sampler.cc 54 KB
Newer Older
Da Zheng's avatar
Da Zheng committed
1
2
3
4
5
6
7
/*!
 *  Copyright (c) 2018 by Contributors
 * \file graph/sampler.cc
 * \brief DGL sampler implementation
 */
#include <dgl/sampler.h>
#include <dgl/immutable_graph.h>
8
9
#include <dgl/runtime/container.h>
#include <dgl/packed_func_ext.h>
10
#include <dgl/random.h>
11
#include <dmlc/omp.h>
Da Zheng's avatar
Da Zheng committed
12
#include <algorithm>
13
14
#include <cstdlib>
#include <cmath>
15
#include <numeric>
16
#include "../c_api_common.h"
17
#include "../array/common.h"  // for ATEN_FLOAT_TYPE_SWITCH
Da Zheng's avatar
Da Zheng committed
18

19
using namespace dgl::runtime;
20

Da Zheng's avatar
Da Zheng committed
21
22
23
24
25
26
namespace dgl {

namespace {
/*
 * ArrayHeap is used to sample elements from vector
 */
27
template<typename ValueType>
Da Zheng's avatar
Da Zheng committed
28
29
class ArrayHeap {
 public:
30
  explicit ArrayHeap(const std::vector<ValueType>& prob) {
Da Zheng's avatar
Da Zheng committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
    vec_size_ = prob.size();
    bit_len_ = ceil(log2(vec_size_));
    limit_ = 1 << bit_len_;
    // allocate twice the size
    heap_.resize(limit_ << 1, 0);
    // allocate the leaves
    for (int i = limit_; i < vec_size_+limit_; ++i) {
      heap_[i] = prob[i-limit_];
    }
    // iterate up the tree (this is O(m))
    for (int i = bit_len_-1; i >= 0; --i) {
      for (int j = (1 << i); j < (1 << (i + 1)); ++j) {
        heap_[j] = heap_[j << 1] + heap_[(j << 1) + 1];
      }
    }
  }
  ~ArrayHeap() {}

  /*
   * Remove term from index (this costs O(log m) steps)
   */
  void Delete(size_t index) {
    size_t i = index + limit_;
54
    ValueType w = heap_[i];
Da Zheng's avatar
Da Zheng committed
55
56
57
58
59
60
61
62
63
    for (int j = bit_len_; j >= 0; --j) {
      heap_[i] -= w;
      i = i >> 1;
    }
  }

  /*
   * Add value w to index (this costs O(log m) steps)
   */
64
  void Add(size_t index, ValueType w) {
Da Zheng's avatar
Da Zheng committed
65
66
67
68
69
70
71
72
73
74
    size_t i = index + limit_;
    for (int j = bit_len_; j >= 0; --j) {
      heap_[i] += w;
      i = i >> 1;
    }
  }

  /*
   * Sample from arrayHeap
   */
75
  size_t Sample() {
76
    ValueType xi = heap_[1] * RandomEngine::ThreadLocal()->Uniform<float>();
Da Zheng's avatar
Da Zheng committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    int i = 1;
    while (i < limit_) {
      i = i << 1;
      if (xi >= heap_[i]) {
        xi -= heap_[i];
        i += 1;
      }
    }
    return i - limit_;
  }

  /*
   * Sample a vector by given the size n
   */
91
  void SampleWithoutReplacement(size_t n, std::vector<size_t>* samples) {
Da Zheng's avatar
Da Zheng committed
92
93
    // sample n elements
    for (size_t i = 0; i < n; ++i) {
94
      samples->at(i) = this->Sample();
Da Zheng's avatar
Da Zheng committed
95
96
97
98
99
100
101
102
      this->Delete(samples->at(i));
    }
  }

 private:
  int vec_size_;  // sample size
  int bit_len_;   // bit size
  int limit_;
103
  std::vector<ValueType> heap_;
Da Zheng's avatar
Da Zheng committed
104
105
106
107
108
};

/*
 * Uniformly sample integers from [0, set_size) without replacement.
 */
109
void RandomSample(size_t set_size, size_t num, std::vector<size_t>* out) {
Da Zheng's avatar
Da Zheng committed
110
111
112
113
114
115
116
117
118
119
120
121
  if (num < set_size) {
    std::unordered_set<size_t> sampled_idxs;
    while (sampled_idxs.size() < num) {
      sampled_idxs.insert(RandomEngine::ThreadLocal()->RandInt(set_size));
    }
    out->insert(out->end(), sampled_idxs.begin(), sampled_idxs.end());
  } else {
    // If we need to sample all elements in the set, we don't need to
    // generate random numbers.
    for (size_t i = 0; i < set_size; i++)
      out->push_back(i);
  }
Da Zheng's avatar
Da Zheng committed
122
123
}

124
125
126
127
128
129
void RandomSample(size_t set_size, size_t num, const std::vector<size_t> &exclude,
                  std::vector<size_t>* out) {
  std::unordered_map<size_t, int> sampled_idxs;
  for (auto v : exclude) {
    sampled_idxs.insert(std::pair<size_t, int>(v, 0));
  }
Da Zheng's avatar
Da Zheng committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
  if (num + exclude.size() < set_size) {
    while (sampled_idxs.size() < num + exclude.size()) {
      size_t rand = RandomEngine::ThreadLocal()->RandInt(set_size);
      sampled_idxs.insert(std::pair<size_t, int>(rand, 1));
    }
    for (auto it = sampled_idxs.begin(); it != sampled_idxs.end(); it++) {
      if (it->second) {
        out->push_back(it->first);
      }
    }
  } else {
    // If we need to sample all elements in the set, we don't need to
    // generate random numbers.
    for (size_t i = 0; i < set_size; i++) {
      // If the element doesn't exist in exclude.
      if (sampled_idxs.find(i) == sampled_idxs.end()) {
        out->push_back(i);
      }
148
149
150
151
    }
  }
}

Da Zheng's avatar
Da Zheng committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/*
 * For a sparse array whose non-zeros are represented by nz_idxs,
 * negate the sparse array and outputs the non-zeros in the negated array.
 */
void NegateArray(const std::vector<size_t> &nz_idxs,
                 size_t arr_size,
                 std::vector<size_t>* out) {
  // nz_idxs must have been sorted.
  auto it = nz_idxs.begin();
  size_t i = 0;
  CHECK_GT(arr_size, nz_idxs.back());
  for (; i < arr_size && it != nz_idxs.end(); i++) {
    if (*it == i) {
      it++;
      continue;
    }
    out->push_back(i);
  }
  for (; i < arr_size; i++) {
    out->push_back(i);
  }
}

/*
 * Uniform sample vertices from a list of vertices.
 */
void GetUniformSample(const dgl_id_t* edge_id_list,
                      const dgl_id_t* vid_list,
                      const size_t ver_len,
                      const size_t max_num_neighbor,
                      std::vector<dgl_id_t>* out_ver,
183
                      std::vector<dgl_id_t>* out_edge) {
Da Zheng's avatar
Da Zheng committed
184
185
186
187
188
189
190
191
192
193
  // Copy vid_list to output
  if (ver_len <= max_num_neighbor) {
    out_ver->insert(out_ver->end(), vid_list, vid_list + ver_len);
    out_edge->insert(out_edge->end(), edge_id_list, edge_id_list + ver_len);
    return;
  }
  // If we just sample a small number of elements from a large neighbor list.
  std::vector<size_t> sorted_idxs;
  if (ver_len > max_num_neighbor * 2) {
    sorted_idxs.reserve(max_num_neighbor);
194
    RandomSample(ver_len, max_num_neighbor, &sorted_idxs);
Da Zheng's avatar
Da Zheng committed
195
196
197
198
    std::sort(sorted_idxs.begin(), sorted_idxs.end());
  } else {
    std::vector<size_t> negate;
    negate.reserve(ver_len - max_num_neighbor);
199
    RandomSample(ver_len, ver_len - max_num_neighbor, &negate);
Da Zheng's avatar
Da Zheng committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    std::sort(negate.begin(), negate.end());
    NegateArray(negate, ver_len, &sorted_idxs);
  }
  // verify the result.
  CHECK_EQ(sorted_idxs.size(), max_num_neighbor);
  for (size_t i = 1; i < sorted_idxs.size(); i++) {
    CHECK_GT(sorted_idxs[i], sorted_idxs[i - 1]);
  }
  for (auto idx : sorted_idxs) {
    out_ver->push_back(vid_list[idx]);
    out_edge->push_back(edge_id_list[idx]);
  }
}

