test_minibatch.py 31.4 KB
Newer Older
1
2
import dgl
import dgl.graphbolt as gb
peizhou001's avatar
peizhou001 committed
3
import pytest
4
5
6
import torch


peizhou001's avatar
peizhou001 committed
7
8
9
10
relation = "A:r:B"
reverse_relation = "B:rr:A"


11
12
13
14
15
def test_minibatch_representation_homo():
    csc_formats = [
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 3, 5, 6]),
            indices=torch.tensor([0, 1, 2, 2, 1, 2]),
16
        ),
17
18
19
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 2, 3]),
            indices=torch.tensor([1, 2, 0]),
20
21
        ),
    ]
22
    original_column_node_ids = [
23
24
25
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11]),
    ]
26
    original_row_node_ids = [
27
28
29
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11, 12]),
    ]
30
    original_edge_ids = [
31
32
33
        torch.tensor([19, 20, 21, 22, 25, 30]),
        torch.tensor([10, 15, 17]),
    ]
34
    node_features = {"x": torch.tensor([5, 0, 2, 1])}
35
    edge_features = [
36
37
        {"x": torch.tensor([9, 0, 1, 1, 7, 4])},
        {"x": torch.tensor([0, 2, 2])},
38
39
40
41
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
42
            gb.SampledSubgraphImpl(
43
                sampled_csc=csc_formats[i],
44
45
46
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
47
48
49
50
51
            )
        )
    negative_srcs = torch.tensor([[8], [1], [6]])
    negative_dsts = torch.tensor([[2], [8], [8]])
    input_nodes = torch.tensor([8, 1, 6, 5, 9, 0, 2, 4])
52
53
54
    compacted_csc_formats = gb.CSCFormatBase(
        indptr=torch.tensor([0, 2, 3]), indices=torch.tensor([3, 4, 5])
    )
55
56
    compacted_negative_srcs = torch.tensor([[0], [1], [2]])
    compacted_negative_dsts = torch.tensor([[6], [0], [0]])
57
58
59
60
    labels = torch.tensor([0.0, 1.0, 2.0])
    # Test minibatch without data.
    minibatch = gb.MiniBatch()
    expect_result = str(
61
62
        """MiniBatch(seeds=None,
          seed_nodes=None,
63
          sampled_subgraphs=None,
64
65
          positive_node_pairs=None,
          node_pairs_with_labels=None,
66
67
68
          node_pairs=None,
          node_features=None,
          negative_srcs=None,
69
          negative_node_pairs=None,
70
71
72
73
74
75
76
          negative_dsts=None,
          labels=None,
          input_nodes=None,
          edge_features=None,
          compacted_node_pairs=None,
          compacted_negative_srcs=None,
          compacted_negative_dsts=None,
77
          blocks=None,
78
79
80
       )"""
    )
    result = str(minibatch)
81
    assert result == expect_result, print(expect_result, result)
82
83
    # Test minibatch with all attributes.
    minibatch = gb.MiniBatch(
84
        node_pairs=csc_formats,
85
86
87
88
89
90
        sampled_subgraphs=subgraphs,
        labels=labels,
        node_features=node_features,
        edge_features=edge_features,
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
91
        compacted_node_pairs=compacted_csc_formats,
92
93
94
95
96
        input_nodes=input_nodes,
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
    expect_result = str(
97
98
        """MiniBatch(seeds=None,
          seed_nodes=None,
99
100
101
102
          sampled_subgraphs=[SampledSubgraphImpl(sampled_csc=CSCFormatBase(indptr=tensor([0, 1, 3, 5, 6]),
                                                                         indices=tensor([0, 1, 2, 2, 1, 2]),
