node_classification.py 14 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
"""
This script trains and tests a GraphSAGE model for node classification
on large graphs using GraphBolt dataloader.

Paper: [Inductive Representation Learning on Large Graphs]
(https://arxiv.org/abs/1706.02216)

Unlike previous dgl examples, we've utilized the newly defined dataloader
from GraphBolt. This example will help you grasp how to build an end-to-end
training pipeline using GraphBolt.

Before reading this example, please familiar yourself with graphsage node
classification by reading the example in the
`examples/core/graphsage/node_classification.py`. This introduction,
[A Blitz Introduction to Node Classification with DGL]
(https://docs.dgl.ai/tutorials/blitz/1_introduction.html), might be helpful.

If you want to train graphsage on a large graph in a distributed fashion,
please read the example in the `examples/distributed/graphsage/`.

This flowchart describes the main functional sequence of the provided example:
main

├───> OnDiskDataset pre-processing

├───> Instantiate SAGE model

├───> train
│     │
│     ├───> Get graphbolt dataloader (HIGHLIGHT)
│     │
│     └───> Training loop
│           │
│           ├───> SAGE.forward
│           │
│           └───> Validation set evaluation

38
└───> All nodes set inference & Test set evaluation
39
40
"""
import argparse
41
import time
42
43
44
45
46
47
48

import dgl.graphbolt as gb
import dgl.nn as dglnn
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchmetrics.functional as MF
49
from tqdm import tqdm
50
51


52
53
54
def create_dataloader(
    graph, features, itemset, batch_size, fanout, device, num_workers, job
):
55
56
57
58
59
60
    """
    [HIGHLIGHT]
    Get a GraphBolt version of a dataloader for node classification tasks.
    This function demonstrates how to utilize functional forms of datapipes in
    GraphBolt.
    Alternatively, you can create a datapipe using its class constructor.
61
62
63

    Parameters
    ----------
64
    job : one of ["train", "evaluate", "infer"]
65
66
        The stage where dataloader is created, with options "train", "evaluate"
        and "infer".
67
    Other parameters are explicated in the comments below.
68
69
70
71
72
73
74
    """

    ############################################################################
    # [Step-1]:
    # gb.ItemSampler()
    # [Input]:
    # 'itemset': The current dataset. (e.g. `train_set` or `valid_set`)
75
    # 'batch_size': Specify the number of samples to be processed together,
76
77
78
    # referred to as a 'mini-batch'. (The term 'mini-batch' is used here to
    # indicate a subset of the entire dataset that is processed together. This
    # is in contrast to processing the entire dataset, known as a 'full batch'.)
79
    # 'job': Determines whether data should be shuffled. (Shuffling is
80
81
82
83
84
85
86
87
88
    # generally used only in training to improve model generalization. It's
    # not used in validation and testing as the focus there is to evaluate
    # performance rather than to learn from the data.)
    # [Output]:
    # An ItemSampler object for handling mini-batch sampling.
    # [Role]:
    # Initialize the ItemSampler to sample mini-batche from the dataset.
    ############################################################################
    datapipe = gb.ItemSampler(
89
        itemset, batch_size=batch_size, shuffle=(job == "train")
90
91
92
93
94
95
96
    )

    ############################################################################
    # [Step-2]:
    # self.sample_neighbor()
    # [Input]:
    # 'graph': The network topology for sampling.
97
98
    # '[-1] or fanout': Number of neighbors to sample per node. In
    # training or validation, the length of `fanout` should be equal to the
99
100
    # number of layers in the model. In inference, this parameter is set to
    # [-1], indicating that all neighbors of a node are sampled.
101
102
103
104
105
    # [Output]:
    # A NeighborSampler object to sample neighbors.
    # [Role]:
    # Initialize a neighbor sampler for sampling the neighborhoods of nodes.
    ############################################################################
106
    datapipe = datapipe.sample_neighbor(
107
        graph, fanout if job != "infer" else [-1]
108
    )
109
110
111
112
113
114
115
116
117
118
119

    ############################################################################
    # [Step-3]:
    # self.fetch_feature()
    # [Input]:
    # 'features': The node features.
    # 'node_feature_keys': The keys of the node features to be fetched.
    # [Output]:
    # A FeatureFetcher object to fetch node features.
    # [Role]:
    # Initialize a feature fetcher for fetching features of the sampled
120
121
    # subgraphs. This step is skipped in inference because features are updated
    # as a whole during it, thus storing features in minibatch is unnecessary.
122
    ############################################################################
123
124
    if job != "infer":
        datapipe = datapipe.fetch_feature(features, node_feature_keys=["feat"])
125
126
127

