node_classification.py 14.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
"""
This script trains and tests a GraphSAGE model for node classification
on large graphs using GraphBolt dataloader.

Paper: [Inductive Representation Learning on Large Graphs]
(https://arxiv.org/abs/1706.02216)

Unlike previous dgl examples, we've utilized the newly defined dataloader
from GraphBolt. This example will help you grasp how to build an end-to-end
training pipeline using GraphBolt.

Before reading this example, please familiar yourself with graphsage node
classification by reading the example in the
`examples/core/graphsage/node_classification.py`. This introduction,
[A Blitz Introduction to Node Classification with DGL]
(https://docs.dgl.ai/tutorials/blitz/1_introduction.html), might be helpful.

If you want to train graphsage on a large graph in a distributed fashion,
please read the example in the `examples/distributed/graphsage/`.

This flowchart describes the main functional sequence of the provided example:
main

├───> OnDiskDataset pre-processing

├───> Instantiate SAGE model

├───> train
│     │
│     ├───> Get graphbolt dataloader (HIGHLIGHT)
│     │
│     └───> Training loop
│           │
│           ├───> SAGE.forward
│           │
│           └───> Validation set evaluation

38
└───> All nodes set inference & Test set evaluation
39
40
"""
import argparse
41
import time
42
43
44
45
46
47
48

import dgl.graphbolt as gb
import dgl.nn as dglnn
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchmetrics.functional as MF
49
from tqdm import tqdm
50
51


52
def create_dataloader(
53
    graph, features, itemset, batch_size, fanout, device, num_workers, job
54
):
55
56
57
58
    """
    [HIGHLIGHT]
    Get a GraphBolt version of a dataloader for node classification tasks.
    This function demonstrates how to utilize functional forms of datapipes in
59
60
    GraphBolt. For a more detailed tutorial, please read the examples in
    `dgl/notebooks/graphbolt/walkthrough.ipynb`.
61
    Alternatively, you can create a datapipe using its class constructor.
62
63
64

    Parameters
    ----------
65
    job : one of ["train", "evaluate", "infer"]
66
67
        The stage where dataloader is created, with options "train", "evaluate"
        and "infer".
68
    Other parameters are explicated in the comments below.
69
70
71
72
73
74
75
    """

    ############################################################################
    # [Step-1]:
    # gb.ItemSampler()
    # [Input]:
    # 'itemset': The current dataset. (e.g. `train_set` or `valid_set`)
76
    # 'batch_size': Specify the number of samples to be processed together,
77
78
79
    # referred to as a 'mini-batch'. (The term 'mini-batch' is used here to
    # indicate a subset of the entire dataset that is processed together. This
    # is in contrast to processing the entire dataset, known as a 'full batch'.)
80
    # 'job': Determines whether data should be shuffled. (Shuffling is
81
82
83
84
85
86
87
88
89
    # generally used only in training to improve model generalization. It's
    # not used in validation and testing as the focus there is to evaluate
    # performance rather than to learn from the data.)
    # [Output]:
    # An ItemSampler object for handling mini-batch sampling.
    # [Role]:
    # Initialize the ItemSampler to sample mini-batche from the dataset.
    ############################################################################
    datapipe = gb.ItemSampler(
90
        itemset, batch_size=batch_size, shuffle=(job == "train")
91
92
93
94
    )

    ############################################################################
    # [Step-2]:
95
96
97
98
99
100
101
102
103
104
105
106
107
    # self.copy_to()
    # [Input]:
    # 'device': The device to copy the data to.
    # 'extra_attrs': The extra attributes to copy.
    # [Output]:
    # A CopyTo object to copy the data to the specified device. Copying here
    # ensures that the rest of the operations run on the GPU.
    ############################################################################
    if args.storage_device != "cpu":
        datapipe = datapipe.copy_to(device=device, extra_attrs=["seed_nodes"])

    ############################################################################
    # [Step-3]:
108
109
110
    # self.sample_neighbor()
    # [Input]:
    # 'graph': The network topology for sampling.
111
112
    # '[-1] or fanout': Number of neighbors to sample per node. In
    # training or validation, the length of `fanout` should be equal to the
113
114
    # number of layers in the model. In inference, this parameter is set to
    # [-1], indicating that all neighbors of a node are sampled.
115
116
117
118
119
    # [Output]:
    # A NeighborSampler object to sample neighbors.
    # [Role]:
    # Initialize a neighbor sampler for sampling the neighborhoods of nodes.
    ############################################################################
120
    datapipe = datapipe.sample_neighbor(
121
        graph, fanout if job != "infer" else [-1]
122
    )
123
124

    ############################################################################
125
    # [Step-4]:
126
127
128
129
130
131
132
133
    # self.fetch_feature()
    # [Input]:
    # 'features': The node features.
    # 'node_feature_keys': The keys of the node features to be fetched.
    # [Output]:
    # A FeatureFetcher object to fetch node features.
    # [Role]:
    # Initialize a feature fetcher for fetching features of the sampled
134
    # subgraphs.
135
    ############################################################################
136
    datapipe = datapipe.fetch_feature(features, node_feature_keys=["feat"])
137
138