                                                           ),
                                               original_row_node_ids=tensor([10, 11, 12, 13]),
103
104
105
                                               original_edge_ids=tensor([19, 20, 21, 22, 25, 30]),
                                               original_column_node_ids=tensor([10, 11, 12, 13]),
                            ),
106
107
108
109
                            SampledSubgraphImpl(sampled_csc=CSCFormatBase(indptr=tensor([0, 2, 3]),
                                                                         indices=tensor([1, 2, 0]),
                                                           ),
                                               original_row_node_ids=tensor([10, 11, 12]),
110
111
112
                                               original_edge_ids=tensor([10, 15, 17]),
                                               original_column_node_ids=tensor([10, 11]),
                            )],
113
114
115
116
117
118
119
          positive_node_pairs=CSCFormatBase(indptr=tensor([0, 2, 3]),
                                            indices=tensor([3, 4, 5]),
                              ),
          node_pairs_with_labels=(CSCFormatBase(indptr=tensor([0, 2, 3]),
                                               indices=tensor([3, 4, 5]),
                                 ),
                                 tensor([0., 1., 2.])),
120
121
122
123
124
125
126
          node_pairs=[CSCFormatBase(indptr=tensor([0, 1, 3, 5, 6]),
                                   indices=tensor([0, 1, 2, 2, 1, 2]),
                     ),
                     CSCFormatBase(indptr=tensor([0, 2, 3]),
                                   indices=tensor([1, 2, 0]),
                     )],
          node_features={'x': tensor([5, 0, 2, 1])},
127
128
129
          negative_srcs=tensor([[8],
                                [1],
                                [6]]),
130
131
132
133
134
135
          negative_node_pairs=(tensor([[0],
                                      [1],
                                      [2]]),
                              tensor([[6],
                                      [0],
                                      [0]])),
136
137
138
139
140
          negative_dsts=tensor([[2],
                                [8],
                                [8]]),
          labels=tensor([0., 1., 2.]),
          input_nodes=tensor([8, 1, 6, 5, 9, 0, 2, 4]),
141
142
143
144
145
          edge_features=[{'x': tensor([9, 0, 1, 1, 7, 4])},
                        {'x': tensor([0, 2, 2])}],
          compacted_node_pairs=CSCFormatBase(indptr=tensor([0, 2, 3]),
                                             indices=tensor([3, 4, 5]),
                               ),
146
147
148
149
150
151
          compacted_negative_srcs=tensor([[0],
                                          [1],
                                          [2]]),
          compacted_negative_dsts=tensor([[6],
                                          [0],
                                          [0]]),
152
153
          blocks=[Block(num_src_nodes=4, num_dst_nodes=4, num_edges=6),
                 Block(num_src_nodes=3, num_dst_nodes=2, num_edges=3)],
154
155
156
157
       )"""
    )
    result = str(minibatch)
    assert result == expect_result, print(expect_result, result)
peizhou001's avatar
peizhou001 committed
158
159