    ############################################################################
    # [Step-4]:
128
129
130
131
132
133
134
135
136
137
138
139
    # self.to_dgl()
    # [Input]:
    # 'datapipe': The previous datapipe object.
    # [Output]:
    # A DGLMiniBatch used for computing.
    # [Role]:
    # Convert a mini-batch to dgl-minibatch.
    ############################################################################
    datapipe = datapipe.to_dgl()

    ############################################################################
    # [Step-5]:
140
141
142
143
144
145
    # self.copy_to()
    # [Input]:
    # 'device': The device to copy the data to.
    # [Output]:
    # A CopyTo object to copy the data to the specified device.
    ############################################################################
146
    datapipe = datapipe.copy_to(device=device)
147
148
149

    ############################################################################
    # [Step-6]:
150
151
152
    # gb.MultiProcessDataLoader()
    # [Input]:
    # 'datapipe': The datapipe object to be used for data loading.
153
    # 'num_workers': The number of processes to be used for data loading.
154
155
156
157
158
    # [Output]:
    # A MultiProcessDataLoader object to handle data loading.
    # [Role]:
    # Initialize a multi-process dataloader to load the data in parallel.
    ############################################################################
159
    dataloader = gb.MultiProcessDataLoader(datapipe, num_workers=num_workers)
160
161
162
163
164

    # Return the fully-initialized DataLoader object.
    return dataloader


165
166
167
168
169
170
171
172
173
174
175
176
class SAGE(nn.Module):
    def __init__(self, in_size, hidden_size, out_size):
        super().__init__()
        self.layers = nn.ModuleList()
        # Three-layer GraphSAGE-mean.
        self.layers.append(dglnn.SAGEConv(in_size, hidden_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hidden_size, hidden_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hidden_size, out_size, "mean"))
        self.dropout = nn.Dropout(0.5)
        self.hidden_size = hidden_size
        self.out_size = out_size
        # Set the dtype for the layers manually.
177
        self.set_layer_dtype(torch.float32)
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

    def set_layer_dtype(self, _dtype):
        for layer in self.layers:
            for param in layer.parameters():
                param.data = param.data.to(_dtype)

    def forward(self, blocks, x):
        hidden_x = x
        for layer_idx, (layer, block) in enumerate(zip(self.layers, blocks)):
            hidden_x = layer(block, hidden_x)
            is_last_layer = layer_idx == len(self.layers) - 1
            if not is_last_layer:
                hidden_x = F.relu(hidden_x)
                hidden_x = self.dropout(hidden_x)
        return hidden_x

194
    def inference(self, graph, features, dataloader, device):
195
196
197
        """Conduct layer-wise inference to get all the node embeddings."""
        feature = features.read("node", None, "feat")

198
199
200
201
202
        buffer_device = torch.device("cpu")
        # Enable pin_memory for faster CPU to GPU data transfer if the
        # model is running on a GPU.
        pin_memory = buffer_device != device

203
204
205
206
207
208
209
        for layer_idx, layer in enumerate(self.layers):
            is_last_layer = layer_idx == len(self.layers) - 1

            y = torch.empty(
                graph.total_num_nodes,
                self.out_size if is_last_layer else self.hidden_size,
                dtype=torch.float64,
210
211
                device=buffer_device,
                pin_memory=pin_memory,
212
            )
213
            feature = feature.to(device)
214

215
            for step, data in tqdm(enumerate(dataloader)):
216
                x = feature[data.input_nodes]
217
                hidden_x = layer(data.blocks[0], x.float())  # len(blocks) = 1
218
219
220
221
                if not is_last_layer:
                    hidden_x = F.relu(hidden_x)
                    hidden_x = self.dropout(hidden_x)
                # By design, our output nodes are contiguous.
222
223
224
                y[
                    data.output_nodes[0] : data.output_nodes[-1] + 1
                ] = hidden_x.to(buffer_device)
225
226
227
228
229
230
231
232
233
234
235
            feature = y

        return y


@torch.no_grad()
def layerwise_infer(
    args, graph, features, test_set, all_nodes_set, model, num_classes
):
    model.eval()
    dataloader = create_dataloader(
236
237
238
239
240
241
242
243
        graph=graph,
        features=features,
        itemset=all_nodes_set,
        batch_size=4 * args.batch_size,
        fanout=[-1],
        device=args.device,
        num_workers=args.num_workers,
        job="infer",
244
    )
245
    pred = model.inference(graph, features, dataloader, args.device)
246
247
248
249
250
251
252
253
254
255
256
    pred = pred[test_set._items[0]]
    label = test_set._items[1].to(pred.device)

    return MF.accuracy(
        pred,
        label,
        task="multiclass",
        num_classes=num_classes,
    )


257
258
259
260
261
262
@torch.no_grad()
def evaluate(args, model, graph, features, itemset, num_classes):
    model.eval()
    y = []
    y_hats = []
    dataloader = create_dataloader(
263
264
265
266
267
268
269
270
        graph=graph,
        features=features,
        itemset=itemset,
        batch_size=args.batch_size,
        fanout=args.fanout,
        device=args.device,
        num_workers=args.num_workers,
        job="evaluate",
271
272
    )

