node_classification.py 14.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
"""
This script trains and tests a GraphSAGE model for node classification
on large graphs using GraphBolt dataloader.

Paper: [Inductive Representation Learning on Large Graphs]
(https://arxiv.org/abs/1706.02216)

Unlike previous dgl examples, we've utilized the newly defined dataloader
from GraphBolt. This example will help you grasp how to build an end-to-end
training pipeline using GraphBolt.

Before reading this example, please familiar yourself with graphsage node
classification by reading the example in the
`examples/core/graphsage/node_classification.py`. This introduction,
[A Blitz Introduction to Node Classification with DGL]
(https://docs.dgl.ai/tutorials/blitz/1_introduction.html), might be helpful.

If you want to train graphsage on a large graph in a distributed fashion,
please read the example in the `examples/distributed/graphsage/`.

This flowchart describes the main functional sequence of the provided example:
main

├───> OnDiskDataset pre-processing

├───> Instantiate SAGE model

├───> train
│     │
│     ├───> Get graphbolt dataloader (HIGHLIGHT)
│     │
│     └───> Training loop
│           │
│           ├───> SAGE.forward
│           │
│           └───> Validation set evaluation

38
└───> All nodes set inference & Test set evaluation
39
40
"""
import argparse
41
import time
42
43
44
45
46
47
48

import dgl.graphbolt as gb
import dgl.nn as dglnn
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchmetrics.functional as MF
49
from tqdm import tqdm
50
51


52
def create_dataloader(
53
54
55
56
57
58
59
60
61
    graph,
    features,
    itemset,
    batch_size,
    fanout,
    device,
    num_workers,
    job,
    output_cscformat,
62
):
63
64
65
66
    """
    [HIGHLIGHT]
    Get a GraphBolt version of a dataloader for node classification tasks.
    This function demonstrates how to utilize functional forms of datapipes in
67
68
    GraphBolt. For a more detailed tutorial, please read the examples in
    `dgl/notebooks/graphbolt/walkthrough.ipynb`.
69
    Alternatively, you can create a datapipe using its class constructor.
70
71
72

    Parameters
    ----------
73
    job : one of ["train", "evaluate", "infer"]
74
75
        The stage where dataloader is created, with options "train", "evaluate"
        and "infer".
76
    Other parameters are explicated in the comments below.
77
78
79
80
81
82
83
    """

    ############################################################################
    # [Step-1]:
    # gb.ItemSampler()
    # [Input]:
    # 'itemset': The current dataset. (e.g. `train_set` or `valid_set`)
84
    # 'batch_size': Specify the number of samples to be processed together,
85
86
87
    # referred to as a 'mini-batch'. (The term 'mini-batch' is used here to
    # indicate a subset of the entire dataset that is processed together. This
    # is in contrast to processing the entire dataset, known as a 'full batch'.)
88
    # 'job': Determines whether data should be shuffled. (Shuffling is
89
90
91
92
93
94
95
96
97
    # generally used only in training to improve model generalization. It's
    # not used in validation and testing as the focus there is to evaluate
    # performance rather than to learn from the data.)
    # [Output]:
    # An ItemSampler object for handling mini-batch sampling.
    # [Role]:
    # Initialize the ItemSampler to sample mini-batche from the dataset.
    ############################################################################
    datapipe = gb.ItemSampler(
98
        itemset, batch_size=batch_size, shuffle=(job == "train")
99
100
101
102
103
104
105
    )

    ############################################################################
    # [Step-2]:
    # self.sample_neighbor()
    # [Input]:
    # 'graph': The network topology for sampling.
106
107
    # '[-1] or fanout': Number of neighbors to sample per node. In
    # training or validation, the length of `fanout` should be equal to the
108
109
    # number of layers in the model. In inference, this parameter is set to
    # [-1], indicating that all neighbors of a node are sampled.
110
111
112
113
114
    # [Output]:
    # A NeighborSampler object to sample neighbors.
    # [Role]:
    # Initialize a neighbor sampler for sampling the neighborhoods of nodes.
    ############################################################################
115
    datapipe = datapipe.sample_neighbor(
116
117
118
        graph,
        fanout if job != "infer" else [-1],
        output_cscformat=(output_cscformat == "True"),
119
    )
120
121
122
123
124
125
126
127
128
129
130

    ############################################################################
    # [Step-3]:
    # self.fetch_feature()
    # [Input]:
    # 'features': The node features.
    # 'node_feature_keys': The keys of the node features to be fetched.
    # [Output]:
    # A FeatureFetcher object to fetch node features.
    # [Role]:
    # Initialize a feature fetcher for fetching features of the sampled
131
132
    # subgraphs. This step is skipped in inference because features are updated
    # as a whole during it, thus storing features in minibatch is unnecessary.
133
    ############################################################################
134
135
    if job != "infer":
        datapipe = datapipe.fetch_feature(features, node_feature_keys=["feat"])
136
137
138