/*
 * Non-uniform sample via ArrayHeap
216
217
 *
 * \param probability Transition probability on the entire graph, indexed by edge ID
Da Zheng's avatar
Da Zheng committed
218
 */
219
220
template<typename ValueType>
void GetNonUniformSample(const ValueType* probability,
Da Zheng's avatar
Da Zheng committed
221
222
223
224
225
                         const dgl_id_t* edge_id_list,
                         const dgl_id_t* vid_list,
                         const size_t ver_len,
                         const size_t max_num_neighbor,
                         std::vector<dgl_id_t>* out_ver,
226
                         std::vector<dgl_id_t>* out_edge) {
Da Zheng's avatar
Da Zheng committed
227
228
229
230
231
232
233
234
  // Copy vid_list to output
  if (ver_len <= max_num_neighbor) {
    out_ver->insert(out_ver->end(), vid_list, vid_list + ver_len);
    out_edge->insert(out_edge->end(), edge_id_list, edge_id_list + ver_len);
    return;
  }
  // Make sample
  std::vector<size_t> sp_index(max_num_neighbor);
235
  std::vector<ValueType> sp_prob(ver_len);
Da Zheng's avatar
Da Zheng committed
236
  for (size_t i = 0; i < ver_len; ++i) {
237
    sp_prob[i] = probability[edge_id_list[i]];
Da Zheng's avatar
Da Zheng committed
238
  }
239
  ArrayHeap<ValueType> arrayHeap(sp_prob);
240
  arrayHeap.SampleWithoutReplacement(max_num_neighbor, &sp_index);
Da Zheng's avatar
Da Zheng committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
  out_ver->resize(max_num_neighbor);
  out_edge->resize(max_num_neighbor);
  for (size_t i = 0; i < max_num_neighbor; ++i) {
    size_t idx = sp_index[i];
    out_ver->at(i) = vid_list[idx];
    out_edge->at(i) = edge_id_list[idx];
  }
  sort(out_ver->begin(), out_ver->end());
  sort(out_edge->begin(), out_edge->end());
}

/*
 * Used for subgraph sampling
 */
struct neigh_list {
  std::vector<dgl_id_t> neighs;
  std::vector<dgl_id_t> edges;
  neigh_list(const std::vector<dgl_id_t> &_neighs,
             const std::vector<dgl_id_t> &_edges)
    : neighs(_neighs), edges(_edges) {}
};

struct neighbor_info {
  dgl_id_t id;
  size_t pos;
  size_t num_edges;

  neighbor_info(dgl_id_t id, size_t pos, size_t num_edges) {
    this->id = id;
    this->pos = pos;
    this->num_edges = num_edges;
  }
};

NodeFlow ConstructNodeFlow(std::vector<dgl_id_t> neighbor_list,
                           std::vector<dgl_id_t> edge_list,
                           std::vector<size_t> layer_offsets,
                           std::vector<std::pair<dgl_id_t, int> > *sub_vers,
                           std::vector<neighbor_info> *neigh_pos,
                           const std::string &edge_type,
                           int64_t num_edges, int num_hops, bool is_multigraph) {
282
  NodeFlow nf = NodeFlow::Create();
Da Zheng's avatar
Da Zheng committed
283
  uint64_t num_vertices = sub_vers->size();
284
285
286
287
  nf->node_mapping = aten::NewIdArray(num_vertices);
  nf->edge_mapping = aten::NewIdArray(num_edges);
  nf->layer_offsets = aten::NewIdArray(num_hops + 1);
  nf->flow_offsets = aten::NewIdArray(num_hops);
Da Zheng's avatar
Da Zheng committed
288

289
290
291
292
  dgl_id_t *node_map_data = static_cast<dgl_id_t *>(nf->node_mapping->data);
  dgl_id_t *layer_off_data = static_cast<dgl_id_t *>(nf->layer_offsets->data);
  dgl_id_t *flow_off_data = static_cast<dgl_id_t *>(nf->flow_offsets->data);
  dgl_id_t *edge_map_data = static_cast<dgl_id_t *>(nf->edge_mapping->data);
Da Zheng's avatar
Da Zheng committed
293
294

  // Construct sub_csr_graph
295
296
297
298
299
  // TODO(minjie): is nodeflow a multigraph?
  auto subg_csr = CSRPtr(new CSR(num_vertices, num_edges, is_multigraph));
  dgl_id_t* indptr_out = static_cast<dgl_id_t*>(subg_csr->indptr()->data);
  dgl_id_t* col_list_out = static_cast<dgl_id_t*>(subg_csr->indices()->data);
  dgl_id_t* eid_out = static_cast<dgl_id_t*>(subg_csr->edge_ids()->data);
Da Zheng's avatar
Da Zheng committed
300
301
302
303
304
305
306
307
308
309
310
311
  size_t collected_nedges = 0;

  // The data from the previous steps:
  // * node data: sub_vers (vid, layer), neigh_pos,
  // * edge data: neighbor_list, edge_list, probability.
  // * layer_offsets: the offset in sub_vers.
  dgl_id_t ver_id = 0;
  std::vector<std::unordered_map<dgl_id_t, dgl_id_t>> layer_ver_maps;
  layer_ver_maps.resize(num_hops);
  size_t out_node_idx = 0;
  for (int layer_id = num_hops - 1; layer_id >= 0; layer_id--) {
    // We sort the vertices in a layer so that we don't need to sort the neighbor Ids
312
313
314
315
316
317
318
319
320
321
322
    // after remap to a subgraph. However, we don't need to sort the first layer
    // because we want the order of the nodes in the first layer is the same as
    // the input seed nodes.
    if (layer_id > 0) {
      std::sort(sub_vers->begin() + layer_offsets[layer_id],
                sub_vers->begin() + layer_offsets[layer_id + 1],
                [](const std::pair<dgl_id_t, dgl_id_t> &a1,
                   const std::pair<dgl_id_t, dgl_id_t> &a2) {
        return a1.first < a2.first;
      });
    }
Da Zheng's avatar
Da Zheng committed
323
324
325
326
327
328

    // Save the sampled vertices and its layer Id.
    for (size_t i = layer_offsets[layer_id]; i < layer_offsets[layer_id + 1]; i++) {
      node_map_data[out_node_idx++] = sub_vers->at(i).first;
      layer_ver_maps[layer_id].insert(std::pair<dgl_id_t, dgl_id_t>(sub_vers->at(i).first,
                                                                    ver_id++));
329
      CHECK_EQ(sub_vers->at(i).second, layer_id);
Da Zheng's avatar
Da Zheng committed
330
331
332
333
334
335
336
337
338
    }
  }
  CHECK(out_node_idx == num_vertices);

  // sampling algorithms have to start from the seed nodes, so the seed nodes are
  // in the first layer and the input nodes are in the last layer.
  // When we expose the sampled graph to a Python user, we say the input nodes
  // are in the first layer and the seed nodes are in the last layer.
  // Thus, when we copy sampled results to a CSR, we need to reverse the order of layers.
339
340
  std::fill(indptr_out, indptr_out + num_vertices + 1, 0);
  size_t row_idx = layer_offsets[num_hops] - layer_offsets[num_hops - 1];
Da Zheng's avatar
Da Zheng committed
341
342
  layer_off_data[0] = 0;
  layer_off_data[1] = layer_offsets[num_hops] - layer_offsets[num_hops - 1];
343
  int out_layer_idx = 1;
Da Zheng's avatar
Da Zheng committed
344
  for (int layer_id = num_hops - 2; layer_id >= 0; layer_id--) {
345
346
347
348
349
350
351
352
353
    // Because we don't sort the vertices in the first layer above, we can't sort
    // the neighbor positions of the vertices in the first layer either.
    if (layer_id > 0) {
      std::sort(neigh_pos->begin() + layer_offsets[layer_id],
                neigh_pos->begin() + layer_offsets[layer_id + 1],
                [](const neighbor_info &a1, const neighbor_info &a2) {
                  return a1.id < a2.id;
                });
    }
Da Zheng's avatar
Da Zheng committed
354
355
356

    for (size_t i = layer_offsets[layer_id]; i < layer_offsets[layer_id + 1]; i++) {
      dgl_id_t dst_id = sub_vers->at(i).first;
357
      CHECK_EQ(dst_id, neigh_pos->at(i).id);
Da Zheng's avatar
Da Zheng committed
358
      size_t pos = neigh_pos->at(i).pos;
359
      CHECK_LE(pos, neighbor_list.size());
360
361
      const size_t nedges = neigh_pos->at(i).num_edges;
      if (neighbor_list.empty()) CHECK_EQ(nedges, 0);
Da Zheng's avatar
Da Zheng committed
362
363
364

