train_sampling_multi_gpu.py 11.6 KB
Newer Older
1
2
3
4
5
6
7
import dgl
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.multiprocessing as mp
8
from torch.utils.data import DataLoader
9
10
11
12
13
14
15
import dgl.function as fn
import dgl.nn.pytorch as dglnn
import time
import argparse
from dgl.data import RedditDataset
from torch.nn.parallel import DistributedDataParallel
import tqdm
16
import traceback
17

18
19
from utils import thread_wrapped_func

20
21
22
23
24
25
26
27
#### Neighbor sampler

class NeighborSampler(object):
    def __init__(self, g, fanouts):
        self.g = g
        self.fanouts = fanouts

    def sample_blocks(self, seeds):
28
        seeds = th.LongTensor(np.asarray(seeds))
29
30
31
        blocks = []
        for fanout in self.fanouts:
            # For each seed node, sample ``fanout`` neighbors.
32
            frontier = dgl.sampling.sample_neighbors(self.g, seeds, fanout, replace=True)
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
            # Then we compact the frontier into a bipartite graph for message passing.
            block = dgl.to_block(frontier, seeds)
            # Obtain the seed nodes for next layer.
            seeds = block.srcdata[dgl.NID]

            blocks.insert(0, block)
        return blocks

class SAGE(nn.Module):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout):
        super().__init__()
        self.n_layers = n_layers
        self.n_hidden = n_hidden
        self.n_classes = n_classes
        self.layers = nn.ModuleList()
54
        self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, 'mean'))
55
        for i in range(1, n_layers - 1):
56
57
58
59
            self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, 'mean'))
        self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, 'mean'))
        self.dropout = nn.Dropout(dropout)
        self.activation = activation
60
61
62

    def forward(self, blocks, x):
        h = x
63
        for l, (layer, block) in enumerate(zip(self.layers, blocks)):
64
65
66
67
            # We need to first copy the representation of nodes on the RHS from the
            # appropriate nodes on the LHS.
            # Note that the shape of h is (num_nodes_LHS, D) and the shape of h_dst
            # would be (num_nodes_RHS, D)
68
            h_dst = h[:block.number_of_dst_nodes()]
69
70
71
            # Then we compute the updated representation on the RHS.
            # The shape of h now becomes (num_nodes_RHS, D)
            h = layer(block, (h, h_dst))
72
73
74
            if l != len(self.layers) - 1:
                h = self.activation(h)
                h = self.dropout(h)
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
        return h

    def inference(self, g, x, batch_size, device):
        """
        Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling).
        g : the entire graph.
        x : the input of entire node set.

        The inference code is written in a fashion that it could handle any number of nodes and
        layers.
        """
        # During inference with sampling, multi-layer blocks are very inefficient because
        # lots of computations in the first few layers are repeated.
        # Therefore, we compute the representation of all nodes layer by layer.  The nodes
        # on each layer are of course splitted in batches.
        # TODO: can we standardize this?
        nodes = th.arange(g.number_of_nodes())
        for l, layer in enumerate(self.layers):
            y = th.zeros(g.number_of_nodes(), self.n_hidden if l != len(self.layers) - 1 else self.n_classes)

            for start in tqdm.trange(0, len(nodes), batch_size):
                end = start + batch_size
                batch_nodes = nodes[start:end]
                block = dgl.to_block(dgl.in_subgraph(g, batch_nodes), batch_nodes)
99
                input_nodes = block.srcdata[dgl.NID]
100

101
                h = x[input_nodes].to(device)
102
                h_dst = h[:block.number_of_dst_nodes()]
103
                h = layer(block, (h, h_dst))
104
105
106
                if l != len(self.layers) - 1:
                    h = self.activation(h)
                    h = self.dropout(h)
107
108
109
110
111
112

                y[start:end] = h.cpu()

            x = y
        return y

113
114
115
116
117
118
119
120
121
122
123
124
def prepare_mp(g):
    """
    Explicitly materialize the CSR, CSC and COO representation of the given graph
    so that they could be shared via copy-on-write to sampler workers and GPU
    trainers.