273
    for step, data in tqdm(enumerate(dataloader)):
274
275
        x = data.node_features["feat"]
        y.append(data.labels)
276
        y_hats.append(model(data.blocks, x.float()))
277

278
    return MF.accuracy(
279
280
281
282
283
284
285
286
287
288
        torch.cat(y_hats),
        torch.cat(y),
        task="multiclass",
        num_classes=num_classes,
    )


def train(args, graph, features, train_set, valid_set, num_classes, model):
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
    dataloader = create_dataloader(
289
290
291
292
293
294
295
296
        graph=graph,
        features=features,
        itemset=train_set,
        batch_size=args.batch_size,
        fanout=args.fanout,
        device=args.device,
        num_workers=args.num_workers,
        job="train",
297
298
    )

299
    for epoch in range(args.epochs):
300
        t0 = time.time()
301
302
        model.train()
        total_loss = 0
303
        for step, data in enumerate(dataloader):
304
305
306
307
308
309
310
311
            # The input features from the source nodes in the first layer's
            # computation graph.
            x = data.node_features["feat"]

            # The ground truth labels from the destination nodes
            # in the last layer's computation graph.
            y = data.labels

312
            y_hat = model(data.blocks, x.float())
313
314
315
316
317
318
319
320
321
322

            # Compute loss.
            loss = F.cross_entropy(y_hat, y)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            total_loss += loss.item()

323
        t1 = time.time()
324
325
326
327
        # Evaluate the model.
        acc = evaluate(args, model, graph, features, valid_set, num_classes)
        print(
            f"Epoch {epoch:05d} | Loss {total_loss / (step + 1):.4f} | "
328
            f"Accuracy {acc.item():.4f} | Time {t1 - t0:.4f}"
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
        )


def parse_args():
    parser = argparse.ArgumentParser(
        description="A script trains and tests a GraphSAGE model "
        "for node classification using GraphBolt dataloader."
    )
    parser.add_argument(
        "--epochs", type=int, default=10, help="Number of training epochs."
    )
    parser.add_argument(
        "--lr",
        type=float,
        default=0.0005,
        help="Learning rate for optimization.",
    )
    parser.add_argument(
347
        "--batch-size", type=int, default=1024, help="Batch size for training."
348
349
350
351
    )
    parser.add_argument(
        "--num-workers",
        type=int,
352
        default=0,
353
354
355
356
357
        help="Number of workers for data loading.",
    )
    parser.add_argument(
        "--fanout",
        type=str,
358
        default="10,10,10",
359
        help="Fan-out of neighbor sampling. It is IMPORTANT to keep len(fanout)"
360
        " identical with the number of layers in your model. Default: 10,10,10",
361
    )
362
363
364
365
366
367
    parser.add_argument(
        "--device",
        default="cpu",
        choices=["cpu", "cuda"],
        help="Train device: 'cpu' for CPU, 'cuda' for GPU.",
    )
368
369
370
371
    return parser.parse_args()


def main(args):
372
373
374
375
376
    if not torch.cuda.is_available():
        args.device = "cpu"
    print(f"Training in {args.device} mode.")
    args.device = torch.device(args.device)

377
    # Load and preprocess dataset.
378
    print("Loading data...")
379
380
381
    dataset = gb.BuiltinDataset("ogbn-products").load()

    graph = dataset.graph
382
383
    # Currently the neighbor-sampling process can only be done on the CPU,
    # therefore there is no need to copy the graph to the GPU.
384
385
386
    features = dataset.feature
    train_set = dataset.tasks[0].train_set
    valid_set = dataset.tasks[0].validation_set
387
388
    test_set = dataset.tasks[0].test_set
    all_nodes_set = dataset.all_nodes_set
389
390
391
392
    args.fanout = list(map(int, args.fanout.split(",")))

    num_classes = dataset.tasks[0].metadata["num_classes"]

393
    in_size = features.size("node", None, "feat")[0]
394
    hidden_size = 256
395
396
397
    out_size = num_classes

    model = SAGE(in_size, hidden_size, out_size)
398
399
    assert len(args.fanout) == len(model.layers)
    model = model.to(args.device)
400
401
402
403
404
405
406

    # Model training.
    print("Training...")
    train(args, graph, features, train_set, valid_set, num_classes, model)

    # Test the model.
    print("Testing...")
407
408
409
410
411
412
413
414
    test_acc = layerwise_infer(
        args,
        graph,
        features,
        test_set,
        all_nodes_set,
        model,
        num_classes,
415
    )
416
    print(f"Test accuracy {test_acc.item():.4f}")
417
418
419
420
421


if __name__ == "__main__":
    args = parse_args()
    main(args)