node_classification.py 13.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
"""
This script trains and tests a GraphSAGE model for node classification
on large graphs using GraphBolt dataloader.

Paper: [Inductive Representation Learning on Large Graphs]
(https://arxiv.org/abs/1706.02216)

Unlike previous dgl examples, we've utilized the newly defined dataloader
from GraphBolt. This example will help you grasp how to build an end-to-end
training pipeline using GraphBolt.

Before reading this example, please familiar yourself with graphsage node
classification by reading the example in the
`examples/core/graphsage/node_classification.py`. This introduction,
[A Blitz Introduction to Node Classification with DGL]
(https://docs.dgl.ai/tutorials/blitz/1_introduction.html), might be helpful.

If you want to train graphsage on a large graph in a distributed fashion,
please read the example in the `examples/distributed/graphsage/`.

This flowchart describes the main functional sequence of the provided example:
main

├───> OnDiskDataset pre-processing

├───> Instantiate SAGE model

├───> train
│     │
│     ├───> Get graphbolt dataloader (HIGHLIGHT)
│     │
│     └───> Training loop
│           │
│           ├───> SAGE.forward
│           │
│           └───> Validation set evaluation

38
└───> All nodes set inference & Test set evaluation
39
40
41
"""
import argparse

42
43
from typing import Literal

44
45
46
47
48
49
import dgl.graphbolt as gb
import dgl.nn as dglnn
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchmetrics.functional as MF
50
from tqdm import tqdm
51
52


53
54
55
def create_dataloader(
    args, graph, features, itemset, job: Literal["train", "evaluate", "infer"]
):
56
57
58
59
60
61
    """
    [HIGHLIGHT]
    Get a GraphBolt version of a dataloader for node classification tasks.
    This function demonstrates how to utilize functional forms of datapipes in
    GraphBolt.
    Alternatively, you can create a datapipe using its class constructor.
62
63
64
65
66
67
68
69
70
71
72
73
74
75

    Parameters
    ----------
    args : Namespace
        The arguments parsed by `parser.parse_args()`.
    graph : SamplingGraph
        The network topology for sampling.
    features : FeatureStore
        The node features.
    itemset : Union[ItemSet, ItemSetDict]
        Data to be sampled.
    job : Literal["train", "evaluate", "infer"]
        The stage where dataloader is created, with options "train", "evaluate"
        and "infer".
76
77
78
79
80
81
82
83
84
85
86
    """

    ############################################################################
    # [Step-1]:
    # gb.ItemSampler()
    # [Input]:
    # 'itemset': The current dataset. (e.g. `train_set` or `valid_set`)
    # 'args.batch_size': Specify the number of samples to be processed together,
    # referred to as a 'mini-batch'. (The term 'mini-batch' is used here to
    # indicate a subset of the entire dataset that is processed together. This
    # is in contrast to processing the entire dataset, known as a 'full batch'.)
87
    # 'job': Determines whether data should be shuffled. (Shuffling is
88
89
90
91
92
93
94
95
96
    # generally used only in training to improve model generalization. It's
    # not used in validation and testing as the focus there is to evaluate
    # performance rather than to learn from the data.)
    # [Output]:
    # An ItemSampler object for handling mini-batch sampling.
    # [Role]:
    # Initialize the ItemSampler to sample mini-batche from the dataset.
    ############################################################################
    datapipe = gb.ItemSampler(
97
        itemset, batch_size=args.batch_size, shuffle=(job == "train")
98
99
100
101
102
103
104
    )

    ############################################################################
    # [Step-2]:
    # self.sample_neighbor()
    # [Input]:
    # 'graph': The network topology for sampling.
105
106
107
108
    # '[-1] or args.fanout': Number of neighbors to sample per node. In
    # training or validation, the length of args.fanout should be equal to the
    # number of layers in the model. In inference, this parameter is set to
    # [-1], indicating that all neighbors of a node are sampled.
109
110
111
112
113
    # [Output]:
    # A NeighborSampler object to sample neighbors.
    # [Role]:
    # Initialize a neighbor sampler for sampling the neighborhoods of nodes.
    ############################################################################
114
115
116
    datapipe = datapipe.sample_neighbor(
        graph, args.fanout if job != "infer" else [-1]
    )
117
118
119
120
121
122
123
124
125
126
127

    ############################################################################
    # [Step-3]:
    # self.fetch_feature()
    # [Input]:
    # 'features': The node features.
    # 'node_feature_keys': The keys of the node features to be fetched.
    # [Output]:
    # A FeatureFetcher object to fetch node features.
    # [Role]:
    # Initialize a feature fetcher for fetching features of the sampled
128
129
    # subgraphs. This step is skipped in inference because features are updated
    # as a whole during it, thus storing features in minibatch is unnecessary.
130
    ############################################################################
131
132
    if job != "infer":
        datapipe = datapipe.fetch_feature(features, node_feature_keys=["feat"])
133
134
135