    This is a workaround before full shared memory support on heterogeneous graphs.
    """
    g.in_degree(0)
    g.out_degree(0)
    g.find_edges([0])

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
def compute_acc(pred, labels):
    """
    Compute the accuracy of prediction given the labels.
    """
    return (th.argmax(pred, dim=1) == labels).float().sum() / len(pred)

def evaluate(model, g, inputs, labels, val_mask, batch_size, device):
    """
    Evaluate the model on the validation set specified by ``val_mask``.
    g : The entire graph.
    inputs : The features of all the nodes.
    labels : The labels of all the nodes.
    val_mask : A 0-1 mask indicating which nodes do we actually compute the accuracy for.
    batch_size : Number of nodes to compute at the same time.
    device : The GPU device to evaluate on.
    """
    model.eval()
    with th.no_grad():
        pred = model.inference(g, inputs, batch_size, device)
    model.train()
    return compute_acc(pred[val_mask], labels[val_mask])

147
def load_subtensor(g, labels, seeds, input_nodes, dev_id):
148
149
150
    """
    Copys features and labels of a set of nodes onto GPU.
    """
151
    batch_inputs = g.ndata['features'][input_nodes].to(dev_id)
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
    batch_labels = labels[seeds].to(dev_id)
    return batch_inputs, batch_labels

#### Entry point

def run(proc_id, n_gpus, args, devices, data):
    # Start up distributed training, if enabled.
    dev_id = devices[proc_id]
    if n_gpus > 1:
        dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
            master_ip='127.0.0.1', master_port='12345')
        world_size = n_gpus
        th.distributed.init_process_group(backend="nccl",
                                          init_method=dist_init_method,
                                          world_size=world_size,
167
                                          rank=proc_id)
168
169
170
171
172
173
174
175
176
177
    th.cuda.set_device(dev_id)

    # Unpack data
    train_mask, val_mask, in_feats, labels, n_classes, g = data
    train_nid = th.LongTensor(np.nonzero(train_mask)[0])
    val_nid = th.LongTensor(np.nonzero(val_mask)[0])
    train_mask = th.BoolTensor(train_mask)
    val_mask = th.BoolTensor(val_mask)

    # Split train_nid
178
    train_nid = th.split(train_nid, len(train_nid) // n_gpus)[proc_id]
179
180

    # Create sampler
181
182
183
184
185
186
187
188
189
    sampler = NeighborSampler(g, [int(fanout) for fanout in args.fan_out.split(',')])

    # Create PyTorch DataLoader for constructing blocks
    dataloader = DataLoader(
        dataset=train_nid.numpy(),
        batch_size=args.batch_size,
        collate_fn=sampler.sample_blocks,
        shuffle=True,
        drop_last=False,
190
        num_workers=args.num_workers)
191
192

    # Define model and optimizer
193
    model = SAGE(in_feats, args.num_hidden, n_classes, args.num_layers, F.relu, args.dropout)
194
195
196
197
198
199
200
201
202
203
204
205
    model = model.to(dev_id)
    if n_gpus > 1:
        model = DistributedDataParallel(model, device_ids=[dev_id], output_device=dev_id)
    loss_fcn = nn.CrossEntropyLoss()
    loss_fcn = loss_fcn.to(dev_id)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    # Training loop
    avg = 0
    iter_tput = []
    for epoch in range(args.num_epochs):
        tic = time.time()
206
207
208
209

        # Loop over the dataloader to sample the computation dependency graph as a list of
        # blocks.
        for step, blocks in enumerate(dataloader):
210
211
212
            if proc_id == 0:
                tic_step = time.time()

213
214
215
216
217
            # The nodes for input lies at the LHS side of the first block.
            # The nodes for output lies at the RHS side of the last block.
            input_nodes = blocks[0].srcdata[dgl.NID]
            seeds = blocks[-1].dstdata[dgl.NID]

218
            # Load the input features as well as output labels
219
            batch_inputs, batch_labels = load_subtensor(g, labels, seeds, input_nodes, dev_id)
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