      // We need to map the Ids of the neighbors to the subgraph.
      auto neigh_it = neighbor_list.begin() + pos;
365
      for (size_t i = 0; i < nedges; i++) {
Da Zheng's avatar
Da Zheng committed
366
        dgl_id_t neigh = *(neigh_it + i);
367
        CHECK(layer_ver_maps[layer_id + 1].find(neigh) != layer_ver_maps[layer_id + 1].end());
Da Zheng's avatar
Da Zheng committed
368
369
370
371
        col_list_out[collected_nedges + i] = layer_ver_maps[layer_id + 1][neigh];
      }
      // We can simply copy the edge Ids.
      std::copy_n(edge_list.begin() + pos,
372
373
374
                  nedges, edge_map_data + collected_nedges);
      collected_nedges += nedges;
      indptr_out[row_idx+1] = indptr_out[row_idx] + nedges;
Da Zheng's avatar
Da Zheng committed
375
376
377
378
379
380
      row_idx++;
    }
    layer_off_data[out_layer_idx + 1] = layer_off_data[out_layer_idx]
        + layer_offsets[layer_id + 1] - layer_offsets[layer_id];
    out_layer_idx++;
  }
381
382
383
384
  CHECK_EQ(row_idx, num_vertices);
  CHECK_EQ(indptr_out[row_idx], num_edges);
  CHECK_EQ(out_layer_idx, num_hops);
  CHECK_EQ(layer_off_data[out_layer_idx], num_vertices);
Da Zheng's avatar
Da Zheng committed
385
386
387

  // Copy flow offsets.
  flow_off_data[0] = 0;
388
389
  int out_flow_idx = 0;
  for (size_t i = 0; i < layer_offsets.size() - 2; i++) {
390
    size_t num_edges = indptr_out[layer_off_data[i + 2]] - indptr_out[layer_off_data[i + 1]];
Da Zheng's avatar
Da Zheng committed
391
392
393
394
    flow_off_data[out_flow_idx + 1] = flow_off_data[out_flow_idx] + num_edges;
    out_flow_idx++;
  }
  CHECK(out_flow_idx == num_hops - 1);
395
  CHECK(flow_off_data[num_hops - 1] == static_cast<uint64_t>(num_edges));
Da Zheng's avatar
Da Zheng committed
396

397
  std::iota(eid_out, eid_out + num_edges, 0);
Da Zheng's avatar
Da Zheng committed
398

399
  if (edge_type == std::string("in")) {
400
    nf->graph = GraphPtr(new ImmutableGraph(subg_csr, nullptr));
Da Zheng's avatar
Da Zheng committed
401
  } else {
402
    nf->graph = GraphPtr(new ImmutableGraph(nullptr, subg_csr));
Da Zheng's avatar
Da Zheng committed
403
404
405
406
407
  }

  return nf;
}

408
template<typename ValueType>
Da Zheng's avatar
Da Zheng committed
409
NodeFlow SampleSubgraph(const ImmutableGraph *graph,
410
                        const std::vector<dgl_id_t>& seeds,
411
                        const ValueType* probability,
Da Zheng's avatar
Da Zheng committed
412
413
                        const std::string &edge_type,
                        int num_hops,
414
415
                        size_t num_neighbor,
                        const bool add_self_loop) {
416
  CHECK_EQ(graph->NumBits(), 64) << "32 bit graph is not supported yet";
417
  const size_t num_seeds = seeds.size();
Da Zheng's avatar
Da Zheng committed
418
  auto orig_csr = edge_type == "in" ? graph->GetInCSR() : graph->GetOutCSR();
419
420
421
  const dgl_id_t* val_list = static_cast<dgl_id_t*>(orig_csr->edge_ids()->data);
  const dgl_id_t* col_list = static_cast<dgl_id_t*>(orig_csr->indices()->data);
  const dgl_id_t* indptr = static_cast<dgl_id_t*>(orig_csr->indptr()->data);
Da Zheng's avatar
Da Zheng committed
422
423
424
425
426
427

  std::unordered_set<dgl_id_t> sub_ver_map;  // The vertex Ids in a layer.
  std::vector<std::pair<dgl_id_t, int> > sub_vers;
  sub_vers.reserve(num_seeds * 10);
  // add seed vertices
  for (size_t i = 0; i < num_seeds; ++i) {
428
    auto ret = sub_ver_map.insert(seeds[i]);
Da Zheng's avatar
Da Zheng committed
429
430
    // If the vertex is inserted successfully.
    if (ret.second) {
431
      sub_vers.emplace_back(seeds[i], 0);
Da Zheng's avatar
Da Zheng committed
432
433
434
435
436
437
438
439
440
441
442
443
444
445
    }
  }
  std::vector<dgl_id_t> tmp_sampled_src_list;
  std::vector<dgl_id_t> tmp_sampled_edge_list;
  // ver_id, position
  std::vector<neighbor_info> neigh_pos;
  neigh_pos.reserve(num_seeds);
  std::vector<dgl_id_t> neighbor_list;
  std::vector<dgl_id_t> edge_list;
  std::vector<size_t> layer_offsets(num_hops + 1);
  int64_t num_edges = 0;

  layer_offsets[0] = 0;
  layer_offsets[1] = sub_vers.size();
446
  for (int layer_id = 1; layer_id < num_hops; layer_id++) {
Da Zheng's avatar
Da Zheng committed
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
    // We need to avoid resampling the same node in a layer, but we allow a node
    // to be resampled in multiple layers. We use `sub_ver_map` to keep track of
    // sampled nodes in a layer, and clear it when entering a new layer.
    sub_ver_map.clear();
    // Previous iteration collects all nodes in sub_vers, which are collected
    // in the previous layer. sub_vers is used both as a node collection and a queue.
    for (size_t idx = layer_offsets[layer_id - 1]; idx < layer_offsets[layer_id]; idx++) {
      dgl_id_t dst_id = sub_vers[idx].first;
      const int cur_node_level = sub_vers[idx].second;

      tmp_sampled_src_list.clear();
      tmp_sampled_edge_list.clear();
      dgl_id_t ver_len = *(indptr+dst_id+1) - *(indptr+dst_id);
      if (probability == nullptr) {  // uniform-sample
        GetUniformSample(val_list + *(indptr + dst_id),
                         col_list + *(indptr + dst_id),
                         ver_len,
                         num_neighbor,
                         &tmp_sampled_src_list,
466
                         &tmp_sampled_edge_list);
Da Zheng's avatar
Da Zheng committed
467
468
469
470
471
472
473
      } else {  // non-uniform-sample
        GetNonUniformSample(probability,
                            val_list + *(indptr + dst_id),
                            col_list + *(indptr + dst_id),
                            ver_len,
                            num_neighbor,
                            &tmp_sampled_src_list,
474
                            &tmp_sampled_edge_list);
Da Zheng's avatar
Da Zheng committed
475
      }
Da Zheng's avatar
Da Zheng committed
476
477
478
      // If we need to add self loop and it doesn't exist in the sampled neighbor list.
      if (add_self_loop && std::find(tmp_sampled_src_list.begin(), tmp_sampled_src_list.end(),
                                     dst_id) == tmp_sampled_src_list.end()) {
479
        tmp_sampled_src_list.push_back(dst_id);
Da Zheng's avatar
Da Zheng committed
480
481
482
483
484
485
486
487
488
489
        const dgl_id_t *src_list = col_list + *(indptr + dst_id);
        const dgl_id_t *eid_list = val_list + *(indptr + dst_id);
        // TODO(zhengda) this operation has O(N) complexity. It can be pretty slow.
        const dgl_id_t *src = std::find(src_list, src_list + ver_len, dst_id);
        // If there doesn't exist a self loop in the graph.
        // we have to add -1 as the edge id for the self-loop edge.
        if (src == src_list + ver_len)
          tmp_sampled_edge_list.push_back(-1);
        else
          tmp_sampled_edge_list.push_back(eid_list[src - src_list]);
490
      }
Da Zheng's avatar
Da Zheng committed
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
      CHECK_EQ(tmp_sampled_src_list.size(), tmp_sampled_edge_list.size());
      neigh_pos.emplace_back(dst_id, neighbor_list.size(), tmp_sampled_src_list.size());
      // Then push the vertices
      for (size_t i = 0; i < tmp_sampled_src_list.size(); ++i) {
        neighbor_list.push_back(tmp_sampled_src_list[i]);
      }
      // Finally we push the edge list
      for (size_t i = 0; i < tmp_sampled_edge_list.size(); ++i) {
        edge_list.push_back(tmp_sampled_edge_list[i]);
      }
      num_edges += tmp_sampled_src_list.size();
      for (size_t i = 0; i < tmp_sampled_src_list.size(); ++i) {
        // We need to add the neighbor in the hashtable here. This ensures that
        // the vertex in the queue is unique. If we see a vertex before, we don't
        // need to add it to the queue again.
        auto ret = sub_ver_map.insert(tmp_sampled_src_list[i]);
        // If the sampled neighbor is inserted to the map successfully.
        if (ret.second) {
          sub_vers.emplace_back(tmp_sampled_src_list[i], cur_node_level + 1);
        }
      }
    }
    layer_offsets[layer_id + 1] = layer_offsets[layer_id] + sub_ver_map.size();
    CHECK_EQ(layer_offsets[layer_id + 1], sub_vers.size());
  }

  return ConstructNodeFlow(neighbor_list, edge_list, layer_offsets, &sub_vers, &neigh_pos,
                           edge_type, num_edges, num_hops, graph->IsMultigraph());
}

