test_distributed_sampling.py 38.4 KB
Newer Older
Jinjing Zhou's avatar
Jinjing Zhou committed
1
2
3
4
import dgl
import unittest
import os
from dgl.data import CitationGraphDataset
5
6
from dgl.data import WN18Dataset
from dgl.distributed import sample_neighbors, sample_etype_neighbors
Jinjing Zhou's avatar
Jinjing Zhou committed
7
8
9
10
11
12
from dgl.distributed import partition_graph, load_partition, load_partition_book
import sys
import multiprocessing as mp
import numpy as np
import backend as F
import time
13
from utils import generate_ip_config, reset_envs
Jinjing Zhou's avatar
Jinjing Zhou committed
14
from pathlib import Path
15
import pytest
16
from scipy import sparse as spsp
17
import random
Jinjing Zhou's avatar
Jinjing Zhou committed
18
19
20
from dgl.distributed import DistGraphServer, DistGraph


21
22
def start_server(rank, tmpdir, disable_shared_mem, graph_name, graph_format=['csc', 'coo'],
                 keep_alive=False):
23
    g = DistGraphServer(rank, "rpc_ip_config.txt", 1, 1,
24
                        tmpdir / (graph_name + '.json'), disable_shared_mem=disable_shared_mem,
25
                        graph_format=graph_format, keep_alive=keep_alive)
Jinjing Zhou's avatar
Jinjing Zhou committed
26
27
28
    g.start()


29
def start_sample_client(rank, tmpdir, disable_shared_mem):
30
31
    gpb = None
    if disable_shared_mem:
32
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
33
    dgl.distributed.initialize("rpc_ip_config.txt")
34
    dist_graph = DistGraph("test_sampling", gpb=gpb)
35
36
37
38
39
    try:
        sampled_graph = sample_neighbors(dist_graph, [0, 10, 99, 66, 1024, 2008], 3)
    except Exception as e:
        print(e)
        sampled_graph = None
40
    dgl.distributed.exit_client()
Jinjing Zhou's avatar
Jinjing Zhou committed
41
42
    return sampled_graph

43

44
45
def start_sample_client_shuffle(rank, tmpdir, disable_shared_mem, g, num_servers, group_id,
        orig_nid, orig_eid):
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    os.environ['DGL_GROUP_ID'] = str(group_id)
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_sampling", gpb=gpb)
    sampled_graph = sample_neighbors(dist_graph, [0, 10, 99, 66, 1024, 2008], 3)

    src, dst = sampled_graph.edges()
    src = orig_nid[src]
    dst = orig_nid[dst]
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    eids1 = orig_eid[sampled_graph.edata[dgl.EID]]
    assert np.array_equal(F.asnumpy(eids1), F.asnumpy(eids))

63
def start_find_edges_client(rank, tmpdir, disable_shared_mem, eids, etype=None):
64
65
    gpb = None
    if disable_shared_mem:
66
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_find_edges.json', rank)
67
    dgl.distributed.initialize("rpc_ip_config.txt")
68
    dist_graph = DistGraph("test_find_edges", gpb=gpb)
69
    try:
70
        u, v = dist_graph.find_edges(eids, etype=etype)
71
72
73
    except Exception as e:
        print(e)
        u, v = None, None
74
75
    dgl.distributed.exit_client()
    return u, v
Jinjing Zhou's avatar
Jinjing Zhou committed
76

77
78
79
80
def start_get_degrees_client(rank, tmpdir, disable_shared_mem, nids=None):
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_get_degrees.json', rank)
81
    dgl.distributed.initialize("rpc_ip_config.txt")
82
83
84
85
86
87
88
89
90
91
92
93
    dist_graph = DistGraph("test_get_degrees", gpb=gpb)
    try:
        in_deg = dist_graph.in_degrees(nids)
        all_in_deg = dist_graph.in_degrees()
        out_deg = dist_graph.out_degrees(nids)
        all_out_deg = dist_graph.out_degrees()
    except Exception as e:
        print(e)
        in_deg, out_deg, all_in_deg, all_out_deg = None, None, None, None
    dgl.distributed.exit_client()
    return in_deg, out_deg, all_in_deg, all_out_deg

94
def check_rpc_sampling(tmpdir, num_server):
95
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
Jinjing Zhou's avatar
Jinjing Zhou committed
96
97
98
99
100
101
102
103
104
105
106
107
108

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    print(g.idtype)
    num_parts = num_server
    num_hops = 1

    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=False)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
109
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
Jinjing Zhou's avatar
Jinjing Zhou committed
110
111
112
113
        p.start()
        time.sleep(1)
        pserver_list.append(p)

114
    sampled_graph = start_sample_client(0, tmpdir, num_server > 1)
Jinjing Zhou's avatar
Jinjing Zhou committed
115
116
117
118
119
120
121
122
123
124
125
    print("Done sampling")
    for p in pserver_list:
        p.join()

    src, dst = sampled_graph.edges()
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))