            # Compute loss and prediction
            batch_pred = model(blocks, batch_inputs)
            loss = loss_fcn(batch_pred, batch_labels)
            optimizer.zero_grad()
            loss.backward()

            if n_gpus > 1:
                for param in model.parameters():
                    if param.requires_grad and param.grad is not None:
                        th.distributed.all_reduce(param.grad.data,
                                                  op=th.distributed.ReduceOp.SUM)
                        param.grad.data /= n_gpus
            optimizer.step()

            if proc_id == 0:
                iter_tput.append(len(seeds) * n_gpus / (time.time() - tic_step))
            if step % args.log_every == 0 and proc_id == 0:
                acc = compute_acc(batch_pred, batch_labels)
239
240
                print('Epoch {:05d} | Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | Speed (samples/sec) {:.4f} | GPU {:.1f} MiB'.format(
                    epoch, step, loss.item(), acc.item(), np.mean(iter_tput[3:]), th.cuda.max_memory_allocated() / 1000000))
241
242
243
244
245
246
247
248
249
250

        if n_gpus > 1:
            th.distributed.barrier()

        toc = time.time()
        if proc_id == 0:
            print('Epoch Time(s): {:.4f}'.format(toc - tic))
            if epoch >= 5:
                avg += toc - tic
            if epoch % args.eval_every == 0 and epoch != 0:
251
                if n_gpus == 1:
252
                    eval_acc = evaluate(model, g, g.ndata['features'], labels, val_mask, args.batch_size, devices[0])
253
                else:
254
                    eval_acc = evaluate(model.module, g, g.ndata['features'], labels, val_mask, args.batch_size, devices[0])
255
256
                print('Eval Acc {:.4f}'.format(eval_acc))

257

258
259
260
261
262
263
264
    if n_gpus > 1:
        th.distributed.barrier()
    if proc_id == 0:
        print('Avg epoch time: {}'.format(avg / (epoch - 4)))

if __name__ == '__main__':
    argparser = argparse.ArgumentParser("multi-gpu training")
265
266
    argparser.add_argument('--gpu', type=str, default='0',
        help="Comma separated list of GPU device IDs.")
267
268
269
    argparser.add_argument('--num-epochs', type=int, default=20)
    argparser.add_argument('--num-hidden', type=int, default=16)
    argparser.add_argument('--num-layers', type=int, default=2)
270
    argparser.add_argument('--fan-out', type=str, default='10,25')
271
272
273
274
    argparser.add_argument('--batch-size', type=int, default=1000)
    argparser.add_argument('--log-every', type=int, default=20)
    argparser.add_argument('--eval-every', type=int, default=5)
    argparser.add_argument('--lr', type=float, default=0.003)
275
276
277
    argparser.add_argument('--dropout', type=float, default=0.5)
    argparser.add_argument('--num-workers', type=int, default=0,
        help="Number of sampling processes. Use 0 for no extra process.")
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    args = argparser.parse_args()
    
    devices = list(map(int, args.gpu.split(',')))
    n_gpus = len(devices)

    # load reddit data
    data = RedditDataset(self_loop=True)
    train_mask = data.train_mask
    val_mask = data.val_mask
    features = th.Tensor(data.features)
    in_feats = features.shape[1]
    labels = th.LongTensor(data.labels)
    n_classes = data.num_labels
    # Construct graph
    g = dgl.graph(data.graph.all_edges())
    g.ndata['features'] = features
294
    prepare_mp(g)
295
296
297
298
299
300
301
302
    # Pack data
    data = train_mask, val_mask, in_feats, labels, n_classes, g

    if n_gpus == 1:
        run(0, n_gpus, args, devices, data)
    else:
        procs = []
        for proc_id in range(n_gpus):
303
304
            p = mp.Process(target=thread_wrapped_func(run),
                           args=(proc_id, n_gpus, args, devices, data))
305
306
307
308
            p.start()
            procs.append(p)
        for p in procs:
            p.join()