    ############################################################################
139
    # [Step-5]:
140
141
142
143
144
145
    # self.copy_to()
    # [Input]:
    # 'device': The device to copy the data to.
    # [Output]:
    # A CopyTo object to copy the data to the specified device.
    ############################################################################
146
147
    if args.storage_device == "cpu":
        datapipe = datapipe.copy_to(device=device)
148
149

    ############################################################################
150
    # [Step-6]:
151
    # gb.DataLoader()
152
153
    # [Input]:
    # 'datapipe': The datapipe object to be used for data loading.
154
    # 'num_workers': The number of processes to be used for data loading.
155
    # [Output]:
156
    # A DataLoader object to handle data loading.
157
158
159
    # [Role]:
    # Initialize a multi-process dataloader to load the data in parallel.
    ############################################################################
160
    dataloader = gb.DataLoader(datapipe, num_workers=num_workers)
161
162
163
164
165

    # Return the fully-initialized DataLoader object.
    return dataloader


166
167
168
169
170
171
172
173
174
175
176
177
class SAGE(nn.Module):
    def __init__(self, in_size, hidden_size, out_size):
        super().__init__()
        self.layers = nn.ModuleList()
        # Three-layer GraphSAGE-mean.
        self.layers.append(dglnn.SAGEConv(in_size, hidden_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hidden_size, hidden_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hidden_size, out_size, "mean"))
        self.dropout = nn.Dropout(0.5)
        self.hidden_size = hidden_size
        self.out_size = out_size
        # Set the dtype for the layers manually.
178
        self.set_layer_dtype(torch.float32)
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

    def set_layer_dtype(self, _dtype):
        for layer in self.layers:
            for param in layer.parameters():
                param.data = param.data.to(_dtype)

    def forward(self, blocks, x):
        hidden_x = x
        for layer_idx, (layer, block) in enumerate(zip(self.layers, blocks)):
            hidden_x = layer(block, hidden_x)
            is_last_layer = layer_idx == len(self.layers) - 1
            if not is_last_layer:
                hidden_x = F.relu(hidden_x)
                hidden_x = self.dropout(hidden_x)
        return hidden_x

195
    def inference(self, graph, features, dataloader, storage_device):
196
        """Conduct layer-wise inference to get all the node embeddings."""
197
198
        pin_memory = storage_device == "pinned"
        buffer_device = torch.device("cpu" if pin_memory else storage_device)
199

200
201
202
203
204
205
        for layer_idx, layer in enumerate(self.layers):
            is_last_layer = layer_idx == len(self.layers) - 1

            y = torch.empty(
                graph.total_num_nodes,
                self.out_size if is_last_layer else self.hidden_size,
206
                dtype=torch.float32,
207
208
                device=buffer_device,
                pin_memory=pin_memory,
209
            )
210
211
212
            for data in tqdm(dataloader):
                # len(blocks) = 1
                hidden_x = layer(data.blocks[0], data.node_features["feat"])
213
214
215
216
                if not is_last_layer:
                    hidden_x = F.relu(hidden_x)
                    hidden_x = self.dropout(hidden_x)
                # By design, our output nodes are contiguous.
217
218
219
                y[data.seed_nodes[0] : data.seed_nodes[-1] + 1] = hidden_x.to(
                    buffer_device
                )
220
221
            if not is_last_layer:
                features.update("node", None, "feat", y)
222
223
224
225
226
227
228
229
230
231

        return y


@torch.no_grad()
def layerwise_infer(
    args, graph, features, test_set, all_nodes_set, model, num_classes
):
    model.eval()
    dataloader = create_dataloader(
232
233
234
235
236
237
238
239
        graph=graph,
        features=features,
        itemset=all_nodes_set,
        batch_size=4 * args.batch_size,
        fanout=[-1],
        device=args.device,
        num_workers=args.num_workers,
        job="infer",
240
    )
241
    pred = model.inference(graph, features, dataloader, args.storage_device)
242
243
244
245
246
247
248
249
250
251
252
    pred = pred[test_set._items[0]]
    label = test_set._items[1].to(pred.device)

    return MF.accuracy(
        pred,
        label,
        task="multiclass",
        num_classes=num_classes,
    )


253
254
255
256
257
258
@torch.no_grad()
def evaluate(args, model, graph, features, itemset, num_classes):
    model.eval()
    y = []
    y_hats = []
    dataloader = create_dataloader(
259
260
261
262
263
264
265
266
        graph=graph,
        features=features,
        itemset=itemset,
        batch_size=args.batch_size,
        fanout=args.fanout,
        device=args.device,
        num_workers=args.num_workers,
        job="evaluate",
267
268
    )

269
    for step, data in tqdm(enumerate(dataloader), "Evaluating"):
270
271
        x = data.node_features["feat"]
        y.append(data.labels)
272
        y_hats.append(model(data.blocks, x))
273