160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
def test_minibatch_representation_hetero():
    csc_formats = [
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2, 3]),
                indices=torch.tensor([0, 1, 1]),
            ),
            reverse_relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 0, 0, 1, 2]),
                indices=torch.tensor([1, 0]),
            ),
        },
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2]), indices=torch.tensor([1, 0])
            )
        },
    ]
    original_column_node_ids = [
        {"B": torch.tensor([10, 11, 12]), "A": torch.tensor([5, 7, 9, 11])},
        {"B": torch.tensor([10, 11])},
    ]
    original_row_node_ids = [
        {
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        {
            "A": torch.tensor([5, 7]),
            "B": torch.tensor([10, 11]),
        },
    ]
    original_edge_ids = [
        {
            relation: torch.tensor([19, 20, 21]),
            reverse_relation: torch.tensor([23, 26]),
        },
        {relation: torch.tensor([10, 12])},
    ]
    node_features = {
        ("A", "x"): torch.tensor([6, 4, 0, 1]),
    }
    edge_features = [
        {(relation, "x"): torch.tensor([4, 2, 4])},
        {(relation, "x"): torch.tensor([0, 6])},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
            gb.SampledSubgraphImpl(
210
                sampled_csc=csc_formats[i],
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    negative_srcs = {"B": torch.tensor([[8], [1], [6]])}
    negative_dsts = {"B": torch.tensor([[2], [8], [8]])}
    compacted_csc_formats = {
        relation: gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 2, 3]), indices=torch.tensor([3, 4, 5])
        ),
        reverse_relation: gb.CSCFormatBase(
            indptr=torch.tensor([0, 0, 0, 1, 2]), indices=torch.tensor([0, 1])
        ),
    }
    compacted_negative_srcs = {relation: torch.tensor([[0], [1], [2]])}
    compacted_negative_dsts = {relation: torch.tensor([[6], [0], [0]])}
228
    # Test minibatch with all attributes.
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    minibatch = gb.MiniBatch(
        seed_nodes={"B": torch.tensor([10, 15])},
        node_pairs=csc_formats,
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
        labels={"B": torch.tensor([2, 5])},
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
        compacted_node_pairs=compacted_csc_formats,
        input_nodes={
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
    expect_result = str(
247
248
        """MiniBatch(seeds=None,
          seed_nodes={'B': tensor([10, 15])},
249
250
251
252
253
254
          sampled_subgraphs=[SampledSubgraphImpl(sampled_csc={'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                                                         indices=tensor([0, 1, 1]),
                                                           ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                                                         indices=tensor([1, 0]),
                                                           )},
                                               original_row_node_ids={'A': tensor([ 5,  7,  9, 11]), 'B': tensor([10, 11, 12])},
255
256
257
                                               original_edge_ids={'A:r:B': tensor([19, 20, 21]), 'B:rr:A': tensor([23, 26])},
                                               original_column_node_ids={'B': tensor([10, 11, 12]), 'A': tensor([ 5,  7,  9, 11])},
                            ),
258
259
260
261
                            SampledSubgraphImpl(sampled_csc={'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2]),
                                                                         indices=tensor([1, 0]),
                                                           )},
                                               original_row_node_ids={'A': tensor([5, 7]), 'B': tensor([10, 11])},
262
263
264
                                               original_edge_ids={'A:r:B': tensor([10, 12])},
                                               original_column_node_ids={'B': tensor([10, 11])},
                            )],
265
266
267
268
269
270
271
272
273
274
275
          positive_node_pairs={'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                            indices=tensor([3, 4, 5]),
                              ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                            indices=tensor([0, 1]),
                              )},
          node_pairs_with_labels=({'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                               indices=tensor([3, 4, 5]),
                                 ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                               indices=tensor([0, 1]),
                                 )},
                                 {'B': tensor([2, 5])}),
276
277
278
279
280
281
282
283
284
285
286
287
          node_pairs=[{'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                   indices=tensor([0, 1, 1]),
                     ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                   indices=tensor([1, 0]),
                     )},
                     {'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2]),
                                   indices=tensor([1, 0]),
                     )}],
          node_features={('A', 'x'): tensor([6, 4, 0, 1])},
          negative_srcs={'B': tensor([[8],
                                [1],
                                [6]])},
288
289
290
291
292
          negative_node_pairs={'A:r:B': (tensor([[0],
                                      [1],
                                      [2]]), tensor([[6],
                                      [0],
                                      [0]]))},
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
          negative_dsts={'B': tensor([[2],
                                [8],
                                [8]])},
          labels={'B': tensor([2, 5])},
          input_nodes={'A': tensor([ 5,  7,  9, 11]), 'B': tensor([10, 11, 12])},
          edge_features=[{('A:r:B', 'x'): tensor([4, 2, 4])},
                        {('A:r:B', 'x'): tensor([0, 6])}],
          compacted_node_pairs={'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                             indices=tensor([3, 4, 5]),
                               ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                             indices=tensor([0, 1]),
                               )},
          compacted_negative_srcs={'A:r:B': tensor([[0],
                                          [1],
                                          [2]])},
          compacted_negative_dsts={'A:r:B': tensor([[6],
                                          [0],
                                          [0]])},
311
312
313
314
315
316
317
318
          blocks=[Block(num_src_nodes={'A': 4, 'B': 3},
                       num_dst_nodes={'A': 4, 'B': 3},
                       num_edges={('A', 'r', 'B'): 3, ('B', 'rr', 'A'): 2},
                       metagraph=[('A', 'B', 'r'), ('B', 'A', 'rr')]),
                 Block(num_src_nodes={'A': 2, 'B': 2},
                       num_dst_nodes={'B': 2},
                       num_edges={('A', 'r', 'B'): 2},
                       metagraph=[('A', 'B', 'r')])],
319
320
321
322
323
324
       )"""
    )
    result = str(minibatch)
    assert result == expect_result, print(result)