126
def check_rpc_find_edges_shuffle(tmpdir, num_server):
127
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
128
129
130
131
132

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server

133
134
135
    orig_nid, orig_eid = partition_graph(g, 'test_find_edges', num_parts, tmpdir,
                                         num_hops=1, part_method='metis',
                                         reshuffle=True, return_mapping=True)
136
137
138
139

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
140
141
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1,
                                                   'test_find_edges', ['csr', 'coo']))
142
143
144
145
146
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    eids = F.tensor(np.random.randint(g.number_of_edges(), size=100))
147
    u, v = g.find_edges(orig_eid[eids])
148
    du, dv = start_find_edges_client(0, tmpdir, num_server > 1, eids)
149
150
    du = orig_nid[du]
    dv = orig_nid[dv]
151
152
153
    assert F.array_equal(u, du)
    assert F.array_equal(v, dv)

154
155
156
def create_random_hetero(dense=False, empty=False):
    num_nodes = {'n1': 210, 'n2': 200, 'n3': 220} if dense else \
        {'n1': 1010, 'n2': 1000, 'n3': 1020}
157
158
159
    etypes = [('n1', 'r12', 'n2'),
              ('n1', 'r13', 'n3'),
              ('n2', 'r23', 'n3')]
160
    edges = {}
161
    random.seed(42)
162
163
    for etype in etypes:
        src_ntype, _, dst_ntype = etype
164
165
166
167
        arr = spsp.random(num_nodes[src_ntype] - 10 if empty else num_nodes[src_ntype],
                          num_nodes[dst_ntype] - 10 if empty else num_nodes[dst_ntype],
                          density=0.1 if dense else 0.001,
                          format='coo', random_state=100)
168
        edges[etype] = (arr.row, arr.col)
169
170
171
    g = dgl.heterograph(edges, num_nodes)
    g.nodes['n1'].data['feat'] = F.ones((g.number_of_nodes('n1'), 10), F.float32, F.cpu())
    return g
172
173

def check_rpc_hetero_find_edges_shuffle(tmpdir, num_server):
174
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

    g = create_random_hetero()
    num_parts = num_server

    orig_nid, orig_eid = partition_graph(g, 'test_find_edges', num_parts, tmpdir,
                                         num_hops=1, part_method='metis',
                                         reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1,
                                                   'test_find_edges', ['csr', 'coo']))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

192
193
194
195
196
197
198
199
200
201
202
203
    eids = F.tensor(np.random.randint(g.num_edges('r12'), size=100))
    expect_except = False
    try:
        _, _ = g.find_edges(orig_eid['r12'][eids], etype=('n1', 'r12'))
    except:
        expect_except = True
    assert expect_except
    u, v = g.find_edges(orig_eid['r12'][eids], etype='r12')
    u1, v1 = g.find_edges(orig_eid['r12'][eids], etype=('n1', 'r12', 'n2'))
    assert F.array_equal(u, u1)
    assert F.array_equal(v, v1)
    du, dv = start_find_edges_client(0, tmpdir, num_server > 1, eids, etype='r12')
204
205
206
207
208
    du = orig_nid['n1'][du]
    dv = orig_nid['n2'][dv]
    assert F.array_equal(u, du)
    assert F.array_equal(v, dv)

209
210
211
# Wait non shared memory graph store
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
212
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
213
214
@pytest.mark.parametrize("num_server", [1, 2])
def test_rpc_find_edges_shuffle(num_server):
215
    reset_envs()
216
217
218
    import tempfile
    os.environ['DGL_DIST_MODE'] = 'distributed'
    with tempfile.TemporaryDirectory() as tmpdirname:
219
        check_rpc_hetero_find_edges_shuffle(Path(tmpdirname), num_server)
220
221
222
        check_rpc_find_edges_shuffle(Path(tmpdirname), num_server)

def check_rpc_get_degree_shuffle(tmpdir, num_server):
223
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
224
225
226
227
228

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server

229
230
    orig_nid, _ = partition_graph(g, 'test_get_degrees', num_parts, tmpdir,
        num_hops=1, part_method='metis', reshuffle=True, return_mapping=True)
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_get_degrees'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    nids = F.tensor(np.random.randint(g.number_of_nodes(), size=100))
    in_degs, out_degs, all_in_degs, all_out_degs = start_get_degrees_client(0, tmpdir, num_server > 1, nids)

    print("Done get_degree")
    for p in pserver_list:
        p.join()

    print('check results')
    assert F.array_equal(g.in_degrees(orig_nid[nids]), in_degs)
    assert F.array_equal(g.in_degrees(orig_nid), all_in_degs)
    assert F.array_equal(g.out_degrees(orig_nid[nids]), out_degs)
    assert F.array_equal(g.out_degrees(orig_nid), all_out_degs)