521
}  // namespace
Da Zheng's avatar
Da Zheng committed
522

523
524
DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetGraph")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
525
526
    NodeFlow nflow = args[0];
    *rv = nflow->graph;
527
528
529
530
  });

DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetNodeMapping")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
531
    NodeFlow nflow = args[0];
532
533
534
535
536
    *rv = nflow->node_mapping;
  });

DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetEdgeMapping")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
537
    NodeFlow nflow = args[0];
538
539
540
541
542
    *rv = nflow->edge_mapping;
  });

DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetLayerOffsets")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
543
    NodeFlow nflow = args[0];
544
545
546
547
548
    *rv = nflow->layer_offsets;
  });

DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetBlockOffsets")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
549
    NodeFlow nflow = args[0];
550
551
552
    *rv = nflow->flow_offsets;
  });

553
554
555
556
557
558
559
template<typename ValueType>
NodeFlow SamplerOp::NeighborSample(const ImmutableGraph *graph,
                                   const std::vector<dgl_id_t>& seeds,
                                   const std::string &edge_type,
                                   int num_hops, int expand_factor,
                                   const bool add_self_loop,
                                   const ValueType *probability) {
Da Zheng's avatar
Da Zheng committed
560
  return SampleSubgraph(graph,
561
562
                        seeds,
                        probability,
Da Zheng's avatar
Da Zheng committed
563
564
                        edge_type,
                        num_hops + 1,
565
566
                        expand_factor,
                        add_self_loop);
Da Zheng's avatar
Da Zheng committed
567
568
}

569
namespace {
570
  void ConstructLayers(const dgl_id_t *indptr,
571
                       const dgl_id_t *indices,
572
573
                       const std::vector<dgl_id_t>& seed_array,
                       IdArray layer_sizes,
574
575
576
577
578
579
580
581
582
                       std::vector<dgl_id_t> *layer_offsets,
                       std::vector<dgl_id_t> *node_mapping,
                       std::vector<int64_t> *actl_layer_sizes,
                       std::vector<float> *probabilities) {
    /*
     * Given a graph and a collection of seed nodes, this function constructs NodeFlow
     * layers via uniform layer-wise sampling, and return the resultant layers and their
     * corresponding probabilities.
     */
583
    std::copy(seed_array.begin(), seed_array.end(), std::back_inserter(*node_mapping));
584
585
    actl_layer_sizes->push_back(node_mapping->size());
    probabilities->insert(probabilities->end(), node_mapping->size(), 1);
586
587
    const int64_t* layer_sizes_data = static_cast<int64_t*>(layer_sizes->data);
    const int64_t num_layers = layer_sizes->shape[0];
588
589
590

    size_t curr = 0;
    size_t next = node_mapping->size();
591
592
    for (int64_t i = num_layers - 1; i >= 0; --i) {
      const int64_t layer_size = layer_sizes_data[i];
593
594
595
596
597
598
599
600
601
602
603
604
      std::unordered_set<dgl_id_t> candidate_set;
      for (auto j = curr; j != next; ++j) {
        auto src = (*node_mapping)[j];
        candidate_set.insert(indices + indptr[src], indices + indptr[src + 1]);
      }

      std::vector<dgl_id_t> candidate_vector;
      std::copy(candidate_set.begin(), candidate_set.end(),
                std::back_inserter(candidate_vector));

      std::unordered_map<dgl_id_t, size_t> n_occurrences;
      auto n_candidates = candidate_vector.size();
605
      for (int64_t j = 0; j != layer_size; ++j) {
606
607
        auto dst = candidate_vector[
          RandomEngine::ThreadLocal()->RandInt(n_candidates)];
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
        if (!n_occurrences.insert(std::make_pair(dst, 1)).second) {
          ++n_occurrences[dst];
        }
      }

      for (auto const &pair : n_occurrences) {
        node_mapping->push_back(pair.first);
        float p = pair.second * n_candidates / static_cast<float>(layer_size);
        probabilities->push_back(p);
      }

      actl_layer_sizes->push_back(node_mapping->size() - next);
      curr = next;
      next = node_mapping->size();
    }
    std::reverse(node_mapping->begin(), node_mapping->end());
    std::reverse(actl_layer_sizes->begin(), actl_layer_sizes->end());
    layer_offsets->push_back(0);
    for (const auto &size : *actl_layer_sizes) {
      layer_offsets->push_back(size + layer_offsets->back());
    }
  }

631
  void ConstructFlows(const dgl_id_t *indptr,
632
633
634
635
                      const dgl_id_t *indices,
                      const dgl_id_t *eids,
                      const std::vector<dgl_id_t> &node_mapping,
                      const std::vector<int64_t> &actl_layer_sizes,
636
637
638
                      std::vector<dgl_id_t> *sub_indptr,
                      std::vector<dgl_id_t> *sub_indices,
                      std::vector<dgl_id_t> *sub_eids,
639
640
641
642
643
644
645
                      std::vector<dgl_id_t> *flow_offsets,
                      std::vector<dgl_id_t> *edge_mapping) {
    /*
     * Given a graph and a sequence of NodeFlow layers, this function constructs dense
     * subgraphs (flows) between consecutive layers.
     */
    auto n_flows = actl_layer_sizes.size() - 1;
646
647
    for (int64_t i = 0; i < actl_layer_sizes.front() + 1; i++)
      sub_indptr->push_back(0);
648
649
650
651
652
653
654
655
656
657
658
659
660
    flow_offsets->push_back(0);
    int64_t first = 0;
    for (size_t i = 0; i < n_flows; ++i) {
      auto src_size = actl_layer_sizes[i];
      std::unordered_map<dgl_id_t, dgl_id_t> source_map;
      for (int64_t j = 0; j < src_size; ++j) {
        source_map.insert(std::make_pair(node_mapping[first + j], first + j));
      }
      auto dst_size = actl_layer_sizes[i + 1];
      for (int64_t j = 0; j < dst_size; ++j) {
        auto dst = node_mapping[first + src_size + j];
        typedef std::pair<dgl_id_t, dgl_id_t> id_pair;
        std::vector<id_pair> neighbor_indices;
661
        for (dgl_id_t k = indptr[dst]; k < indptr[dst + 1]; ++k) {
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
          // TODO(gaiyu): accelerate hash table lookup
          auto ret = source_map.find(indices[k]);
          if (ret != source_map.end()) {
            neighbor_indices.push_back(std::make_pair(ret->second, eids[k]));
          }
        }
        auto cmp = [](const id_pair p, const id_pair q)->bool { return p.first < q.first; };
        std::sort(neighbor_indices.begin(), neighbor_indices.end(), cmp);
        for (const auto &pair : neighbor_indices) {
          sub_indices->push_back(pair.first);
          edge_mapping->push_back(pair.second);
        }
        sub_indptr->push_back(sub_indices->size());
      }
      flow_offsets->push_back(sub_indices->size());
      first += src_size;
    }
    sub_eids->resize(sub_indices->size());
    std::iota(sub_eids->begin(), sub_eids->end(), 0);
  }
}  // namespace

NodeFlow SamplerOp::LayerUniformSample(const ImmutableGraph *graph,
685
                                       const std::vector<dgl_id_t>& seeds,
686
                                       const std::string &neighbor_type,
687
                                       IdArray layer_sizes) {
688
  const auto g_csr = neighbor_type == "in" ? graph->GetInCSR() : graph->GetOutCSR();
689
690
691
  const dgl_id_t *indptr = static_cast<dgl_id_t*>(g_csr->indptr()->data);
  const dgl_id_t *indices = static_cast<dgl_id_t*>(g_csr->indices()->data);
  const dgl_id_t *eids = static_cast<dgl_id_t*>(g_csr->edge_ids()->data);
692
693
694
695
696
697
698

  std::vector<dgl_id_t> layer_offsets;
  std::vector<dgl_id_t> node_mapping;
  std::vector<int64_t> actl_layer_sizes;
  std::vector<float> probabilities;
  ConstructLayers(indptr,
                  indices,
699
                  seeds,
700
701
702
703
704
705
                  layer_sizes,
                  &layer_offsets,
                  &node_mapping,
                  &actl_layer_sizes,
                  &probabilities);