325
def test_get_dgl_blocks_homo():
326
327
328
329
330
331
332
333
334
335
    node_pairs = [
        (
            torch.tensor([0, 1, 2, 2, 2, 1]),
            torch.tensor([0, 1, 1, 2, 3, 2]),
        ),
        (
            torch.tensor([0, 1, 2]),
            torch.tensor([1, 0, 0]),
        ),
    ]
336
337
338
339
340
341
342
343
344
345
    csc_formats = [
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 3, 5, 6]),
            indices=torch.tensor([0, 1, 2, 2, 1, 2]),
        ),
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 3]),
            indices=torch.tensor([0, 1, 2]),
        ),
    ]
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
    original_column_node_ids = [
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11]),
    ]
    original_row_node_ids = [
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11, 12]),
    ]
    original_edge_ids = [
        torch.tensor([19, 20, 21, 22, 25, 30]),
        torch.tensor([10, 15, 17]),
    ]
    node_features = {"x": torch.tensor([7, 6, 2, 2])}
    edge_features = [
        {"x": torch.tensor([[8], [1], [6]])},
        {"x": torch.tensor([[2], [8], [8]])},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
366
367
            gb.SampledSubgraphImpl(
                sampled_csc=csc_formats[i],
368
369
370
371
372
373
374
375
376
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    negative_srcs = torch.tensor([[8], [1], [6]])
    negative_dsts = torch.tensor([[2], [8], [8]])
    input_nodes = torch.tensor([8, 1, 6, 5, 9, 0, 2, 4])
    compacted_node_pairs = (torch.tensor([0, 1, 2]), torch.tensor([3, 4, 5]))
377
378
    compacted_negative_srcs = torch.tensor([[0], [1], [2]])
    compacted_negative_dsts = torch.tensor([[6], [0], [0]])
379
    labels = torch.tensor([0.0, 1.0, 2.0])
380
    # Test minibatch with all attributes.
381
382
383
384
385
386
387
388
389
390
391
392
393
    minibatch = gb.MiniBatch(
        node_pairs=node_pairs,
        sampled_subgraphs=subgraphs,
        labels=labels,
        node_features=node_features,
        edge_features=edge_features,
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
        compacted_node_pairs=compacted_node_pairs,
        input_nodes=input_nodes,
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
394
    dgl_blocks = minibatch.blocks
395
    expect_result = str(
396
        """[Block(num_src_nodes=4, num_dst_nodes=4, num_edges=6), Block(num_src_nodes=3, num_dst_nodes=2, num_edges=3)]"""
397
    )
398
    result = str(dgl_blocks)
399
400
401
    assert result == expect_result, print(result)