# Wait non shared memory graph store
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
256
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
257
258
@pytest.mark.parametrize("num_server", [1, 2])
def test_rpc_get_degree_shuffle(num_server):
259
    reset_envs()
260
261
262
263
264
    import tempfile
    os.environ['DGL_DIST_MODE'] = 'distributed'
    with tempfile.TemporaryDirectory() as tmpdirname:
        check_rpc_get_degree_shuffle(Path(tmpdirname), num_server)

265
266
267
#@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
#@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
@unittest.skip('Only support partition with shuffle')
Jinjing Zhou's avatar
Jinjing Zhou committed
268
def test_rpc_sampling():
269
    reset_envs()
Jinjing Zhou's avatar
Jinjing Zhou committed
270
    import tempfile
271
    os.environ['DGL_DIST_MODE'] = 'distributed'
Jinjing Zhou's avatar
Jinjing Zhou committed
272
    with tempfile.TemporaryDirectory() as tmpdirname:
273
        check_rpc_sampling(Path(tmpdirname), 2)
Jinjing Zhou's avatar
Jinjing Zhou committed
274

275
def check_rpc_sampling_shuffle(tmpdir, num_server, num_groups=1):
276
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
277

Jinjing Zhou's avatar
Jinjing Zhou committed
278
279
280
281
282
    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server
    num_hops = 1

283
284
    orig_nids, orig_eids = partition_graph(g, 'test_sampling', num_parts, tmpdir,
        num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True)
Jinjing Zhou's avatar
Jinjing Zhou committed
285
286
287

    pserver_list = []
    ctx = mp.get_context('spawn')
288
    keep_alive = num_groups > 1
Jinjing Zhou's avatar
Jinjing Zhou committed
289
    for i in range(num_server):
290
291
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, 'test_sampling', ['csc', 'coo'], keep_alive))
Jinjing Zhou's avatar
Jinjing Zhou committed
292
293
294
295
        p.start()
        time.sleep(1)
        pserver_list.append(p)

296
297
298
299
    pclient_list = []
    num_clients = 1
    for client_id in range(num_clients):
        for group_id in range(num_groups):
300
301
302
            p = ctx.Process(target=start_sample_client_shuffle,
                args=(client_id, tmpdir, num_server > 1, g, num_server,
                    group_id, orig_nids, orig_eids))
303
            p.start()
304
            time.sleep(1) # avoid race condition when instantiating DistGraph
305
306
307
308
309
310
311
312
            pclient_list.append(p)
    for p in pclient_list:
        p.join()
    if keep_alive:
        for p in pserver_list:
            assert p.is_alive()
        # force shutdown server
        dgl.distributed.shutdown_servers("rpc_ip_config.txt", 1)
Jinjing Zhou's avatar
Jinjing Zhou committed
313
314
315
    for p in pserver_list:
        p.join()

316
def start_hetero_sample_client(rank, tmpdir, disable_shared_mem, nodes):
317
318
319
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
320
    dgl.distributed.initialize("rpc_ip_config.txt")
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    dist_graph = DistGraph("test_sampling", gpb=gpb)
    assert 'feat' in dist_graph.nodes['n1'].data
    assert 'feat' not in dist_graph.nodes['n2'].data
    assert 'feat' not in dist_graph.nodes['n3'].data
    if gpb is None:
        gpb = dist_graph.get_partition_book()
    try:
        sampled_graph = sample_neighbors(dist_graph, nodes, 3)
        block = dgl.to_block(sampled_graph, nodes)
        block.edata[dgl.EID] = sampled_graph.edata[dgl.EID]
    except Exception as e:
        print(e)
        block = None
    dgl.distributed.exit_client()
    return block, gpb

337
def start_hetero_etype_sample_client(rank, tmpdir, disable_shared_mem, fanout=3,
338
339
                                     nodes={'n3': [0, 10, 99, 66, 124, 208]},
                                     etype_sorted=False):
340
341
342
343
344
345
346
347
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_sampling", gpb=gpb)
    assert 'feat' in dist_graph.nodes['n1'].data
    assert 'feat' not in dist_graph.nodes['n2'].data
    assert 'feat' not in dist_graph.nodes['n3'].data
348
349
350
351
352
353
354
355
356
357
358

    if dist_graph.local_partition is not None:
        # Check whether etypes are sorted in dist_graph
        local_g = dist_graph.local_partition
        local_nids = np.arange(local_g.num_nodes())
        for lnid in local_nids:
            leids = local_g.in_edges(lnid, form='eid')
            letids = F.asnumpy(local_g.edata[dgl.ETYPE][leids])
            _, idices = np.unique(letids, return_index=True)
            assert np.all(idices[:-1] <= idices[1:])

