train_sampling_multi_gpu.py 10.8 KB
Newer Older
1
2
3
4
5
6
7
import dgl
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.multiprocessing as mp
8
from torch.utils.data import DataLoader
9
10
11
12
13
14
15
import dgl.function as fn
import dgl.nn.pytorch as dglnn
import time
import argparse
from dgl.data import RedditDataset
from torch.nn.parallel import DistributedDataParallel
import tqdm
16
import traceback
17

18
from utils import thread_wrapped_func
19
from load_graph import load_reddit, inductive_split
20

21
22
23
24
25
26
27
28
29
30
31
32
33
class SAGE(nn.Module):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout):
        super().__init__()
        self.n_layers = n_layers
        self.n_hidden = n_hidden
        self.n_classes = n_classes
        self.layers = nn.ModuleList()
34
        self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, 'mean'))
35
        for i in range(1, n_layers - 1):
36
37
38
39
            self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, 'mean'))
        self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, 'mean'))
        self.dropout = nn.Dropout(dropout)
        self.activation = activation
40
41
42

    def forward(self, blocks, x):
        h = x
43
        for l, (layer, block) in enumerate(zip(self.layers, blocks)):
44
            h = layer(block, h)
45
46
47
            if l != len(self.layers) - 1:
                h = self.activation(h)
                h = self.dropout(h)
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        return h

    def inference(self, g, x, batch_size, device):
        """
        Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling).
        g : the entire graph.
        x : the input of entire node set.

        The inference code is written in a fashion that it could handle any number of nodes and
        layers.
        """
        # During inference with sampling, multi-layer blocks are very inefficient because
        # lots of computations in the first few layers are repeated.
        # Therefore, we compute the representation of all nodes layer by layer.  The nodes
        # on each layer are of course splitted in batches.
        # TODO: can we standardize this?
        nodes = th.arange(g.number_of_nodes())
        for l, layer in enumerate(self.layers):
            y = th.zeros(g.number_of_nodes(), self.n_hidden if l != len(self.layers) - 1 else self.n_classes)

68
69
70
71
72
73
74
75
76
77
78
79
            sampler = dgl.sampling.MultiLayerNeighborSampler([None])
            dataloader = dgl.sampling.NodeDataLoader(
                g,
                th.arange(g.number_of_nodes()),
                sampler,
                batch_size=args.batch_size,
                shuffle=True,
                drop_last=False,
                num_workers=args.num_workers)

            for input_nodes, output_nodes, blocks in tqdm.tqdm(dataloader):
                block = blocks[0]
80

81
                block = block.to(device)
82
                h = x[input_nodes].to(device)
83
                h = layer(block, h)
84
85
86
                if l != len(self.layers) - 1:
                    h = self.activation(h)
                    h = self.dropout(h)
87

88
                y[output_nodes] = h.cpu()
89
90
91
92

            x = y
        return y

93
94
95
96
97
98
99
100
def prepare_mp(g):
    """
    Explicitly materialize the CSR, CSC and COO representation of the given graph
    so that they could be shared via copy-on-write to sampler workers and GPU
    trainers.

    This is a workaround before full shared memory support on heterogeneous graphs.
    """
101
102
    g.in_degrees(0)
    g.out_degrees(0)
103
104
    g.find_edges([0])

105
106
107
108
109
110
def compute_acc(pred, labels):
    """
    Compute the accuracy of prediction given the labels.
    """
    return (th.argmax(pred, dim=1) == labels).float().sum() / len(pred)

111
def evaluate(model, g, inputs, labels, val_nid, batch_size, device):
112
    """
113
    Evaluate the model on the validation set specified by ``val_nid``.
114
115
116
    g : The entire graph.
    inputs : The features of all the nodes.
    labels : The labels of all the nodes.
117
    val_nid : A node ID tensor indicating which nodes do we actually compute the accuracy for.
118
119
120
121
122
123
124
    batch_size : Number of nodes to compute at the same time.
    device : The GPU device to evaluate on.
    """
    model.eval()
    with th.no_grad():
        pred = model.inference(g, inputs, batch_size, device)
    model.train()
125
    return compute_acc(pred[val_nid], labels[val_nid])
126

127
def load_subtensor(g, labels, seeds, input_nodes, dev_id):
128
129
130
    """
    Copys features and labels of a set of nodes onto GPU.
    """
131
    batch_inputs = g.ndata['features'][input_nodes].to(dev_id)
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    batch_labels = labels[seeds].to(dev_id)
    return batch_inputs, batch_labels

#### Entry point

def run(proc_id, n_gpus, args, devices, data):
    # Start up distributed training, if enabled.
    dev_id = devices[proc_id]
    if n_gpus > 1:
        dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
            master_ip='127.0.0.1', master_port='12345')
        world_size = n_gpus
        th.distributed.init_process_group(backend="nccl",
                                          init_method=dist_init_method,
                                          world_size=world_size,
147
                                          rank=proc_id)
148
149
150
    th.cuda.set_device(dev_id)

    # Unpack data
151
152
153
    in_feats, n_classes, train_g, val_g, test_g = data
    train_mask = train_g.ndata['train_mask']
    val_mask = val_g.ndata['val_mask']
154
    test_mask = ~(test_g.ndata['train_mask'] | test_g.ndata['val_mask'])
155
156
157
    train_nid = train_mask.nonzero()[:, 0]
    val_nid = val_mask.nonzero()[:, 0]
    test_nid = test_mask.nonzero()[:, 0]
158
159

