, nodes):
    gpb = None
851
    dgl.distributed.initialize("rpc_ip_config.txt")
852
    if disable_shared_mem:
853
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_in_subgraph.json', rank)
854
    dist_graph = DistGraph("test_in_subgraph", gpb=gpb)
855
856
857
858
859
    try:
        sampled_graph = dgl.distributed.in_subgraph(dist_graph, nodes)
    except Exception as e:
        print(e)
        sampled_graph = None
860
    dgl.distributed.exit_client()
861
862
863
    return sampled_graph


864
def check_rpc_in_subgraph_shuffle(tmpdir, num_server):
865
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
866
867
868
869
870

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server

871
872
    orig_nid, orig_eid = partition_graph(g, 'test_in_subgraph', num_parts, tmpdir,
        num_hops=1, part_method='metis', reshuffle=True, return_mapping=True)
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_in_subgraph'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    nodes = [0, 10, 99, 66, 1024, 2008]
    sampled_graph = start_in_subgraph_client(0, tmpdir, num_server > 1, nodes)
    for p in pserver_list:
        p.join()

    src, dst = sampled_graph.edges()
888
889
    src = orig_nid[src]
    dst = orig_nid[dst]
890
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
891
892
893
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))

    subg1 = dgl.in_subgraph(g, orig_nid[nodes])
894
895
896
897
    src1, dst1 = subg1.edges()
    assert np.all(np.sort(F.asnumpy(src)) == np.sort(F.asnumpy(src1)))
    assert np.all(np.sort(F.asnumpy(dst)) == np.sort(F.asnumpy(dst1)))
    eids = g.edge_ids(src, dst)
898
899
    eids1 = orig_eid[sampled_graph.edata[dgl.EID]]
    assert np.array_equal(F.asnumpy(eids1), F.asnumpy(eids))
900
901
902
903

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
def test_rpc_in_subgraph():
904
    reset_envs()
905
    import tempfile
906
    os.environ['DGL_DIST_MODE'] = 'distributed'
907
    with tempfile.TemporaryDirectory() as tmpdirname:
908
        check_rpc_in_subgraph_shuffle(Path(tmpdirname), 2)
909

910
911
912
913
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
def test_standalone_etype_sampling():
914
    reset_envs()
915
916
917
918
919
920
921
922
923
    import tempfile
    with tempfile.TemporaryDirectory() as tmpdirname:
        os.environ['DGL_DIST_MODE'] = 'standalone'
        check_standalone_etype_sampling_heterograph(Path(tmpdirname), True)
    with tempfile.TemporaryDirectory() as tmpdirname:
        os.environ['DGL_DIST_MODE'] = 'standalone'
        check_standalone_etype_sampling(Path(tmpdirname), True)
        check_standalone_etype_sampling(Path(tmpdirname), False)

Jinjing Zhou's avatar
Jinjing Zhou committed
924
925
926
if __name__ == "__main__":
    import tempfile
    with tempfile.TemporaryDirectory() as tmpdirname:
927
        os.environ['DGL_DIST_MODE'] = 'standalone'
928
929
930
931
932
933
        check_standalone_etype_sampling_heterograph(Path(tmpdirname), True)

    with tempfile.TemporaryDirectory() as tmpdirname:
        os.environ['DGL_DIST_MODE'] = 'standalone'
        check_standalone_etype_sampling(Path(tmpdirname), True)
        check_standalone_etype_sampling(Path(tmpdirname), False)
934
935
        check_standalone_sampling(Path(tmpdirname), True)
        check_standalone_sampling(Path(tmpdirname), False)
936
        os.environ['DGL_DIST_MODE'] = 'distributed'
937
938
        check_rpc_sampling(Path(tmpdirname), 2)
        check_rpc_sampling(Path(tmpdirname), 1)
939
940
        check_rpc_get_degree_shuffle(Path(tmpdirname), 1)
        check_rpc_get_degree_shuffle(Path(tmpdirname), 2)
941
942
        check_rpc_find_edges_shuffle(Path(tmpdirname), 2)
        check_rpc_find_edges_shuffle(Path(tmpdirname), 1)
943
944
        check_rpc_hetero_find_edges_shuffle(Path(tmpdirname), 1)
        check_rpc_hetero_find_edges_shuffle(Path(tmpdirname), 2)
945
946
947
948
        check_rpc_in_subgraph_shuffle(Path(tmpdirname), 2)
        check_rpc_sampling_shuffle(Path(tmpdirname), 1)
        check_rpc_hetero_sampling_shuffle(Path(tmpdirname), 1)
        check_rpc_hetero_sampling_shuffle(Path(tmpdirname), 2)
949
950
951
952
        check_rpc_hetero_sampling_empty_shuffle(Path(tmpdirname), 1)
        check_rpc_hetero_etype_sampling_shuffle(Path(tmpdirname), 1)
        check_rpc_hetero_etype_sampling_shuffle(Path(tmpdirname), 2)
        check_rpc_hetero_etype_sampling_empty_shuffle(Path(tmpdirname), 1)