    ############################################################################
    # [Step-4]:
136
137
138
139
140
141
142
143
144
145
146
147
    # self.to_dgl()
    # [Input]:
    # 'datapipe': The previous datapipe object.
    # [Output]:
    # A DGLMiniBatch used for computing.
    # [Role]:
    # Convert a mini-batch to dgl-minibatch.
    ############################################################################
    datapipe = datapipe.to_dgl()

    ############################################################################
    # [Step-5]:
148
149
150
151
152
153
154
155
156
157
    # self.copy_to()
    # [Input]:
    # 'device': The device to copy the data to.
    # [Output]:
    # A CopyTo object to copy the data to the specified device.
    ############################################################################
    datapipe = datapipe.copy_to(device=args.device)

    ############################################################################
    # [Step-6]:
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    # gb.MultiProcessDataLoader()
    # [Input]:
    # 'datapipe': The datapipe object to be used for data loading.
    # 'args.num_workers': The number of processes to be used for data loading.
    # [Output]:
    # A MultiProcessDataLoader object to handle data loading.
    # [Role]:
    # Initialize a multi-process dataloader to load the data in parallel.
    ############################################################################
    dataloader = gb.MultiProcessDataLoader(
        datapipe, num_workers=args.num_workers
    )

    # Return the fully-initialized DataLoader object.
    return dataloader


175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
class SAGE(nn.Module):
    def __init__(self, in_size, hidden_size, out_size):
        super().__init__()
        self.layers = nn.ModuleList()
        # Three-layer GraphSAGE-mean.
        self.layers.append(dglnn.SAGEConv(in_size, hidden_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hidden_size, hidden_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hidden_size, out_size, "mean"))
        self.dropout = nn.Dropout(0.5)
        self.hidden_size = hidden_size
        self.out_size = out_size
        # Set the dtype for the layers manually.
        self.set_layer_dtype(torch.float64)

    def set_layer_dtype(self, _dtype):
        for layer in self.layers:
            for param in layer.parameters():
                param.data = param.data.to(_dtype)

    def forward(self, blocks, x):
        hidden_x = x
        for layer_idx, (layer, block) in enumerate(zip(self.layers, blocks)):
            hidden_x = layer(block, hidden_x)
            is_last_layer = layer_idx == len(self.layers) - 1
            if not is_last_layer:
                hidden_x = F.relu(hidden_x)
                hidden_x = self.dropout(hidden_x)
        return hidden_x

204
    def inference(self, graph, features, dataloader, device):
205
206
207
        """Conduct layer-wise inference to get all the node embeddings."""
        feature = features.read("node", None, "feat")

208
209
210
211
212
        buffer_device = torch.device("cpu")
        # Enable pin_memory for faster CPU to GPU data transfer if the
        # model is running on a GPU.
        pin_memory = buffer_device != device

213
214
215
216
217
218
219
        for layer_idx, layer in enumerate(self.layers):
            is_last_layer = layer_idx == len(self.layers) - 1

            y = torch.empty(
                graph.total_num_nodes,
                self.out_size if is_last_layer else self.hidden_size,
                dtype=torch.float64,
220
221
                device=buffer_device,
                pin_memory=pin_memory,
222
            )
223
            feature = feature.to(device)
224

225
            for step, data in tqdm(enumerate(dataloader)):
226
227
228
229
230
231
                x = feature[data.input_nodes]
                hidden_x = layer(data.blocks[0], x)  # len(blocks) = 1
                if not is_last_layer:
                    hidden_x = F.relu(hidden_x)
                    hidden_x = self.dropout(hidden_x)
                # By design, our output nodes are contiguous.
232
233
234
                y[
                    data.output_nodes[0] : data.output_nodes[-1] + 1
                ] = hidden_x.to(buffer_device)
235
236
237
238
239
240
241
242
243
244
245
246
247
            feature = y

        return y


@torch.no_grad()
def layerwise_infer(
    args, graph, features, test_set, all_nodes_set, model, num_classes
):
    model.eval()
    dataloader = create_dataloader(
        args, graph, features, all_nodes_set, job="infer"
    )
248
    pred = model.inference(graph, features, dataloader, args.device)
249
250
251
252
253
254
255
256
257
258
259
    pred = pred[test_set._items[0]]
    label = test_set._items[1].to(pred.device)

    return MF.accuracy(
        pred,
        label,
        task="multiclass",
        num_classes=num_classes,
    )