402
def test_get_dgl_blocks_hetero():
403
404
405
406
407
408
409
    node_pairs = [
        {
            relation: (torch.tensor([0, 1, 1]), torch.tensor([0, 1, 2])),
            reverse_relation: (torch.tensor([1, 0]), torch.tensor([2, 3])),
        },
        {relation: (torch.tensor([0, 1]), torch.tensor([1, 0]))},
    ]
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
    csc_formats = [
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2, 3]),
                indices=torch.tensor([0, 1, 1]),
            ),
            reverse_relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 0, 0, 1, 2]),
                indices=torch.tensor([1, 0]),
            ),
        },
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2]), indices=torch.tensor([1, 0])
            )
        },
    ]
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
    original_column_node_ids = [
        {"B": torch.tensor([10, 11, 12]), "A": torch.tensor([5, 7, 9, 11])},
        {"B": torch.tensor([10, 11])},
    ]
    original_row_node_ids = [
        {
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        {
            "A": torch.tensor([5, 7]),
            "B": torch.tensor([10, 11]),
        },
    ]
    original_edge_ids = [
        {
            relation: torch.tensor([19, 20, 21]),
            reverse_relation: torch.tensor([23, 26]),
        },
        {relation: torch.tensor([10, 12])},
    ]
    node_features = {
        ("A", "x"): torch.tensor([6, 4, 0, 1]),
    }
    edge_features = [
        {(relation, "x"): torch.tensor([4, 2, 4])},
        {(relation, "x"): torch.tensor([0, 6])},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
458
459
            gb.SampledSubgraphImpl(
                sampled_csc=csc_formats[i],
460
461
462
463
464
465
466
467
468
469
470
471
472
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    negative_srcs = {"B": torch.tensor([[8], [1], [6]])}
    negative_dsts = {"B": torch.tensor([[2], [8], [8]])}
    compacted_node_pairs = {
        relation: (torch.tensor([0, 1, 2]), torch.tensor([3, 4, 5])),
        reverse_relation: (torch.tensor([0, 1, 2]), torch.tensor([3, 4, 5])),
    }
    compacted_negative_srcs = {relation: torch.tensor([[0], [1], [2]])}
    compacted_negative_dsts = {relation: torch.tensor([[6], [0], [0]])}
473
    # Test minibatch with all attributes.
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
    minibatch = gb.MiniBatch(
        seed_nodes={"B": torch.tensor([10, 15])},
        node_pairs=node_pairs,
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
        labels={"B": torch.tensor([2, 5])},
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
        compacted_node_pairs=compacted_node_pairs,
        input_nodes={
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
491
    dgl_blocks = minibatch.blocks
492
    expect_result = str(
493
494
495
496
497
498
499
        """[Block(num_src_nodes={'A': 4, 'B': 3},
      num_dst_nodes={'A': 4, 'B': 3},
      num_edges={('A', 'r', 'B'): 3, ('B', 'rr', 'A'): 2},
      metagraph=[('A', 'B', 'r'), ('B', 'A', 'rr')]), Block(num_src_nodes={'A': 2, 'B': 2},
      num_dst_nodes={'B': 2},
      num_edges={('A', 'r', 'B'): 2},
      metagraph=[('A', 'B', 'r')])]"""
500
    )
501
    result = str(dgl_blocks)
502
503
504
    assert result == expect_result, print(result)