706
  std::vector<dgl_id_t> sub_indptr, sub_indices, sub_edge_ids;
707
708
709
710
711
712
713
  std::vector<dgl_id_t> flow_offsets;
  std::vector<dgl_id_t> edge_mapping;
  ConstructFlows(indptr,
                 indices,
                 eids,
                 node_mapping,
                 actl_layer_sizes,
714
715
716
                 &sub_indptr,
                 &sub_indices,
                 &sub_edge_ids,
717
718
                 &flow_offsets,
                 &edge_mapping);
719
720
721
722
723
  // sanity check
  CHECK_GT(sub_indptr.size(), 0);
  CHECK_EQ(sub_indptr[0], 0);
  CHECK_EQ(sub_indptr.back(), sub_indices.size());
  CHECK_EQ(sub_indices.size(), sub_edge_ids.size());
724

725
  NodeFlow nf = NodeFlow::Create();
726
727
728
  auto sub_csr = CSRPtr(new CSR(aten::VecToIdArray(sub_indptr),
                                aten::VecToIdArray(sub_indices),
                                aten::VecToIdArray(sub_edge_ids)));
729
730

  if (neighbor_type == std::string("in")) {
731
    nf->graph = GraphPtr(new ImmutableGraph(sub_csr, nullptr));
732
  } else {
733
    nf->graph = GraphPtr(new ImmutableGraph(nullptr, sub_csr));
734
735
  }

736
737
738
739
  nf->node_mapping = aten::VecToIdArray(node_mapping);
  nf->edge_mapping = aten::VecToIdArray(edge_mapping);
  nf->layer_offsets = aten::VecToIdArray(layer_offsets);
  nf->flow_offsets = aten::VecToIdArray(flow_offsets);
740
741
742
743

  return nf;
}

Da Zheng's avatar
Da Zheng committed
744
745
746
747
748
749
750
751
752
753
754
755
void BuildCsr(const ImmutableGraph &g, const std::string neigh_type) {
  if (neigh_type == "in") {
    auto csr = g.GetInCSR();
    assert(csr);
  } else if (neigh_type == "out") {
    auto csr = g.GetOutCSR();
    assert(csr);
  } else {
    LOG(FATAL) << "We don't support sample from neighbor type " << neigh_type;
  }
}

756
757
758
759
760
761
762
763
764
765
766
template<typename ValueType>
std::vector<NodeFlow> NeighborSamplingImpl(const ImmutableGraphPtr gptr,
                                           const IdArray seed_nodes,
                                           const int64_t batch_start_id,
                                           const int64_t batch_size,
                                           const int64_t max_num_workers,
                                           const int64_t expand_factor,
                                           const int64_t num_hops,
                                           const std::string neigh_type,
                                           const bool add_self_loop,
                                           const ValueType *probability) {
767
    // process args
768
    CHECK(aten::IsValidIdArray(seed_nodes));
769
770
771
772
    const dgl_id_t* seed_nodes_data = static_cast<dgl_id_t*>(seed_nodes->data);
    const int64_t num_seeds = seed_nodes->shape[0];
    const int64_t num_workers = std::min(max_num_workers,
        (num_seeds + batch_size - 1) / batch_size - batch_start_id);
Da Zheng's avatar
Da Zheng committed
773
774
    // We need to make sure we have the right CSR before we enter parallel sampling.
    BuildCsr(*gptr, neigh_type);
775
    // generate node flows
776
    std::vector<NodeFlow> nflows(num_workers);
777
778
779
780
781
782
783
784
785
#pragma omp parallel for
    for (int i = 0; i < num_workers; i++) {
      // create per-worker seed nodes.
      const int64_t start = (batch_start_id + i) * batch_size;
      const int64_t end = std::min(start + batch_size, num_seeds);
      // TODO(minjie): the vector allocation/copy is unnecessary
      std::vector<dgl_id_t> worker_seeds(end - start);
      std::copy(seed_nodes_data + start, seed_nodes_data + end,
                worker_seeds.begin());
786
787
788
      nflows[i] = SamplerOp::NeighborSample(
          gptr.get(), worker_seeds, neigh_type, num_hops, expand_factor,
          add_self_loop, probability);
789
    }
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
    return nflows;
}

DGL_REGISTER_GLOBAL("sampling._CAPI_UniformSampling")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    // arguments
    const GraphRef g = args[0];
    const IdArray seed_nodes = args[1];
    const int64_t batch_start_id = args[2];
    const int64_t batch_size = args[3];
    const int64_t max_num_workers = args[4];
    const int64_t expand_factor = args[5];
    const int64_t num_hops = args[6];
    const std::string neigh_type = args[7];
    const bool add_self_loop = args[8];

    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
    CHECK(gptr) << "sampling isn't implemented in mutable graph";

    std::vector<NodeFlow> nflows = NeighborSamplingImpl<float>(
        gptr, seed_nodes, batch_start_id, batch_size, max_num_workers,
        expand_factor, num_hops, neigh_type, add_self_loop, nullptr);

    *rv = List<NodeFlow>(nflows);
  });

DGL_REGISTER_GLOBAL("sampling._CAPI_NeighborSampling")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    // arguments
    const GraphRef g = args[0];
    const IdArray seed_nodes = args[1];
    const int64_t batch_start_id = args[2];
    const int64_t batch_size = args[3];
    const int64_t max_num_workers = args[4];
    const int64_t expand_factor = args[5];
    const int64_t num_hops = args[6];
    const std::string neigh_type = args[7];
    const bool add_self_loop = args[8];
    const NDArray probability = args[9];

    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
    CHECK(gptr) << "sampling isn't implemented in mutable graph";

    std::vector<NodeFlow> nflows;

    CHECK(probability->dtype.code == kDLFloat)
      << "transition probability must be float";
    CHECK(probability->ndim == 1)
      << "transition probability must be a 1-dimensional vector";

    ATEN_FLOAT_TYPE_SWITCH(
      probability->dtype,
      FloatType,
      "transition probability",
      {
        const FloatType *prob;

        if (probability->ndim == 1 && probability->shape[0] == 0) {
          prob = nullptr;
        } else {
          CHECK(probability->shape[0] == gptr->NumEdges())
            << "transition probability must have same number of elements as edges";
          CHECK(probability.IsContiguous())
            << "transition probability must be contiguous tensor";
          prob = static_cast<const FloatType *>(probability->data);
        }

        nflows = NeighborSamplingImpl(
            gptr, seed_nodes, batch_start_id, batch_size, max_num_workers,
            expand_factor, num_hops, neigh_type, add_self_loop, prob);
    });

862
    *rv = List<NodeFlow>(nflows);
863
864
865
866
867
  });

DGL_REGISTER_GLOBAL("sampling._CAPI_LayerSampling")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    // arguments
868
    GraphRef g = args[0];
869
    const IdArray seed_nodes = args[1];
870
871
872
    const int64_t batch_start_id = args[2];
    const int64_t batch_size = args[3];
    const int64_t max_num_workers = args[4];
873
    const IdArray layer_sizes = args[5];
874
875
    const std::string neigh_type = args[6];
    // process args
876
    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
877
    CHECK(gptr) << "sampling isn't implemented in mutable graph";
878
    CHECK(aten::IsValidIdArray(seed_nodes));
879
880
881
882
    const dgl_id_t* seed_nodes_data = static_cast<dgl_id_t*>(seed_nodes->data);
    const int64_t num_seeds = seed_nodes->shape[0];
    const int64_t num_workers = std::min(max_num_workers,
        (num_seeds + batch_size - 1) / batch_size - batch_start_id);
Da Zheng's avatar
Da Zheng committed
883
884
    // We need to make sure we have the right CSR before we enter parallel sampling.
    BuildCsr(*gptr, neigh_type);
885
    // generate node flows
886
    std::vector<NodeFlow> nflows(num_workers);
887
888
889
890
891
892
893
894
895
#pragma omp parallel for
    for (int i = 0; i < num_workers; i++) {
      // create per-worker seed nodes.
      const int64_t start = (batch_start_id + i) * batch_size;
      const int64_t end = std::min(start + batch_size, num_seeds);
      // TODO(minjie): the vector allocation/copy is unnecessary
      std::vector<dgl_id_t> worker_seeds(end - start);
      std::copy(seed_nodes_data + start, seed_nodes_data + end,
                worker_seeds.begin());
896
897
      nflows[i] = SamplerOp::LayerUniformSample(
          gptr.get(), worker_seeds, neigh_type, layer_sizes);
898
    }
899
    *rv = List<NodeFlow>(nflows);
900
901
  });

902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
namespace {

void BuildCoo(const ImmutableGraph &g) {
  auto coo = g.GetCOO();
  assert(coo);
}


dgl_id_t global2local_map(dgl_id_t global_id,
                          std::unordered_map<dgl_id_t, dgl_id_t> *map) {
  auto it = map->find(global_id);
  if (it == map->end()) {
    dgl_id_t local_id = map->size();
    map->insert(std::pair<dgl_id_t, dgl_id_t>(global_id, local_id));
    return local_id;
  } else {
    return it->second;
  }
}