274
    return MF.accuracy(
275
276
277
278
279
280
281
282
        torch.cat(y_hats),
        torch.cat(y),
        task="multiclass",
        num_classes=num_classes,
    )


def train(args, graph, features, train_set, valid_set, num_classes, model):
283
284
285
    optimizer = torch.optim.Adam(
        model.parameters(), lr=args.lr, weight_decay=5e-4
    )
286
    dataloader = create_dataloader(
287
288
289
290
291
292
293
294
        graph=graph,
        features=features,
        itemset=train_set,
        batch_size=args.batch_size,
        fanout=args.fanout,
        device=args.device,
        num_workers=args.num_workers,
        job="train",
295
296
    )

297
    for epoch in range(args.epochs):
298
        t0 = time.time()
299
300
        model.train()
        total_loss = 0
301
        for step, data in tqdm(enumerate(dataloader), "Training"):
302
303
304
305
306
307
308
309
            # The input features from the source nodes in the first layer's
            # computation graph.
            x = data.node_features["feat"]

            # The ground truth labels from the destination nodes
            # in the last layer's computation graph.
            y = data.labels

310
            y_hat = model(data.blocks, x)
311
312
313
314
315
316
317
318
319
320

            # Compute loss.
            loss = F.cross_entropy(y_hat, y)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            total_loss += loss.item()

321
        t1 = time.time()
322
323
324
325
        # Evaluate the model.
        acc = evaluate(args, model, graph, features, valid_set, num_classes)
        print(
            f"Epoch {epoch:05d} | Loss {total_loss / (step + 1):.4f} | "
326
            f"Accuracy {acc.item():.4f} | Time {t1 - t0:.4f}"
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        )


def parse_args():
    parser = argparse.ArgumentParser(
        description="A script trains and tests a GraphSAGE model "
        "for node classification using GraphBolt dataloader."
    )
    parser.add_argument(
        "--epochs", type=int, default=10, help="Number of training epochs."
    )
    parser.add_argument(
        "--lr",
        type=float,
341
        default=1e-3,
342
343
344
        help="Learning rate for optimization.",
    )
    parser.add_argument(
345
        "--batch-size", type=int, default=1024, help="Batch size for training."
346
347
348
349
    )
    parser.add_argument(
        "--num-workers",
        type=int,
350
        default=0,
351
352
353
354
355
        help="Number of workers for data loading.",
    )
    parser.add_argument(
        "--fanout",
        type=str,
356
        default="10,10,10",
357
        help="Fan-out of neighbor sampling. It is IMPORTANT to keep len(fanout)"
358
        " identical with the number of layers in your model. Default: 10,10,10",
359
    )
360
    parser.add_argument(
361
362
363
364
365
        "--mode",
        default="pinned-cuda",
        choices=["cpu-cpu", "cpu-cuda", "pinned-cuda", "cuda-cuda"],
        help="Dataset storage placement and Train device: 'cpu' for CPU and RAM,"
        " 'pinned' for pinned memory in RAM, 'cuda' for GPU and GPU memory.",
366
    )
367
368
369
370
    return parser.parse_args()


def main(args):
371
    if not torch.cuda.is_available():
372
373
374
        args.mode = "cpu-cpu"
    print(f"Training in {args.mode} mode.")
    args.storage_device, args.device = args.mode.split("-")
375
376
    args.device = torch.device(args.device)

377
    # Load and preprocess dataset.
378
    print("Loading data...")
379
380
    dataset = gb.BuiltinDataset("ogbn-products").load()

381
382
383
384
    # Move the dataset to the selected storage.
    graph = dataset.graph.to(args.storage_device)
    features = dataset.feature.to(args.storage_device)

385
386
    train_set = dataset.tasks[0].train_set
    valid_set = dataset.tasks[0].validation_set
387
388
    test_set = dataset.tasks[0].test_set
    all_nodes_set = dataset.all_nodes_set
389
390
391
392
    args.fanout = list(map(int, args.fanout.split(",")))

    num_classes = dataset.tasks[0].metadata["num_classes"]

393
    in_size = features.size("node", None, "feat")[0]
394
    hidden_size = 256
395
396
397
    out_size = num_classes

    model = SAGE(in_size, hidden_size, out_size)
398
399
    assert len(args.fanout) == len(model.layers)
    model = model.to(args.device)
400
401
402
403
404
405
406

    # Model training.
    print("Training...")
    train(args, graph, features, train_set, valid_set, num_classes, model)

    # Test the model.
    print("Testing...")
407
408
409
410
411
412
413
414
    test_acc = layerwise_infer(
        args,
        graph,
        features,
        test_set,
        all_nodes_set,
        model,
        num_classes,
415
    )
416
    print(f"Test accuracy {test_acc.item():.4f}")
417
418
419
420
421


if __name__ == "__main__":
    args = parse_args()
    main(args)