    # Split train_nid
160
    train_nid = th.split(train_nid, len(train_nid) // n_gpus)[proc_id]
161

162
    # Create PyTorch DataLoader for constructing blocks
163
164
165
    sampler = dgl.sampling.MultiLayerNeighborSampler(
        [int(fanout) for fanout in args.fan_out.split(',')])
    dataloader = dgl.sampling.NodeDataLoader(
166
        train_g,
167
168
        train_nid,
        sampler,
169
170
171
        batch_size=args.batch_size,
        shuffle=True,
        drop_last=False,
172
        num_workers=args.num_workers)
173
174

    # Define model and optimizer
175
    model = SAGE(in_feats, args.num_hidden, n_classes, args.num_layers, F.relu, args.dropout)
176
177
178
179
180
181
182
183
184
185
186
187
    model = model.to(dev_id)
    if n_gpus > 1:
        model = DistributedDataParallel(model, device_ids=[dev_id], output_device=dev_id)
    loss_fcn = nn.CrossEntropyLoss()
    loss_fcn = loss_fcn.to(dev_id)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    # Training loop
    avg = 0
    iter_tput = []
    for epoch in range(args.num_epochs):
        tic = time.time()
188
189
190

        # Loop over the dataloader to sample the computation dependency graph as a list of
        # blocks.
191
        for step, (input_nodes, seeds, blocks) in enumerate(dataloader):
192
193
194
195
            if proc_id == 0:
                tic_step = time.time()

            # Load the input features as well as output labels
196
            batch_inputs, batch_labels = load_subtensor(train_g, train_g.ndata['labels'], seeds, input_nodes, dev_id)
197
            blocks = [block.to(dev_id) for block in blocks]
198
199
200
201
202
203
204
205
206
207
208
            # Compute loss and prediction
            batch_pred = model(blocks, batch_inputs)
            loss = loss_fcn(batch_pred, batch_labels)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if proc_id == 0:
                iter_tput.append(len(seeds) * n_gpus / (time.time() - tic_step))
            if step % args.log_every == 0 and proc_id == 0:
                acc = compute_acc(batch_pred, batch_labels)
209
210
                print('Epoch {:05d} | Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | Speed (samples/sec) {:.4f} | GPU {:.1f} MiB'.format(
                    epoch, step, loss.item(), acc.item(), np.mean(iter_tput[3:]), th.cuda.max_memory_allocated() / 1000000))
211
212
213
214
215
216
217
218
219
220

        if n_gpus > 1:
            th.distributed.barrier()

        toc = time.time()
        if proc_id == 0:
            print('Epoch Time(s): {:.4f}'.format(toc - tic))
            if epoch >= 5:
                avg += toc - tic
            if epoch % args.eval_every == 0 and epoch != 0:
221
                if n_gpus == 1:
222
223
224
225
                    eval_acc = evaluate(
                        model, val_g, val_g.ndata['features'], val_g.ndata['labels'], val_nid, args.batch_size, devices[0])
                    test_acc = evaluate(
                        model, test_g, test_g.ndata['features'], test_g.ndata['labels'], test_nid, args.batch_size, devices[0])
226
                else:
227
228
229
230
                    eval_acc = evaluate(
                        model.module, val_g, val_g.ndata['features'], val_g.ndata['labels'], val_nid, args.batch_size, devices[0])
                    test_acc = evaluate(
                        model.module, test_g, test_g.ndata['features'], test_g.ndata['labels'], test_nid, args.batch_size, devices[0])
231
                print('Eval Acc {:.4f}'.format(eval_acc))
232
                print('Test Acc: {:.4f}'.format(test_acc))
233

234

235
236
237
238
239
240
241
    if n_gpus > 1:
        th.distributed.barrier()
    if proc_id == 0:
        print('Avg epoch time: {}'.format(avg / (epoch - 4)))

if __name__ == '__main__':
    argparser = argparse.ArgumentParser("multi-gpu training")
242
243
    argparser.add_argument('--gpu', type=str, default='0',
        help="Comma separated list of GPU device IDs.")
244
245
246
    argparser.add_argument('--num-epochs', type=int, default=20)
    argparser.add_argument('--num-hidden', type=int, default=16)
    argparser.add_argument('--num-layers', type=int, default=2)
247
    argparser.add_argument('--fan-out', type=str, default='10,25')
248
249
250
251
    argparser.add_argument('--batch-size', type=int, default=1000)
    argparser.add_argument('--log-every', type=int, default=20)
    argparser.add_argument('--eval-every', type=int, default=5)
    argparser.add_argument('--lr', type=float, default=0.003)
252
253
254
    argparser.add_argument('--dropout', type=float, default=0.5)
    argparser.add_argument('--num-workers', type=int, default=0,
        help="Number of sampling processes. Use 0 for no extra process.")
255
256
    argparser.add_argument('--inductive', action='store_true',
        help="Inductive learning setting")
257
258
259
260
261
    args = argparser.parse_args()
    
    devices = list(map(int, args.gpu.split(',')))
    n_gpus = len(devices)

262
    g, n_classes = load_reddit()
263
    # Construct graph
264
265
266
267
268
269
270
271
272
273
274
    g = dgl.as_heterograph(g)
    in_feats = g.ndata['features'].shape[1]

    if args.inductive:
        train_g, val_g, test_g = inductive_split(g)
    else:
        train_g = val_g = test_g = g

    prepare_mp(train_g)
    prepare_mp(val_g)
    prepare_mp(test_g)
275
    # Pack data
276
    data = in_feats, n_classes, train_g, val_g, test_g
277
278
279
280
281
282

    if n_gpus == 1:
        run(0, n_gpus, args, devices, data)
    else:
        procs = []
        for proc_id in range(n_gpus):
283
284
            p = mp.Process(target=thread_wrapped_func(run),
                           args=(proc_id, n_gpus, args, devices, data))
285
286
287
288
            p.start()
            procs.append(p)
        for p in procs:
            p.join()