359
360
361
    if gpb is None:
        gpb = dist_graph.get_partition_book()
    try:
362
        sampled_graph = sample_etype_neighbors(dist_graph, nodes, dgl.ETYPE, fanout, etype_sorted=etype_sorted)
363
364
365
366
367
368
369
370
        block = dgl.to_block(sampled_graph, nodes)
        block.edata[dgl.EID] = sampled_graph.edata[dgl.EID]
    except Exception as e:
        print(e)
        block = None
    dgl.distributed.exit_client()
    return block, gpb

371
def check_rpc_hetero_sampling_shuffle(tmpdir, num_server):
372
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
373
374
375
376
377

    g = create_random_hetero()
    num_parts = num_server
    num_hops = 1

378
379
    orig_nid_map, orig_eid_map = partition_graph(g, 'test_sampling', num_parts, tmpdir,
        num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True)
380
381
382
383
384
385
386
387
388

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

389
390
    block, gpb = start_hetero_sample_client(0, tmpdir, num_server > 1,
                                            nodes = {'n3': [0, 10, 99, 66, 124, 208]})
391
392
393
394
    print("Done sampling")
    for p in pserver_list:
        p.join()

395
396
397
398
399
400
401
402
403
404
    for src_type, etype, dst_type in block.canonical_etypes:
        src, dst = block.edges(etype=etype)
        # These are global Ids after shuffling.
        shuffled_src = F.gather_row(block.srcnodes[src_type].data[dgl.NID], src)
        shuffled_dst = F.gather_row(block.dstnodes[dst_type].data[dgl.NID], dst)
        shuffled_eid = block.edges[etype].data[dgl.EID]

        orig_src = F.asnumpy(F.gather_row(orig_nid_map[src_type], shuffled_src))
        orig_dst = F.asnumpy(F.gather_row(orig_nid_map[dst_type], shuffled_dst))
        orig_eid = F.asnumpy(F.gather_row(orig_eid_map[etype], shuffled_eid))
405
406

        # Check the node Ids and edge Ids.
407
408
409
        orig_src1, orig_dst1 = g.find_edges(orig_eid, etype=etype)
        assert np.all(F.asnumpy(orig_src1) == orig_src)
        assert np.all(F.asnumpy(orig_dst1) == orig_dst)
410

411
412
413
414
415
416
417
418
419
420
def get_degrees(g, nids, ntype):
    deg = F.zeros((len(nids),), dtype=F.int64)
    for srctype, etype, dsttype in g.canonical_etypes:
        if srctype == ntype:
            deg += g.out_degrees(u=nids, etype=etype)
        elif dsttype == ntype:
            deg += g.in_degrees(v=nids, etype=etype)
    return deg

def check_rpc_hetero_sampling_empty_shuffle(tmpdir, num_server):
421
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

    g = create_random_hetero(empty=True)
    num_parts = num_server
    num_hops = 1

    orig_nids, _ = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                   num_hops=num_hops, part_method='metis',
                                   reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    deg = get_degrees(g, orig_nids['n3'], 'n3')
    empty_nids = F.nonzero_1d(deg == 0)
    block, gpb = start_hetero_sample_client(0, tmpdir, num_server > 1,
                                            nodes = {'n3': empty_nids})
    print("Done sampling")
    for p in pserver_list:
        p.join()

    assert block.number_of_edges() == 0
    assert len(block.etypes) == len(g.etypes)

450
def check_rpc_hetero_etype_sampling_shuffle(tmpdir, num_server, graph_formats=None):
451
452
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

453
454
455
456
    g = create_random_hetero(dense=True)
    num_parts = num_server
    num_hops = 1

457
    orig_nid_map, orig_eid_map = partition_graph(g, 'test_sampling', num_parts, tmpdir,
458
459
        num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True,
        graph_formats=graph_formats)
460
461
462
463

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
464
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling', ['csc', 'coo']))
465
466
467
468
469
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    fanout = 3
470
471
472
    etype_sorted = False
    if graph_formats is not None:
        etype_sorted = 'csc' in graph_formats or 'csr' in graph_formats
473
    block, gpb = start_hetero_etype_sample_client(0, tmpdir, num_server > 1, fanout,
474
475
                                                  nodes={'n3': [0, 10, 99, 66, 124, 208]},
                                                  etype_sorted=etype_sorted)
476
477
478
479
    print("Done sampling")
    for p in pserver_list:
        p.join()

480
    src, dst = block.edges(etype=('n1', 'r13', 'n3'))
481
    assert len(src) == 18
482
    src, dst = block.edges(etype=('n2', 'r23', 'n3'))
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
    assert len(src) == 18

    for src_type, etype, dst_type in block.canonical_etypes:
        src, dst = block.edges(etype=etype)
        # These are global Ids after shuffling.
        shuffled_src = F.gather_row(block.srcnodes[src_type].data[dgl.NID], src)
        shuffled_dst = F.gather_row(block.dstnodes[dst_type].data[dgl.NID], dst)
        shuffled_eid = block.edges[etype].data[dgl.EID]

        orig_src = F.asnumpy(F.gather_row(orig_nid_map[src_type], shuffled_src))
        orig_dst = F.asnumpy(F.gather_row(orig_nid_map[dst_type], shuffled_dst))
        orig_eid = F.asnumpy(F.gather_row(orig_eid_map[etype], shuffled_eid))