Da Zheng's avatar
Da Zheng committed
922
inline bool IsNegativeHeadMode(const std::string &mode) {
923
924
925
  return mode == "head";
}

926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
IdArray GetGlobalVid(IdArray induced_nid, IdArray subg_nid) {
  IdArray gnid = IdArray::Empty({subg_nid->shape[0]}, subg_nid->dtype, subg_nid->ctx);
  const dgl_id_t *induced_nid_data = static_cast<dgl_id_t *>(induced_nid->data);
  const dgl_id_t *subg_nid_data = static_cast<dgl_id_t *>(subg_nid->data);
  dgl_id_t *gnid_data = static_cast<dgl_id_t *>(gnid->data);
  for (int64_t i = 0; i < subg_nid->shape[0]; i++) {
    gnid_data[i] = induced_nid_data[subg_nid_data[i]];
  }
  return gnid;
}

IdArray CheckExistence(GraphPtr gptr, IdArray neg_src, IdArray neg_dst,
                       IdArray induced_nid) {
  return gptr->HasEdgesBetween(GetGlobalVid(induced_nid, neg_src),
                               GetGlobalVid(induced_nid, neg_dst));
}

IdArray CheckExistence(GraphPtr gptr, IdArray relations,
                       IdArray neg_src, IdArray neg_dst,
                       IdArray induced_nid, IdArray neg_eid) {
  neg_src = GetGlobalVid(induced_nid, neg_src);
  neg_dst = GetGlobalVid(induced_nid, neg_dst);
  BoolArray exist = gptr->HasEdgesBetween(neg_src, neg_dst);
  dgl_id_t *neg_dst_data = static_cast<dgl_id_t *>(neg_dst->data);
  dgl_id_t *neg_src_data = static_cast<dgl_id_t *>(neg_src->data);
  dgl_id_t *neg_eid_data = static_cast<dgl_id_t *>(neg_eid->data);
  dgl_id_t *relation_data = static_cast<dgl_id_t *>(relations->data);
  // TODO(zhengda) is this right?
  dgl_id_t *exist_data = static_cast<dgl_id_t *>(exist->data);
  int64_t num_neg_edges = neg_src->shape[0];
  for (int64_t i = 0; i < num_neg_edges; i++) {
    // If the edge doesn't exist, we don't need to do anything.
    if (!exist_data[i])
      continue;
    // If the edge exists, we need to double check if the relations match.
    // If they match, this negative edge isn't really a negative edge.
    dgl_id_t eid1 = neg_eid_data[i];
    dgl_id_t orig_neg_rel1 = relation_data[eid1];
    IdArray eids = gptr->EdgeId(neg_src_data[i], neg_dst_data[i]);
    dgl_id_t *eid_data = static_cast<dgl_id_t *>(eids->data);
    int64_t num_edges_between = eids->shape[0];
    bool same_rel = false;
    for (int64_t j = 0; j < num_edges_between; j++) {
      dgl_id_t neg_rel1 = relation_data[eid_data[j]];
      if (neg_rel1 == orig_neg_rel1) {
        same_rel = true;
        break;
      }
    }
    exist_data[i] = same_rel;
  }
  return exist;
}

980
981
982
983
984
985
986
987
988
989
990
std::vector<dgl_id_t> Global2Local(const std::vector<dgl_id_t> &ids,
                                   const std::unordered_map<dgl_id_t, dgl_id_t> &map) {
  std::vector<dgl_id_t> local_ids(ids.size());
  for (size_t i = 0; i < ids.size(); i++) {
    auto it = map.find(ids[i]);
    assert(it != map.end());
    local_ids[i] = it->second;
  }
  return local_ids;
}

991
992
NegSubgraph NegEdgeSubgraph(GraphPtr gptr, IdArray relations, const Subgraph &pos_subg,
                            const std::string &neg_mode,
Da Zheng's avatar
Da Zheng committed
993
994
                            int neg_sample_size, bool exclude_positive,
                            bool check_false_neg) {
995
996
  int64_t num_tot_nodes = gptr->NumVertices();
  bool is_multigraph = gptr->IsMultigraph();
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
  std::vector<IdArray> adj = pos_subg.graph->GetAdj(false, "coo");
  IdArray coo = adj[0];
  int64_t num_pos_edges = coo->shape[0] / 2;
  int64_t num_neg_edges = num_pos_edges * neg_sample_size;
  IdArray neg_dst = IdArray::Empty({num_neg_edges}, coo->dtype, coo->ctx);
  IdArray neg_src = IdArray::Empty({num_neg_edges}, coo->dtype, coo->ctx);
  IdArray neg_eid = IdArray::Empty({num_neg_edges}, coo->dtype, coo->ctx);
  IdArray induced_neg_eid = IdArray::Empty({num_neg_edges}, coo->dtype, coo->ctx);

  // These are vids in the positive subgraph.
  const dgl_id_t *dst_data = static_cast<const dgl_id_t *>(coo->data);
  const dgl_id_t *src_data = static_cast<const dgl_id_t *>(coo->data) + num_pos_edges;
  const dgl_id_t *induced_vid_data = static_cast<const dgl_id_t *>(pos_subg.induced_vertices->data);
  const dgl_id_t *induced_eid_data = static_cast<const dgl_id_t *>(pos_subg.induced_edges->data);
  size_t num_pos_nodes = pos_subg.graph->NumVertices();
  std::vector<size_t> pos_nodes(induced_vid_data, induced_vid_data + num_pos_nodes);

  dgl_id_t *neg_dst_data = static_cast<dgl_id_t *>(neg_dst->data);
  dgl_id_t *neg_src_data = static_cast<dgl_id_t *>(neg_src->data);
  dgl_id_t *neg_eid_data = static_cast<dgl_id_t *>(neg_eid->data);
  dgl_id_t *induced_neg_eid_data = static_cast<dgl_id_t *>(induced_neg_eid->data);

Da Zheng's avatar
Da Zheng committed
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
  const dgl_id_t *unchanged;
  dgl_id_t *neg_unchanged;
  dgl_id_t *neg_changed;
  if (IsNegativeHeadMode(neg_mode)) {
    unchanged = dst_data;
    neg_unchanged = neg_dst_data;
    neg_changed = neg_src_data;
  } else {
    unchanged = src_data;
    neg_unchanged = neg_src_data;
    neg_changed = neg_dst_data;
  }

1032
1033
1034
1035
  std::unordered_map<dgl_id_t, dgl_id_t> neg_map;
  std::vector<dgl_id_t> local_pos_vids;
  local_pos_vids.reserve(num_pos_edges);

1036
1037
1038
  dgl_id_t curr_eid = 0;
  std::vector<size_t> neg_vids;
  neg_vids.reserve(neg_sample_size);
Da Zheng's avatar
Da Zheng committed
1039
1040
1041
1042
1043
1044
1045
1046
  // If we don't exclude positive edges, we are actually sampling more than
  // the total number of nodes in the graph.
  if (!exclude_positive && neg_sample_size >= num_tot_nodes) {
    // We add all nodes as negative nodes.
    for (int64_t i = 0; i < num_tot_nodes; i++) {
      neg_vids.push_back(i);
      neg_map[i] = i;
    }
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067

    // Get all nodes in the positive side.
    for (int64_t i = 0; i < num_pos_edges; i++) {
      dgl_id_t vid = induced_vid_data[unchanged[i]];
      local_pos_vids.push_back(neg_map[vid]);
    }
    // There is no guarantee that the nodes in the vector are unique.
    std::sort(local_pos_vids.begin(), local_pos_vids.end());
    auto it = std::unique(local_pos_vids.begin(), local_pos_vids.end());
    local_pos_vids.resize(it - local_pos_vids.begin());
  } else {
    // Collect nodes in the positive side.
    dgl_id_t local_vid = 0;
    for (int64_t i = 0; i < num_pos_edges; i++) {
      dgl_id_t vid = induced_vid_data[unchanged[i]];
      auto it = neg_map.find(vid);
      if (it == neg_map.end()) {
        local_pos_vids.push_back(local_vid);
        neg_map.insert(std::pair<dgl_id_t, dgl_id_t>(vid, local_vid++));
      }
    }
Da Zheng's avatar
Da Zheng committed
1068
1069
  }

1070
  int64_t prev_neg_offset = 0;
1071
1072
1073
1074
1075
  for (int64_t i = 0; i < num_pos_edges; i++) {
    size_t neg_idx = i * neg_sample_size;

    std::vector<size_t> neighbors;
    DGLIdIters neigh_it;
Da Zheng's avatar
Da Zheng committed
1076
    if (IsNegativeHeadMode(neg_mode)) {
1077
      neigh_it = gptr->PredVec(induced_vid_data[unchanged[i]]);
1078
    } else {
1079
      neigh_it = gptr->SuccVec(induced_vid_data[unchanged[i]]);
1080
1081
    }