505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
@pytest.mark.parametrize(
    "mode", ["neg_graph", "neg_src", "neg_dst", "edge_classification"]
)
def test_minibatch_node_pairs_with_labels(mode):
    # Arrange
    minibatch = create_homo_minibatch()
    minibatch.compacted_node_pairs = (
        torch.tensor([0, 1]),
        torch.tensor([1, 0]),
    )
    if mode == "neg_graph" or mode == "neg_src":
        minibatch.compacted_negative_srcs = torch.tensor([[0, 0], [1, 1]])
    if mode == "neg_graph" or mode == "neg_dst":
        minibatch.compacted_negative_dsts = torch.tensor([[1, 0], [0, 1]])
    if mode == "edge_classification":
        minibatch.labels = torch.tensor([0, 1]).long()
    # Act
    node_pairs, labels = minibatch.node_pairs_with_labels

    # Assert
    if mode == "neg_src":
        expect_node_pairs = (
            torch.tensor([0, 1, 0, 0, 1, 1]),
            torch.tensor([1, 0, 1, 1, 0, 0]),
        )
        expect_labels = torch.tensor([1, 1, 0, 0, 0, 0]).float()
    elif mode != "edge_classification":
        expect_node_pairs = (
            torch.tensor([0, 1, 0, 0, 1, 1]),
            torch.tensor([1, 0, 1, 0, 0, 1]),
        )
        expect_labels = torch.tensor([1, 1, 0, 0, 0, 0]).float()
    else:
        expect_node_pairs = (
            torch.tensor([0, 1]),
            torch.tensor([1, 0]),
        )
        expect_labels = torch.tensor([0, 1]).long()
    assert torch.equal(node_pairs[0], expect_node_pairs[0])
    assert torch.equal(node_pairs[1], expect_node_pairs[1])
    assert torch.equal(labels, expect_labels)


548
def create_homo_minibatch():
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
    csc_formats = [
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 3, 5, 6]),
            indices=torch.tensor([0, 1, 2, 2, 1, 2]),
        ),
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 2, 3]),
            indices=torch.tensor([1, 2, 0]),
        ),
    ]
    original_column_node_ids = [
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11]),
    ]
    original_row_node_ids = [
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11, 12]),
    ]
    original_edge_ids = [
        torch.tensor([19, 20, 21, 22, 25, 30]),
        torch.tensor([10, 15, 17]),
    ]
    node_features = {"x": torch.randint(0, 10, (4,))}
    edge_features = [
        {"x": torch.randint(0, 10, (6,))},
        {"x": torch.randint(0, 10, (3,))},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
            gb.SampledSubgraphImpl(
580
                sampled_csc=csc_formats[i],
581
582
583
584
585
586
587
588
589
590
591
592
593
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    return gb.MiniBatch(
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
        input_nodes=torch.tensor([10, 11, 12, 13]),
    )


594
def create_hetero_minibatch():
595
    sampled_csc = [
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2, 3]),
                indices=torch.tensor([0, 1, 1]),
            ),
            reverse_relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 0, 0, 1, 2]),
                indices=torch.tensor([1, 0]),
            ),
        },
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2]), indices=torch.tensor([1, 0])
            )
        },
    ]
    original_column_node_ids = [
        {"B": torch.tensor([10, 11, 12]), "A": torch.tensor([5, 7, 9, 11])},
        {"B": torch.tensor([10, 11])},
    ]
    original_row_node_ids = [
        {
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        {
            "A": torch.tensor([5, 7]),
            "B": torch.tensor([10, 11]),
        },
    ]
    original_edge_ids = [
        {
            relation: torch.tensor([19, 20, 21]),
            reverse_relation: torch.tensor([23, 26]),
        },
        {relation: torch.tensor([10, 12])},
    ]
    node_features = {
        ("A", "x"): torch.randint(0, 10, (4,)),
    }
    edge_features = [
        {(relation, "x"): torch.randint(0, 10, (3,))},
        {(relation, "x"): torch.randint(0, 10, (2,))},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
            gb.SampledSubgraphImpl(
644
                sampled_csc=sampled_csc[i],
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    return gb.MiniBatch(
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
        input_nodes={
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
    )


661
def check_dgl_blocks_hetero(minibatch, blocks):
662
    etype = gb.etype_str_to_tuple(relation)
663
664
    sampled_csc = [
        subgraph.sampled_csc for subgraph in minibatch.sampled_subgraphs
665
666
667
668
669
670
671
672
673
674
675
676
    ]
    original_edge_ids = [
        subgraph.original_edge_ids for subgraph in minibatch.sampled_subgraphs
    ]
    original_row_node_ids = [
        subgraph.original_row_node_ids
        for subgraph in minibatch.sampled_subgraphs
    ]