        # Check the node Ids and edge Ids.
        orig_src1, orig_dst1 = g.find_edges(orig_eid, etype=etype)
        assert np.all(F.asnumpy(orig_src1) == orig_src)
        assert np.all(F.asnumpy(orig_dst1) == orig_dst)

501
def check_rpc_hetero_etype_sampling_empty_shuffle(tmpdir, num_server):
502
503
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
    g = create_random_hetero(dense=True, empty=True)
    num_parts = num_server
    num_hops = 1

    orig_nids, _ = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                   num_hops=num_hops, part_method='metis',
                                   reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    fanout = 3
    deg = get_degrees(g, orig_nids['n3'], 'n3')
    empty_nids = F.nonzero_1d(deg == 0)
    block, gpb = start_hetero_etype_sample_client(0, tmpdir, num_server > 1, fanout,
                                                  nodes={'n3': empty_nids})
    print("Done sampling")
    for p in pserver_list:
        p.join()

    assert block.number_of_edges() == 0
    assert len(block.etypes) == len(g.etypes)

532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633

def create_random_bipartite():
    g = dgl.rand_bipartite('user', 'buys', 'game', 500, 1000, 1000)
    g.nodes['user'].data['feat'] = F.ones(
        (g.num_nodes('user'), 10), F.float32, F.cpu())
    g.nodes['game'].data['feat'] = F.ones(
        (g.num_nodes('game'), 10), F.float32, F.cpu())
    return g


def start_bipartite_sample_client(rank, tmpdir, disable_shared_mem, nodes):
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(
            tmpdir / 'test_sampling.json', rank)
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_sampling", gpb=gpb)
    assert 'feat' in dist_graph.nodes['user'].data
    assert 'feat' in dist_graph.nodes['game'].data
    if gpb is None:
        gpb = dist_graph.get_partition_book()
    sampled_graph = sample_neighbors(dist_graph, nodes, 3)
    block = dgl.to_block(sampled_graph, nodes)
    if sampled_graph.num_edges() > 0:
        block.edata[dgl.EID] = sampled_graph.edata[dgl.EID]
    dgl.distributed.exit_client()
    return block, gpb


def start_bipartite_etype_sample_client(rank, tmpdir, disable_shared_mem, fanout=3,
                                        nodes={}):
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(
            tmpdir / 'test_sampling.json', rank)
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_sampling", gpb=gpb)
    assert 'feat' in dist_graph.nodes['user'].data
    assert 'feat' in dist_graph.nodes['game'].data

    if dist_graph.local_partition is not None:
        # Check whether etypes are sorted in dist_graph
        local_g = dist_graph.local_partition
        local_nids = np.arange(local_g.num_nodes())
        for lnid in local_nids:
            leids = local_g.in_edges(lnid, form='eid')
            letids = F.asnumpy(local_g.edata[dgl.ETYPE][leids])
            _, idices = np.unique(letids, return_index=True)
            assert np.all(idices[:-1] <= idices[1:])

    if gpb is None:
        gpb = dist_graph.get_partition_book()
    sampled_graph = sample_etype_neighbors(
        dist_graph, nodes, dgl.ETYPE, fanout)
    block = dgl.to_block(sampled_graph, nodes)
    if sampled_graph.num_edges() > 0:
        block.edata[dgl.EID] = sampled_graph.edata[dgl.EID]
    dgl.distributed.exit_client()
    return block, gpb


def check_rpc_bipartite_sampling_empty(tmpdir, num_server):
    """sample on bipartite via sample_neighbors() which yields empty sample results"""
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

    g = create_random_bipartite()
    num_parts = num_server
    num_hops = 1

    orig_nids, _ = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                   num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    deg = get_degrees(g, orig_nids['game'], 'game')
    empty_nids = F.nonzero_1d(deg == 0)
    block, _ = start_bipartite_sample_client(0, tmpdir, num_server > 1,
                                             nodes={'game': empty_nids, 'user': [1]})

    print("Done sampling")
    for p in pserver_list:
        p.join()

    assert block.number_of_edges() == 0
    assert len(block.etypes) == len(g.etypes)


def check_rpc_bipartite_sampling_shuffle(tmpdir, num_server):
    """sample on bipartite via sample_neighbors() which yields non-empty sample results"""
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

    g = create_random_bipartite()
    num_parts = num_server
    num_hops = 1

634
635
    orig_nid_map, orig_eid_map = partition_graph(g, 'test_sampling', num_parts, tmpdir,
        num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True)
636
637
638
639
640
641
642
643
644
645