Da Zheng's avatar
Da Zheng committed
1082
1083
1084
    // If the number of negative nodes is smaller than the number of total nodes
    // in the graph.
    if (exclude_positive && neg_sample_size < num_tot_nodes) {
1085
1086
      std::vector<size_t> exclude;
      for (auto it = neigh_it.begin(); it != neigh_it.end(); it++) {
1087
1088
        dgl_id_t global_vid = *it;
        exclude.push_back(global_vid);
1089
      }
1090
      prev_neg_offset = neg_vids.size();
1091
      RandomSample(num_tot_nodes, neg_sample_size, exclude, &neg_vids);
1092
      assert(prev_neg_offset + neg_sample_size == neg_vids.size());
Da Zheng's avatar
Da Zheng committed
1093
    } else if (neg_sample_size < num_tot_nodes) {
1094
      prev_neg_offset = neg_vids.size();
1095
      RandomSample(num_tot_nodes, neg_sample_size, &neg_vids);
1096
      assert(prev_neg_offset + neg_sample_size == neg_vids.size());
Da Zheng's avatar
Da Zheng committed
1097
1098
1099
1100
1101
1102
1103
    } else if (exclude_positive) {
      LOG(FATAL) << "We can't exclude positive edges when sampling negative edges with all nodes.";
    } else {
      // We don't need to do anything here.
      // In this case, every edge has the same negative edges. That is,
      // neg_vids contains all nodes of the graph. They have been generated
      // before the for loop.
1104
1105
1106
1107
1108
1109
1110
1111
    }

    dgl_id_t global_unchanged = induced_vid_data[unchanged[i]];
    dgl_id_t local_unchanged = global2local_map(global_unchanged, &neg_map);

    for (int64_t j = 0; j < neg_sample_size; j++) {
      neg_unchanged[neg_idx + j] = local_unchanged;
      neg_eid_data[neg_idx + j] = curr_eid++;
1112
      dgl_id_t local_changed = global2local_map(neg_vids[j + prev_neg_offset], &neg_map);
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
      neg_changed[neg_idx + j] = local_changed;
      // induced negative eid references to the positive one.
      induced_neg_eid_data[neg_idx + j] = induced_eid_data[i];
    }
  }

  // Now we know the number of vertices in the negative graph.
  int64_t num_neg_nodes = neg_map.size();
  IdArray induced_neg_vid = IdArray::Empty({num_neg_nodes}, coo->dtype, coo->ctx);
  dgl_id_t *induced_neg_vid_data = static_cast<dgl_id_t *>(induced_neg_vid->data);
  for (auto it = neg_map.begin(); it != neg_map.end(); it++) {
    induced_neg_vid_data[it->second] = it->first;
  }

1127
  NegSubgraph neg_subg;
1128
1129
1130
1131
1132
1133
  // We sample negative vertices without replacement.
  // There shouldn't be duplicated edges.
  COOPtr neg_coo(new COO(num_neg_nodes, neg_src, neg_dst, is_multigraph));
  neg_subg.graph = GraphPtr(new ImmutableGraph(neg_coo));
  neg_subg.induced_vertices = induced_neg_vid;
  neg_subg.induced_edges = induced_neg_eid;
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
  // If we didn't sample all nodes to form negative edges, some of the nodes
  // in the vector might be redundant.
  if (neg_sample_size < num_tot_nodes) {
    std::sort(neg_vids.begin(), neg_vids.end());
    auto it = std::unique(neg_vids.begin(), neg_vids.end());
    neg_vids.resize(it - neg_vids.begin());
  }
  if (IsNegativeHeadMode(neg_mode)) {
    neg_subg.head_nid = aten::VecToIdArray(Global2Local(neg_vids, neg_map));
    neg_subg.tail_nid = aten::VecToIdArray(local_pos_vids);
  } else {
    neg_subg.head_nid = aten::VecToIdArray(local_pos_vids);
    neg_subg.tail_nid = aten::VecToIdArray(Global2Local(neg_vids, neg_map));
  }
1148
  // TODO(zhengda) we should provide an array of 1s if exclude_positive
Da Zheng's avatar
Da Zheng committed
1149
1150
1151
1152
1153
1154
1155
  if (check_false_neg) {
    if (relations->shape[0] == 0) {
      neg_subg.exist = CheckExistence(gptr, neg_src, neg_dst, induced_neg_vid);
    } else {
      neg_subg.exist = CheckExistence(gptr, relations, neg_src, neg_dst,
                                      induced_neg_vid, induced_neg_eid);
    }
1156
  }
1157
1158
1159
  return neg_subg;
}

1160
NegSubgraph PBGNegEdgeSubgraph(GraphPtr gptr, IdArray relations, const Subgraph &pos_subg,
1161
1162
                            const std::string &neg_mode,
                            int neg_sample_size, bool is_multigraph,
Da Zheng's avatar
Da Zheng committed
1163
                            bool exclude_positive, bool check_false_neg) {
1164
  int64_t num_tot_nodes = gptr->NumVertices();
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
  std::vector<IdArray> adj = pos_subg.graph->GetAdj(false, "coo");
  IdArray coo = adj[0];
  int64_t num_pos_edges = coo->shape[0] / 2;

  int64_t chunk_size = neg_sample_size;
  // If num_pos_edges isn't divisible by chunk_size, the actual number of chunks
  // is num_chunks + 1 and the last chunk size is last_chunk_size.
  // Otherwise, the actual number of chunks is num_chunks, the last chunk size
  // is 0.
  int64_t num_chunks = num_pos_edges / chunk_size;
  int64_t last_chunk_size = num_pos_edges - num_chunks * chunk_size;

  // The number of negative edges.
  int64_t num_neg_edges = neg_sample_size * chunk_size * num_chunks;
  int64_t num_neg_edges_last_chunk = neg_sample_size * last_chunk_size;
  int64_t num_all_neg_edges = num_neg_edges + num_neg_edges_last_chunk;

  // We should include the last chunk.
  if (last_chunk_size > 0)
    num_chunks++;

  IdArray neg_dst = IdArray::Empty({num_all_neg_edges}, coo->dtype, coo->ctx);
  IdArray neg_src = IdArray::Empty({num_all_neg_edges}, coo->dtype, coo->ctx);
  IdArray neg_eid = IdArray::Empty({num_all_neg_edges}, coo->dtype, coo->ctx);
  IdArray induced_neg_eid = IdArray::Empty({num_all_neg_edges}, coo->dtype, coo->ctx);

  // These are vids in the positive subgraph.
  const dgl_id_t *dst_data = static_cast<const dgl_id_t *>(coo->data);
  const dgl_id_t *src_data = static_cast<const dgl_id_t *>(coo->data) + num_pos_edges;
  const dgl_id_t *induced_vid_data = static_cast<const dgl_id_t *>(pos_subg.induced_vertices->data);
  const dgl_id_t *induced_eid_data = static_cast<const dgl_id_t *>(pos_subg.induced_edges->data);
  size_t num_pos_nodes = pos_subg.graph->NumVertices();
  std::vector<size_t> pos_nodes(induced_vid_data, induced_vid_data + num_pos_nodes);

  dgl_id_t *neg_dst_data = static_cast<dgl_id_t *>(neg_dst->data);
  dgl_id_t *neg_src_data = static_cast<dgl_id_t *>(neg_src->data);
  dgl_id_t *neg_eid_data = static_cast<dgl_id_t *>(neg_eid->data);
  dgl_id_t *induced_neg_eid_data = static_cast<dgl_id_t *>(induced_neg_eid->data);

  const dgl_id_t *unchanged;
  dgl_id_t *neg_unchanged;
  dgl_id_t *neg_changed;

  // corrupt head nodes.
Da Zheng's avatar
Da Zheng committed
1209
  if (IsNegativeHeadMode(neg_mode)) {
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
    unchanged = dst_data;
    neg_unchanged = neg_dst_data;
    neg_changed = neg_src_data;
  } else {
    // corrupt tail nodes.
    unchanged = src_data;
    neg_unchanged = neg_src_data;
    neg_changed = neg_dst_data;
  }

  // We first sample all negative edges.
  std::vector<size_t> neg_vids;
  RandomSample(num_tot_nodes,
               num_chunks * neg_sample_size,
               &neg_vids);

  dgl_id_t curr_eid = 0;
  std::unordered_map<dgl_id_t, dgl_id_t> neg_map;
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
  dgl_id_t local_vid = 0;
  // Collect nodes in the positive side.
  std::vector<dgl_id_t> local_pos_vids;
  local_pos_vids.reserve(num_pos_edges);
  for (int64_t i = 0; i < num_pos_edges; i++) {
    dgl_id_t vid = induced_vid_data[unchanged[i]];
    auto it = neg_map.find(vid);
    if (it == neg_map.end()) {
      local_pos_vids.push_back(local_vid);
      neg_map.insert(std::pair<dgl_id_t, dgl_id_t>(vid, local_vid++));
    }
  }