    for i, block in enumerate(blocks):
        edges = block.edges(etype=etype)
        dst_ndoes = torch.arange(
677
            0, len(sampled_csc[i][relation].indptr) - 1
678
        ).repeat_interleave(sampled_csc[i][relation].indptr.diff())
679
        assert torch.equal(edges[0], sampled_csc[i][relation].indices)
680
681
682
683
684
685
        assert torch.equal(edges[1], dst_ndoes)
        assert torch.equal(
            block.edges[etype].data[dgl.EID], original_edge_ids[i][relation]
        )
    edges = blocks[0].edges(etype=gb.etype_str_to_tuple(reverse_relation))
    dst_ndoes = torch.arange(
686
        0, len(sampled_csc[0][reverse_relation].indptr) - 1
687
    ).repeat_interleave(sampled_csc[0][reverse_relation].indptr.diff())
688
    assert torch.equal(edges[0], sampled_csc[0][reverse_relation].indices)
689
690
691
692
693
694
695
696
697
    assert torch.equal(edges[1], dst_ndoes)
    assert torch.equal(
        blocks[0].srcdata[dgl.NID]["A"], original_row_node_ids[0]["A"]
    )
    assert torch.equal(
        blocks[0].srcdata[dgl.NID]["B"], original_row_node_ids[0]["B"]
    )


698
def check_dgl_blocks_homo(minibatch, blocks):
699
700
    sampled_csc = [
        subgraph.sampled_csc for subgraph in minibatch.sampled_subgraphs
701
702
703
704
705
706
707
708
709
710
    ]
    original_edge_ids = [
        subgraph.original_edge_ids for subgraph in minibatch.sampled_subgraphs
    ]
    original_row_node_ids = [
        subgraph.original_row_node_ids
        for subgraph in minibatch.sampled_subgraphs
    ]
    for i, block in enumerate(blocks):
        dst_ndoes = torch.arange(
711
            0, len(sampled_csc[i].indptr) - 1
712
        ).repeat_interleave(sampled_csc[i].indptr.diff())
713
        assert torch.equal(block.edges()[0], sampled_csc[i].indices), print(
714
715
716
717
718
719
720
721
722
723
724
            block.edges()
        )
        assert torch.equal(block.edges()[1], dst_ndoes), print(block.edges())
        assert torch.equal(block.edata[dgl.EID], original_edge_ids[i]), print(
            block.edata[dgl.EID]
        )
    assert torch.equal(
        blocks[0].srcdata[dgl.NID], original_row_node_ids[0]
    ), print(blocks[0].srcdata[dgl.NID])


725
def test_dgl_node_classification_without_feature():
726
    # Arrange
727
    minibatch = create_homo_minibatch()
728
729
730
731
    minibatch.node_features = None
    minibatch.labels = None
    minibatch.seed_nodes = torch.tensor([10, 15])
    # Act
732
    dgl_blocks = minibatch.blocks
733
734

    # Assert
735
736
737
    assert len(dgl_blocks) == 2
    assert minibatch.node_features is None
    assert minibatch.labels is None
738
    check_dgl_blocks_homo(minibatch, dgl_blocks)
739
740


741
def test_dgl_node_classification_homo():
742
    # Arrange
743
    minibatch = create_homo_minibatch()
744
745
746
    minibatch.seed_nodes = torch.tensor([10, 15])
    minibatch.labels = torch.tensor([2, 5])
    # Act
747
    dgl_blocks = minibatch.blocks
748
749

    # Assert
750
    assert len(dgl_blocks) == 2
751
    check_dgl_blocks_homo(minibatch, dgl_blocks)
752
753


754
755
def test_dgl_node_classification_hetero():
    minibatch = create_hetero_minibatch()
756
757
    minibatch.labels = {"B": torch.tensor([2, 5])}
    minibatch.seed_nodes = {"B": torch.tensor([10, 15])}
758
759
    # Act
    dgl_blocks = minibatch.blocks
760
761