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

646
    deg = get_degrees(g, orig_nid_map['game'], 'game')
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
    nids = F.nonzero_1d(deg > 0)
    block, gpb = start_bipartite_sample_client(0, tmpdir, num_server > 1,
                                               nodes={'game': nids, 'user': [0]})
    print("Done sampling")
    for p in pserver_list:
        p.join()

    for src_type, etype, dst_type in block.canonical_etypes:
        src, dst = block.edges(etype=etype)
        # These are global Ids after shuffling.
        shuffled_src = F.gather_row(
            block.srcnodes[src_type].data[dgl.NID], src)
        shuffled_dst = F.gather_row(
            block.dstnodes[dst_type].data[dgl.NID], dst)
        shuffled_eid = block.edges[etype].data[dgl.EID]

        orig_src = F.asnumpy(F.gather_row(
            orig_nid_map[src_type], shuffled_src))
        orig_dst = F.asnumpy(F.gather_row(
            orig_nid_map[dst_type], shuffled_dst))
        orig_eid = F.asnumpy(F.gather_row(orig_eid_map[etype], shuffled_eid))

        # Check the node Ids and edge Ids.
        orig_src1, orig_dst1 = g.find_edges(orig_eid, etype=etype)
        assert np.all(F.asnumpy(orig_src1) == orig_src)
        assert np.all(F.asnumpy(orig_dst1) == orig_dst)


def check_rpc_bipartite_etype_sampling_empty(tmpdir, num_server):
    """sample on bipartite via sample_etype_neighbors() which yields empty sample results"""
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

    g = create_random_bipartite()
    num_parts = num_server
    num_hops = 1

    orig_nids, _ = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                   num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    deg = get_degrees(g, orig_nids['game'], 'game')
    empty_nids = F.nonzero_1d(deg == 0)
    block, gpb = start_bipartite_etype_sample_client(0, tmpdir, num_server > 1,
                                                     nodes={'game': empty_nids, 'user': [1]})

    print("Done sampling")
    for p in pserver_list:
        p.join()

    assert block is not None
    assert block.number_of_edges() == 0
    assert len(block.etypes) == len(g.etypes)


def check_rpc_bipartite_etype_sampling_shuffle(tmpdir, num_server):
    """sample on bipartite via sample_etype_neighbors() which yields non-empty sample results"""
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

    g = create_random_bipartite()
    num_parts = num_server
    num_hops = 1

717
718
    orig_nid_map, orig_eid_map = partition_graph(g, 'test_sampling', num_parts, tmpdir,
        num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True)
719
720
721
722
723
724
725
726
727
728
729

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    fanout = 3
730
    deg = get_degrees(g, orig_nid_map['game'], 'game')
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
    nids = F.nonzero_1d(deg > 0)
    block, gpb = start_bipartite_etype_sample_client(0, tmpdir, num_server > 1, fanout,
                                                     nodes={'game': nids, 'user': [0]})
    print("Done sampling")
    for p in pserver_list:
        p.join()

    for src_type, etype, dst_type in block.canonical_etypes:
        src, dst = block.edges(etype=etype)
        # These are global Ids after shuffling.
        shuffled_src = F.gather_row(
            block.srcnodes[src_type].data[dgl.NID], src)
        shuffled_dst = F.gather_row(
            block.dstnodes[dst_type].data[dgl.NID], dst)
        shuffled_eid = block.edges[etype].data[dgl.EID]

        orig_src = F.asnumpy(F.gather_row(
            orig_nid_map[src_type], shuffled_src))
        orig_dst = F.asnumpy(F.gather_row(
            orig_nid_map[dst_type], shuffled_dst))
        orig_eid = F.asnumpy(F.gather_row(orig_eid_map[etype], shuffled_eid))

        # Check the node Ids and edge Ids.
        orig_src1, orig_dst1 = g.find_edges(orig_eid, etype=etype)
        assert np.all(F.asnumpy(orig_src1) == orig_src)
        assert np.all(F.asnumpy(orig_dst1) == orig_dst)