    ############################################################################
    # [Step-4]:
139
140
141
142
143
144
    # self.copy_to()
    # [Input]:
    # 'device': The device to copy the data to.
    # [Output]:
    # A CopyTo object to copy the data to the specified device.
    ############################################################################
145
    datapipe = datapipe.copy_to(device=device)
146
147

    ############################################################################
148
    # [Step-5]:
149
    # gb.DataLoader()
150
151
    # [Input]:
    # 'datapipe': The datapipe object to be used for data loading.
152
    # 'num_workers': The number of processes to be used for data loading.
153
    # [Output]:
154
    # A DataLoader object to handle data loading.
155
156
157
    # [Role]:
    # Initialize a multi-process dataloader to load the data in parallel.
    ############################################################################
158
    dataloader = gb.DataLoader(datapipe, num_workers=num_workers)
159
160
161
162
163

    # Return the fully-initialized DataLoader object.
    return dataloader


164
165
166
167
168
169
170
171
172
173
174
175
class SAGE(nn.Module):
    def __init__(self, in_size, hidden_size, out_size):
        super().__init__()
        self.layers = nn.ModuleList()
        # Three-layer GraphSAGE-mean.
        self.layers.append(dglnn.SAGEConv(in_size, hidden_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hidden_size, hidden_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hidden_size, out_size, "mean"))
        self.dropout = nn.Dropout(0.5)
        self.hidden_size = hidden_size
        self.out_size = out_size
        # Set the dtype for the layers manually.
176
        self.set_layer_dtype(torch.float32)
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

    def set_layer_dtype(self, _dtype):
        for layer in self.layers:
            for param in layer.parameters():
                param.data = param.data.to(_dtype)

    def forward(self, blocks, x):
        hidden_x = x
        for layer_idx, (layer, block) in enumerate(zip(self.layers, blocks)):
            hidden_x = layer(block, hidden_x)
            is_last_layer = layer_idx == len(self.layers) - 1
            if not is_last_layer:
                hidden_x = F.relu(hidden_x)
                hidden_x = self.dropout(hidden_x)
        return hidden_x

193
    def inference(self, graph, features, dataloader, device):
194
195
196
        """Conduct layer-wise inference to get all the node embeddings."""
        feature = features.read("node", None, "feat")

197
198
199
200
201
        buffer_device = torch.device("cpu")
        # Enable pin_memory for faster CPU to GPU data transfer if the
        # model is running on a GPU.
        pin_memory = buffer_device != device

202
203
204
205
206
207
        for layer_idx, layer in enumerate(self.layers):
            is_last_layer = layer_idx == len(self.layers) - 1

            y = torch.empty(
                graph.total_num_nodes,
                self.out_size if is_last_layer else self.hidden_size,
208
                dtype=torch.float32,
209
210
                device=buffer_device,
                pin_memory=pin_memory,
211
            )
212
            feature = feature.to(device)
213

214
            for step, data in tqdm(enumerate(dataloader)):
215
                x = feature[data.input_nodes]
216
                hidden_x = layer(data.blocks[0], x)  # len(blocks) = 1
217
218
219
220
                if not is_last_layer:
                    hidden_x = F.relu(hidden_x)
                    hidden_x = self.dropout(hidden_x)
                # By design, our output nodes are contiguous.
221
222
223
                y[data.seed_nodes[0] : data.seed_nodes[-1] + 1] = hidden_x.to(
                    buffer_device
                )
224
225
226
227
228
229
230
231
232
233
234
            feature = y

        return y


@torch.no_grad()
def layerwise_infer(
    args, graph, features, test_set, all_nodes_set, model, num_classes
):
    model.eval()
    dataloader = create_dataloader(
235
236
237
238
239
240
241
242
        graph=graph,
        features=features,
        itemset=all_nodes_set,
        batch_size=4 * args.batch_size,
        fanout=[-1],
        device=args.device,
        num_workers=args.num_workers,
        job="infer",
243
        output_cscformat=args.output_cscformat,
244
    )
245
    pred = model.inference(graph, features, dataloader, args.device)
246
247
248
249
250
251
252
253
254
255
256
    pred = pred[test_set._items[0]]
    label = test_set._items[1].to(pred.device)

    return MF.accuracy(
        pred,
        label,
        task="multiclass",
        num_classes=num_classes,
    )


257
258
259
260
261
262
@torch.no_grad()
def evaluate(args, model, graph, features, itemset, num_classes):
    model.eval()
    y = []
    y_hats = []
    dataloader = create_dataloader(
263
264
265
266
267
268
269
270
        graph=graph,
        features=features,
        itemset=itemset,
        batch_size=args.batch_size,
        fanout=args.fanout,
        device=args.device,
        num_workers=args.num_workers,
        job="evaluate",
271
        output_cscformat=args.output_cscformat,
272
273
    )