260
261
262
263
264
265
@torch.no_grad()
def evaluate(args, model, graph, features, itemset, num_classes):
    model.eval()
    y = []
    y_hats = []
    dataloader = create_dataloader(
266
        args, graph, features, itemset, job="evaluate"
267
268
    )

269
    for step, data in tqdm(enumerate(dataloader)):
270
271
        x = data.node_features["feat"]
        y.append(data.labels)
272
        y_hats.append(model(data.blocks, x))
273

274
    return MF.accuracy(
275
276
277
278
279
280
281
282
283
284
        torch.cat(y_hats),
        torch.cat(y),
        task="multiclass",
        num_classes=num_classes,
    )


def train(args, graph, features, train_set, valid_set, num_classes, model):
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
    dataloader = create_dataloader(
285
        args, graph, features, train_set, job="train"
286
287
    )

288
    for epoch in range(args.epochs):
289
290
        model.train()
        total_loss = 0
291
        for step, data in tqdm(enumerate(dataloader)):
292
293
294
295
296
297
298
299
            # The input features from the source nodes in the first layer's
            # computation graph.
            x = data.node_features["feat"]

            # The ground truth labels from the destination nodes
            # in the last layer's computation graph.
            y = data.labels

300
            y_hat = model(data.blocks, x)
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

            # Compute loss.
            loss = F.cross_entropy(y_hat, y)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            total_loss += loss.item()

        # Evaluate the model.
        acc = evaluate(args, model, graph, features, valid_set, num_classes)
        print(
            f"Epoch {epoch:05d} | Loss {total_loss / (step + 1):.4f} | "
            f"Accuracy {acc.item():.4f} "
        )


def parse_args():
    parser = argparse.ArgumentParser(
        description="A script trains and tests a GraphSAGE model "
        "for node classification using GraphBolt dataloader."
    )
    parser.add_argument(
        "--epochs", type=int, default=10, help="Number of training epochs."
    )
    parser.add_argument(
        "--lr",
        type=float,
        default=0.0005,
        help="Learning rate for optimization.",
    )
    parser.add_argument(
        "--batch-size", type=int, default=256, help="Batch size for training."
    )
    parser.add_argument(
        "--num-workers",
        type=int,
        default=4,
        help="Number of workers for data loading.",
    )
    parser.add_argument(
        "--fanout",
        type=str,
        default="15,10,5",
        help="Fan-out of neighbor sampling. It is IMPORTANT to keep len(fanout)"
        " identical with the number of layers in your model. Default: 15,10,5",
    )
349
350
351
352
353
354
    parser.add_argument(
        "--device",
        default="cpu",
        choices=["cpu", "cuda"],
        help="Train device: 'cpu' for CPU, 'cuda' for GPU.",
    )
355
356
357
358
    return parser.parse_args()


def main(args):
359
360
361
362
363
    if not torch.cuda.is_available():
        args.device = "cpu"
    print(f"Training in {args.device} mode.")
    args.device = torch.device(args.device)

364
    # Load and preprocess dataset.
365
    print("Loading data...")
366
367
368
    dataset = gb.BuiltinDataset("ogbn-products").load()

    graph = dataset.graph
369
370
    # Currently the neighbor-sampling process can only be done on the CPU,
    # therefore there is no need to copy the graph to the GPU.
371
372
373
    features = dataset.feature
    train_set = dataset.tasks[0].train_set
    valid_set = dataset.tasks[0].validation_set
374
375
    test_set = dataset.tasks[0].test_set
    all_nodes_set = dataset.all_nodes_set
376
377
378
379
    args.fanout = list(map(int, args.fanout.split(",")))

    num_classes = dataset.tasks[0].metadata["num_classes"]

380
    in_size = features.size("node", None, "feat")[0]
381
382
383
384
    hidden_size = 128
    out_size = num_classes

    model = SAGE(in_size, hidden_size, out_size)
385
386
    assert len(args.fanout) == len(model.layers)
    model = model.to(args.device)
387
388
389
390
391
392
393

    # Model training.
    print("Training...")
    train(args, graph, features, train_set, valid_set, num_classes, model)

    # Test the model.
    print("Testing...")
394
395
396
397
398
399
400
401
    test_acc = layerwise_infer(
        args,
        graph,
        features,
        test_set,
        all_nodes_set,
        model,
        num_classes,
402
403
404
405
406
407
408
    )
    print(f"Test Accuracy is {test_acc.item():.4f}")


if __name__ == "__main__":
    args = parse_args()
    main(args)