Jinjing Zhou's avatar
Jinjing Zhou committed
758
759
760
# Wait non shared memory graph store
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
761
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
762
763
@pytest.mark.parametrize("num_server", [1, 2])
def test_rpc_sampling_shuffle(num_server):
764
    reset_envs()
Jinjing Zhou's avatar
Jinjing Zhou committed
765
    import tempfile
766
    os.environ['DGL_DIST_MODE'] = 'distributed'
Jinjing Zhou's avatar
Jinjing Zhou committed
767
    with tempfile.TemporaryDirectory() as tmpdirname:
768
        check_rpc_sampling_shuffle(Path(tmpdirname), num_server)
769
770
771
        # [TODO][Rhett] Tests for multiple groups may fail sometimes and
        # root cause is unknown. Let's disable them for now.
        #check_rpc_sampling_shuffle(Path(tmpdirname), num_server, num_groups=2)
772
        check_rpc_hetero_sampling_shuffle(Path(tmpdirname), num_server)
773
        check_rpc_hetero_sampling_empty_shuffle(Path(tmpdirname), num_server)
774
        check_rpc_hetero_etype_sampling_shuffle(Path(tmpdirname), num_server)
775
776
777
        check_rpc_hetero_etype_sampling_shuffle(Path(tmpdirname), num_server, ['csc'])
        check_rpc_hetero_etype_sampling_shuffle(Path(tmpdirname), num_server, ['csr'])
        check_rpc_hetero_etype_sampling_shuffle(Path(tmpdirname), num_server, ['csc', 'coo'])
778
        check_rpc_hetero_etype_sampling_empty_shuffle(Path(tmpdirname), num_server)
779
780
781
782
        check_rpc_bipartite_sampling_empty(Path(tmpdirname), num_server)
        check_rpc_bipartite_sampling_shuffle(Path(tmpdirname), num_server)
        check_rpc_bipartite_etype_sampling_empty(Path(tmpdirname), num_server)
        check_rpc_bipartite_etype_sampling_shuffle(Path(tmpdirname), num_server)
Jinjing Zhou's avatar
Jinjing Zhou committed
783

784
def check_standalone_sampling(tmpdir, reshuffle):
785
786
787
788
    g = CitationGraphDataset("cora")[0]
    num_parts = 1
    num_hops = 1
    partition_graph(g, 'test_sampling', num_parts, tmpdir,
789
                    num_hops=num_hops, part_method='metis', reshuffle=reshuffle)
790

791
    os.environ['DGL_DIST_MODE'] = 'standalone'
792
    dgl.distributed.initialize("rpc_ip_config.txt")
793
    dist_graph = DistGraph("test_sampling", part_config=tmpdir / 'test_sampling.json')
794
795
796
797
798
799
800
801
    sampled_graph = sample_neighbors(dist_graph, [0, 10, 99, 66, 1024, 2008], 3)

    src, dst = sampled_graph.edges()
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))
802
    dgl.distributed.exit_client()
803

804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
def check_standalone_etype_sampling(tmpdir, reshuffle):
    hg = CitationGraphDataset('cora')[0]
    num_parts = 1
    num_hops = 1

    partition_graph(hg, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=reshuffle)
    os.environ['DGL_DIST_MODE'] = 'standalone'
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_sampling", part_config=tmpdir / 'test_sampling.json')
    sampled_graph = sample_etype_neighbors(dist_graph, [0, 10, 99, 66, 1023], dgl.ETYPE, 3)

    src, dst = sampled_graph.edges()
    assert sampled_graph.number_of_nodes() == hg.number_of_nodes()
    assert np.all(F.asnumpy(hg.has_edges_between(src, dst)))
    eids = hg.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))
    dgl.distributed.exit_client()

def check_standalone_etype_sampling_heterograph(tmpdir, reshuffle):
    hg = CitationGraphDataset('cora')[0]
    num_parts = 1
    num_hops = 1
    src, dst = hg.edges()
    new_hg = dgl.heterograph({('paper', 'cite', 'paper'): (src, dst),
                              ('paper', 'cite-by', 'paper'): (dst, src)},
                              {'paper': hg.number_of_nodes()})
    partition_graph(new_hg, 'test_hetero_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=reshuffle)
    os.environ['DGL_DIST_MODE'] = 'standalone'
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_hetero_sampling", part_config=tmpdir / 'test_hetero_sampling.json')
    sampled_graph = sample_etype_neighbors(dist_graph, [0, 1, 2, 10, 99, 66, 1023, 1024, 2700, 2701], dgl.ETYPE, 1)
    src, dst = sampled_graph.edges(etype=('paper', 'cite', 'paper'))
    assert len(src) == 10
    src, dst = sampled_graph.edges(etype=('paper', 'cite-by', 'paper'))
    assert len(src) == 10
    assert sampled_graph.number_of_nodes() == new_hg.number_of_nodes()
    dgl.distributed.exit_client()

845
846
847
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
def test_standalone_sampling():
848
    reset_envs()
849
850
851
    import tempfile
    os.environ['DGL_DIST_MODE'] = 'standalone'
    with tempfile.TemporaryDirectory() as tmpdirname:
852
853
        check_standalone_sampling(Path(tmpdirname), False)
        check_standalone_sampling(Path(tmpdirname), True)
854