274
    for step, data in tqdm(enumerate(dataloader)):
275
276
        x = data.node_features["feat"]
        y.append(data.labels)
277
        y_hats.append(model(data.blocks, x))
278

279
    return MF.accuracy(
280
281
282
283
284
285
286
287
288
289
        torch.cat(y_hats),
        torch.cat(y),
        task="multiclass",
        num_classes=num_classes,
    )


def train(args, graph, features, train_set, valid_set, num_classes, model):
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
    dataloader = create_dataloader(
290
291
292
293
294
295
296
297
        graph=graph,
        features=features,
        itemset=train_set,
        batch_size=args.batch_size,
        fanout=args.fanout,
        device=args.device,
        num_workers=args.num_workers,
        job="train",
298
        output_cscformat=args.output_cscformat,
299
300
    )

301
    for epoch in range(args.epochs):
302
        t0 = time.time()
303
304
        model.train()
        total_loss = 0
305
        for step, data in enumerate(dataloader):
306
307
308
309
310
311
312
313
            # The input features from the source nodes in the first layer's
            # computation graph.
            x = data.node_features["feat"]

            # The ground truth labels from the destination nodes
            # in the last layer's computation graph.
            y = data.labels

314
            y_hat = model(data.blocks, x)
315
316
317
318
319
320
321
322
323
324

            # Compute loss.
            loss = F.cross_entropy(y_hat, y)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            total_loss += loss.item()

325
        t1 = time.time()
326
327
328
329
        # Evaluate the model.
        acc = evaluate(args, model, graph, features, valid_set, num_classes)
        print(
            f"Epoch {epoch:05d} | Loss {total_loss / (step + 1):.4f} | "
330
            f"Accuracy {acc.item():.4f} | Time {t1 - t0:.4f}"
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
        )


def parse_args():
    parser = argparse.ArgumentParser(
        description="A script trains and tests a GraphSAGE model "
        "for node classification using GraphBolt dataloader."
    )
    parser.add_argument(
        "--epochs", type=int, default=10, help="Number of training epochs."
    )
    parser.add_argument(
        "--lr",
        type=float,
        default=0.0005,
        help="Learning rate for optimization.",
    )
    parser.add_argument(
349
        "--batch-size", type=int, default=1024, help="Batch size for training."
350
351
352
353
    )
    parser.add_argument(
        "--num-workers",
        type=int,
354
        default=0,
355
356
357
358
359
        help="Number of workers for data loading.",
    )
    parser.add_argument(
        "--fanout",
        type=str,
360
        default="10,10,10",
361
        help="Fan-out of neighbor sampling. It is IMPORTANT to keep len(fanout)"
362
        " identical with the number of layers in your model. Default: 10,10,10",
363
    )
364
365
366
367
368
369
    parser.add_argument(
        "--device",
        default="cpu",
        choices=["cpu", "cuda"],
        help="Train device: 'cpu' for CPU, 'cuda' for GPU.",
    )
370
371
372
373
374
375
    parser.add_argument(
        "--output_cscformat",
        default="False",
        choices=["False", "True"],
        help="Output type of SampledSubgraph. True for csc_formats, False for node_pairs.",
    )
376
377
378
379
    return parser.parse_args()


def main(args):
380
381
382
383
384
    if not torch.cuda.is_available():
        args.device = "cpu"
    print(f"Training in {args.device} mode.")
    args.device = torch.device(args.device)

385
    # Load and preprocess dataset.
386
    print("Loading data...")
387
388
389
    dataset = gb.BuiltinDataset("ogbn-products").load()

    graph = dataset.graph
390
391
    # Currently the neighbor-sampling process can only be done on the CPU,
    # therefore there is no need to copy the graph to the GPU.
392
393
394
    features = dataset.feature
    train_set = dataset.tasks[0].train_set
    valid_set = dataset.tasks[0].validation_set
395
396
    test_set = dataset.tasks[0].test_set
    all_nodes_set = dataset.all_nodes_set
397
398
399
400
    args.fanout = list(map(int, args.fanout.split(",")))

    num_classes = dataset.tasks[0].metadata["num_classes"]

401
    in_size = features.size("node", None, "feat")[0]
402
    hidden_size = 256
403
404
405
    out_size = num_classes

    model = SAGE(in_size, hidden_size, out_size)
406
407
    assert len(args.fanout) == len(model.layers)
    model = model.to(args.device)
408
409
410
411
412
413
414

    # Model training.
    print("Training...")
    train(args, graph, features, train_set, valid_set, num_classes, model)

    # Test the model.
    print("Testing...")
415
416
417
418
419
420
421
422
    test_acc = layerwise_infer(
        args,
        graph,
        features,
        test_set,
        all_nodes_set,
        model,
        num_classes,
423
    )
424
    print(f"Test accuracy {test_acc.item():.4f}")
425
426
427
428
429


if __name__ == "__main__":
    args = parse_args()
    main(args)