    # Assert
762
    assert len(dgl_blocks) == 2
763
    check_dgl_blocks_hetero(minibatch, dgl_blocks)
764
765
766


@pytest.mark.parametrize("mode", ["neg_graph", "neg_src", "neg_dst"])
767
def test_dgl_link_predication_homo(mode):
768
    # Arrange
769
    minibatch = create_homo_minibatch()
770
771
772
773
774
775
776
777
778
    minibatch.compacted_node_pairs = (
        torch.tensor([0, 1]),
        torch.tensor([1, 0]),
    )
    if mode == "neg_graph" or mode == "neg_src":
        minibatch.compacted_negative_srcs = torch.tensor([[0, 0], [1, 1]])
    if mode == "neg_graph" or mode == "neg_dst":
        minibatch.compacted_negative_dsts = torch.tensor([[1, 0], [0, 1]])
    # Act
779
    dgl_blocks = minibatch.blocks
780
781

    # Assert
782
    assert len(dgl_blocks) == 2
783
    check_dgl_blocks_homo(minibatch, dgl_blocks)
784
785
    if mode == "neg_graph" or mode == "neg_src":
        assert torch.equal(
786
            minibatch.negative_node_pairs[0],
787
            minibatch.compacted_negative_srcs,
788
789
790
        )
    if mode == "neg_graph" or mode == "neg_dst":
        assert torch.equal(
791
            minibatch.negative_node_pairs[1],
792
            minibatch.compacted_negative_dsts,
793
        )
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
    (
        node_pairs,
        labels,
    ) = minibatch.node_pairs_with_labels
    if mode == "neg_src":
        expect_node_pairs = (
            torch.tensor([0, 1, 0, 0, 1, 1]),
            torch.tensor([1, 0, 1, 1, 0, 0]),
        )
    else:
        expect_node_pairs = (
            torch.tensor([0, 1, 0, 0, 1, 1]),
            torch.tensor([1, 0, 1, 0, 0, 1]),
        )
    expect_labels = torch.tensor([1, 1, 0, 0, 0, 0]).float()
    assert torch.equal(node_pairs[0], expect_node_pairs[0])
    assert torch.equal(node_pairs[1], expect_node_pairs[1])
    assert torch.equal(labels, expect_labels)
812
813
814


@pytest.mark.parametrize("mode", ["neg_graph", "neg_src", "neg_dst"])
815
def test_dgl_link_predication_hetero(mode):
816
    # Arrange
817
    minibatch = create_hetero_minibatch()
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
    minibatch.compacted_node_pairs = {
        relation: (
            torch.tensor([1, 1]),
            torch.tensor([1, 0]),
        ),
        reverse_relation: (
            torch.tensor([0, 1]),
            torch.tensor([1, 0]),
        ),
    }
    if mode == "neg_graph" or mode == "neg_src":
        minibatch.compacted_negative_srcs = {
            relation: torch.tensor([[2, 0], [1, 2]]),
            reverse_relation: torch.tensor([[1, 2], [0, 2]]),
        }
    if mode == "neg_graph" or mode == "neg_dst":
        minibatch.compacted_negative_dsts = {
            relation: torch.tensor([[1, 3], [2, 1]]),
            reverse_relation: torch.tensor([[2, 1], [3, 1]]),
        }
    # Act
839
    dgl_blocks = minibatch.blocks
840
841

    # Assert
842
    assert len(dgl_blocks) == 2
843
    check_dgl_blocks_hetero(minibatch, dgl_blocks)
844
845
846
    if mode == "neg_graph" or mode == "neg_src":
        for etype, src in minibatch.compacted_negative_srcs.items():
            assert torch.equal(
847
                minibatch.negative_node_pairs[etype][0],
848
                src,
849
850
851
852
            )
    if mode == "neg_graph" or mode == "neg_dst":
        for etype, dst in minibatch.compacted_negative_dsts.items():
            assert torch.equal(
853
                minibatch.negative_node_pairs[etype][1],
854
                minibatch.compacted_negative_dsts[etype],
855
            )