855
856
def start_in_subgraph_client(rank, tmpdir, disable_shared_mem, nodes):
    gpb = None
857
    dgl.distributed.initialize("rpc_ip_config.txt")
858
    if disable_shared_mem:
859
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_in_subgraph.json', rank)
860
    dist_graph = DistGraph("test_in_subgraph", gpb=gpb)
861
862
863
864
865
    try:
        sampled_graph = dgl.distributed.in_subgraph(dist_graph, nodes)
    except Exception as e:
        print(e)
        sampled_graph = None
866
    dgl.distributed.exit_client()
867
868
869
    return sampled_graph


870
def check_rpc_in_subgraph_shuffle(tmpdir, num_server):
871
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
872
873
874
875
876

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server

877
878
    orig_nid, orig_eid = partition_graph(g, 'test_in_subgraph', num_parts, tmpdir,
        num_hops=1, part_method='metis', reshuffle=True, return_mapping=True)
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_in_subgraph'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    nodes = [0, 10, 99, 66, 1024, 2008]
    sampled_graph = start_in_subgraph_client(0, tmpdir, num_server > 1, nodes)
    for p in pserver_list:
        p.join()

    src, dst = sampled_graph.edges()
894
895
    src = orig_nid[src]
    dst = orig_nid[dst]
896
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
897
898
899
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))

    subg1 = dgl.in_subgraph(g, orig_nid[nodes])
900
901
902
903
    src1, dst1 = subg1.edges()
    assert np.all(np.sort(F.asnumpy(src)) == np.sort(F.asnumpy(src1)))
    assert np.all(np.sort(F.asnumpy(dst)) == np.sort(F.asnumpy(dst1)))
    eids = g.edge_ids(src, dst)
904
905
    eids1 = orig_eid[sampled_graph.edata[dgl.EID]]
    assert np.array_equal(F.asnumpy(eids1), F.asnumpy(eids))
906
907
908
909

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
def test_rpc_in_subgraph():
910
    reset_envs()
911
    import tempfile
912
    os.environ['DGL_DIST_MODE'] = 'distributed'
913
    with tempfile.TemporaryDirectory() as tmpdirname:
914
        check_rpc_in_subgraph_shuffle(Path(tmpdirname), 2)
915

916
917
918
919
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
def test_standalone_etype_sampling():
920
    reset_envs()
921
922
923
924
925
926
927
928
929
    import tempfile
    with tempfile.TemporaryDirectory() as tmpdirname:
        os.environ['DGL_DIST_MODE'] = 'standalone'
        check_standalone_etype_sampling_heterograph(Path(tmpdirname), True)
    with tempfile.TemporaryDirectory() as tmpdirname:
        os.environ['DGL_DIST_MODE'] = 'standalone'
        check_standalone_etype_sampling(Path(tmpdirname), True)
        check_standalone_etype_sampling(Path(tmpdirname), False)

Jinjing Zhou's avatar
Jinjing Zhou committed
930
931
932
if __name__ == "__main__":
    import tempfile
    with tempfile.TemporaryDirectory() as tmpdirname:
933
        os.environ['DGL_DIST_MODE'] = 'standalone'
934
935
936
937
938
939
        check_standalone_etype_sampling_heterograph(Path(tmpdirname), True)

    with tempfile.TemporaryDirectory() as tmpdirname:
        os.environ['DGL_DIST_MODE'] = 'standalone'
        check_standalone_etype_sampling(Path(tmpdirname), True)
        check_standalone_etype_sampling(Path(tmpdirname), False)
940
941
        check_standalone_sampling(Path(tmpdirname), True)
        check_standalone_sampling(Path(tmpdirname), False)
942
        os.environ['DGL_DIST_MODE'] = 'distributed'
943
944
        check_rpc_sampling(Path(tmpdirname), 2)
        check_rpc_sampling(Path(tmpdirname), 1)
945
946
        check_rpc_get_degree_shuffle(Path(tmpdirname), 1)
        check_rpc_get_degree_shuffle(Path(tmpdirname), 2)
947
948
        check_rpc_find_edges_shuffle(Path(tmpdirname), 2)
        check_rpc_find_edges_shuffle(Path(tmpdirname), 1)
949
950
        check_rpc_hetero_find_edges_shuffle(Path(tmpdirname), 1)
        check_rpc_hetero_find_edges_shuffle(Path(tmpdirname), 2)
951
952
953
954
        check_rpc_in_subgraph_shuffle(Path(tmpdirname), 2)
        check_rpc_sampling_shuffle(Path(tmpdirname), 1)
        check_rpc_hetero_sampling_shuffle(Path(tmpdirname), 1)
        check_rpc_hetero_sampling_shuffle(Path(tmpdirname), 2)
955
956
957
958
        check_rpc_hetero_sampling_empty_shuffle(Path(tmpdirname), 1)
        check_rpc_hetero_etype_sampling_shuffle(Path(tmpdirname), 1)
        check_rpc_hetero_etype_sampling_shuffle(Path(tmpdirname), 2)
        check_rpc_hetero_etype_sampling_empty_shuffle(Path(tmpdirname), 1)