1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
  for (int64_t i_chunk = 0; i_chunk < num_chunks; i_chunk++) {
    // for each chunk.
    int64_t neg_idx = neg_sample_size * chunk_size * i_chunk;
    int64_t pos_edge_idx = chunk_size * i_chunk;
    int64_t neg_node_idx = neg_sample_size * i_chunk;
    // The actual chunk size. It'll be different for the last chunk.
    int64_t chunk_size1;
    if (i_chunk == num_chunks - 1 && last_chunk_size > 0)
      chunk_size1 = last_chunk_size;
    else
      chunk_size1 = chunk_size;

    for (int64_t in_chunk = 0; in_chunk != chunk_size1; ++in_chunk) {
      // For each positive node in a chunk.

      dgl_id_t global_unchanged = induced_vid_data[unchanged[pos_edge_idx + in_chunk]];
      dgl_id_t local_unchanged = global2local_map(global_unchanged, &neg_map);
      for (int64_t j = 0; j < neg_sample_size; ++j) {
        neg_unchanged[neg_idx] = local_unchanged;
        neg_eid_data[neg_idx] = curr_eid++;
        dgl_id_t global_changed_vid = neg_vids[neg_node_idx + j];

        // TODO(zhengda) we can avoid the hashtable lookup here.
        dgl_id_t local_changed = global2local_map(global_changed_vid, &neg_map);
        neg_changed[neg_idx] = local_changed;
        induced_neg_eid_data[neg_idx] = induced_eid_data[pos_edge_idx + in_chunk];
        neg_idx++;
      }
    }
  }

  // Now we know the number of vertices in the negative graph.
  int64_t num_neg_nodes = neg_map.size();
  IdArray induced_neg_vid = IdArray::Empty({num_neg_nodes}, coo->dtype, coo->ctx);
  dgl_id_t *induced_neg_vid_data = static_cast<dgl_id_t *>(induced_neg_vid->data);
  for (auto it = neg_map.begin(); it != neg_map.end(); it++) {
    induced_neg_vid_data[it->second] = it->first;
  }

1280
  NegSubgraph neg_subg;
1281
1282
1283
1284
1285
1286
  // We sample negative vertices without replacement.
  // There shouldn't be duplicated edges.
  COOPtr neg_coo(new COO(num_neg_nodes, neg_src, neg_dst, is_multigraph));
  neg_subg.graph = GraphPtr(new ImmutableGraph(neg_coo));
  neg_subg.induced_vertices = induced_neg_vid;
  neg_subg.induced_edges = induced_neg_eid;
1287
1288
1289
1290
1291
1292
1293
  if (IsNegativeHeadMode(neg_mode)) {
    neg_subg.head_nid = aten::VecToIdArray(Global2Local(neg_vids, neg_map));
    neg_subg.tail_nid = aten::VecToIdArray(local_pos_vids);
  } else {
    neg_subg.head_nid = aten::VecToIdArray(local_pos_vids);
    neg_subg.tail_nid = aten::VecToIdArray(Global2Local(neg_vids, neg_map));
  }
Da Zheng's avatar
Da Zheng committed
1294
1295
1296
1297
1298
1299
1300
  if (check_false_neg) {
    if (relations->shape[0] == 0) {
      neg_subg.exist = CheckExistence(gptr, neg_src, neg_dst, induced_neg_vid);
    } else {
      neg_subg.exist = CheckExistence(gptr, relations, neg_src, neg_dst,
                                      induced_neg_vid, induced_neg_eid);
    }
1301
  }
1302
1303
1304
  return neg_subg;
}

1305
1306
1307
1308
inline SubgraphRef ConvertRef(const Subgraph &subg) {
    return SubgraphRef(std::shared_ptr<Subgraph>(new Subgraph(subg)));
}

1309
1310
1311
1312
inline SubgraphRef ConvertRef(const NegSubgraph &subg) {
    return SubgraphRef(std::shared_ptr<Subgraph>(new NegSubgraph(subg)));
}

1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
}  // namespace

DGL_REGISTER_GLOBAL("sampling._CAPI_UniformEdgeSampling")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    // arguments
    GraphRef g = args[0];
    IdArray seed_edges = args[1];
    const int64_t batch_start_id = args[2];
    const int64_t batch_size = args[3];
    const int64_t max_num_workers = args[4];
    const std::string neg_mode = args[5];
    const int neg_sample_size = args[6];
    const bool exclude_positive = args[7];
Da Zheng's avatar
Da Zheng committed
1326
1327
    const bool check_false_neg = args[8];
    IdArray relations = args[9];
1328
1329
1330
    // process args
    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
    CHECK(gptr) << "sampling isn't implemented in mutable graph";
1331
    CHECK(aten::IsValidIdArray(seed_edges));
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
    BuildCoo(*gptr);

    const int64_t num_seeds = seed_edges->shape[0];
    const int64_t num_workers = std::min(max_num_workers,
        (num_seeds + batch_size - 1) / batch_size - batch_start_id);
    // generate subgraphs.
    std::vector<SubgraphRef> positive_subgs(num_workers);
    std::vector<SubgraphRef> negative_subgs(num_workers);
#pragma omp parallel for
    for (int i = 0; i < num_workers; i++) {
      const int64_t start = (batch_start_id + i) * batch_size;
      const int64_t end = std::min(start + batch_size, num_seeds);
      const int64_t num_edges = end - start;
      IdArray worker_seeds = seed_edges.CreateView({num_edges}, DLDataType{kDLInt, 64, 1},
                                                   sizeof(dgl_id_t) * start);
      EdgeArray arr = gptr->FindEdges(worker_seeds);
      const dgl_id_t *src_ids = static_cast<const dgl_id_t *>(arr.src->data);
      const dgl_id_t *dst_ids = static_cast<const dgl_id_t *>(arr.dst->data);
      std::vector<dgl_id_t> src_vec(src_ids, src_ids + num_edges);
      std::vector<dgl_id_t> dst_vec(dst_ids, dst_ids + num_edges);
      // TODO(zhengda) what if there are duplicates in the src and dst vectors.

      Subgraph subg = gptr->EdgeSubgraph(worker_seeds, false);
      positive_subgs[i] = ConvertRef(subg);
1356
1357
1358
      // For PBG negative sampling, we accept "PBG-head" for corrupting head
      // nodes and "PBG-tail" for corrupting tail nodes.
      if (neg_mode.substr(0, 3) == "PBG") {
1359
1360
        NegSubgraph neg_subg = PBGNegEdgeSubgraph(gptr, relations, subg,
                                                  neg_mode.substr(4), neg_sample_size,
Da Zheng's avatar
Da Zheng committed
1361
1362
                                                  gptr->IsMultigraph(), exclude_positive,
                                                  check_false_neg);
1363
1364
        negative_subgs[i] = ConvertRef(neg_subg);
      } else if (neg_mode.size() > 0) {
1365
        NegSubgraph neg_subg = NegEdgeSubgraph(gptr, relations, subg, neg_mode, neg_sample_size,
Da Zheng's avatar
Da Zheng committed
1366
                                               exclude_positive, check_false_neg);
1367
1368
1369
1370
1371
1372
1373
1374
1375
        negative_subgs[i] = ConvertRef(neg_subg);
      }
    }
    if (neg_mode.size() > 0) {
      positive_subgs.insert(positive_subgs.end(), negative_subgs.begin(), negative_subgs.end());
    }
    *rv = List<SubgraphRef>(positive_subgs);
  });

1376
1377
1378
1379
1380
1381
1382
1383

DGL_REGISTER_GLOBAL("sampling._CAPI_GetNegEdgeExistence")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
  SubgraphRef g = args[0];
  auto gptr = std::dynamic_pointer_cast<NegSubgraph>(g.sptr());
  *rv = gptr->exist;
});

1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
DGL_REGISTER_GLOBAL("sampling._CAPI_GetEdgeSubgraphHead")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
  SubgraphRef g = args[0];
  auto gptr = std::dynamic_pointer_cast<NegSubgraph>(g.sptr());
  *rv = gptr->head_nid;
});

DGL_REGISTER_GLOBAL("sampling._CAPI_GetEdgeSubgraphTail")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
  SubgraphRef g = args[0];
  auto gptr = std::dynamic_pointer_cast<NegSubgraph>(g.sptr());
  *rv = gptr->tail_nid;
});

Da Zheng's avatar
Da Zheng committed
1398
}  // namespace dgl